mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-06-25 01:19:10 +00:00
Compare commits
4 Commits
Author | SHA1 | Date | |
---|---|---|---|
6568459590 | |||
0ca87d2f7a | |||
1ad7cc5aa2 | |||
18d5ff8695 |
231
.github/workflows/build.yml
vendored
231
.github/workflows/build.yml
vendored
@ -1,41 +1,31 @@
|
||||
name: CI
|
||||
on: [push, pull_request]
|
||||
|
||||
env:
|
||||
ubuntu_image: "ubuntu:22.04"
|
||||
|
||||
jobs:
|
||||
ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
|
||||
- name: Build ${{ matrix.arch }}
|
||||
- name: Dependencies
|
||||
run: |
|
||||
docker run --platform ${{ matrix.arch }} --rm \
|
||||
-v ${{ github.workspace }}:/workspace \
|
||||
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
|
||||
apt update
|
||||
apt install -y build-essential libsdl2-dev
|
||||
make
|
||||
make stream'
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
make stream
|
||||
|
||||
macOS-latest:
|
||||
runs-on: macOS-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
@ -47,104 +37,82 @@ jobs:
|
||||
make
|
||||
make stream
|
||||
|
||||
freeBSD-latest:
|
||||
runs-on: macos-12
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Build
|
||||
uses: cross-platform-actions/action@v0.15.0
|
||||
with:
|
||||
operating_system: freebsd
|
||||
version: '13.2'
|
||||
run: |
|
||||
sudo pkg update
|
||||
sudo pkg install -y gmake sdl2
|
||||
gmake
|
||||
gmake stream
|
||||
|
||||
ubuntu-latest-gcc:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
build: [Debug, Release]
|
||||
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
|
||||
- name: Build ${{ matrix.arch }}
|
||||
- name: Dependencies
|
||||
run: |
|
||||
docker run --platform ${{ matrix.arch }} --rm \
|
||||
-v ${{ github.workspace }}:/workspace \
|
||||
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
|
||||
apt update
|
||||
apt install -y build-essential cmake libsdl2-dev
|
||||
cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
make
|
||||
ctest -L gh --output-on-failure'
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
- name: Configure
|
||||
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
|
||||
ubuntu-latest-clang:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
build: [Debug, Release]
|
||||
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
|
||||
- name: Build ${{ matrix.arch }}
|
||||
- name: Dependencies
|
||||
run: |
|
||||
docker run --platform ${{ matrix.arch }} --rm \
|
||||
-v ${{ github.workspace }}:/workspace \
|
||||
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
|
||||
apt update
|
||||
apt install -y build-essential cmake libsdl2-dev
|
||||
cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
|
||||
make
|
||||
ctest -L gh --output-on-failure'
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
- name: Configure
|
||||
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
|
||||
ubuntu-latest-gcc-sanitized:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
arch: [linux/amd64]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
|
||||
- name: Build ${{ matrix.arch }}
|
||||
- name: Dependencies
|
||||
run: |
|
||||
docker run --platform ${{ matrix.arch }} --rm \
|
||||
-v ${{ github.workspace }}:/workspace \
|
||||
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
|
||||
apt update
|
||||
apt install -y build-essential cmake
|
||||
cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
|
||||
make
|
||||
ctest -L gh --output-on-failure'
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
|
||||
- name: Configure
|
||||
run: cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
|
||||
windows:
|
||||
runs-on: windows-latest
|
||||
@ -157,16 +125,14 @@ jobs:
|
||||
include:
|
||||
- arch: Win32
|
||||
s2arc: x86
|
||||
jnaPath: win32-x86
|
||||
- arch: x64
|
||||
s2arc: x64
|
||||
jnaPath: win32-x86-64
|
||||
- sdl2: ON
|
||||
s2ver: 2.26.0
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
@ -193,12 +159,6 @@ jobs:
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Upload dll
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: ${{ matrix.jnaPath }}_whisper.dll
|
||||
path: build/bin/${{ matrix.build }}/whisper.dll
|
||||
|
||||
- name: Upload binaries
|
||||
if: matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v1
|
||||
@ -227,7 +187,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
@ -293,7 +253,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
@ -340,16 +300,24 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Setup emsdk
|
||||
uses: mymindstorm/setup-emsdk@v12
|
||||
- name: Dependencies
|
||||
run: |
|
||||
wget -q https://github.com/emscripten-core/emsdk/archive/master.tar.gz
|
||||
tar -xvf master.tar.gz
|
||||
emsdk-master/emsdk update
|
||||
emsdk-master/emsdk install latest
|
||||
emsdk-master/emsdk activate latest
|
||||
|
||||
- name: Verify
|
||||
run: emcc -v
|
||||
- name: Configure
|
||||
run: echo "tmp"
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
pushd emsdk-master
|
||||
source ./emsdk_env.sh
|
||||
popd
|
||||
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
make
|
||||
|
||||
@ -362,12 +330,10 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Configure
|
||||
run: |
|
||||
cp models/for-tests-ggml-base.en.bin models/ggml-base.en.bin
|
||||
mkdir models/ggml-base.en-encoder.mlmodelc
|
||||
run: cp models/for-tests-ggml-base.en.bin models/ggml-base.en.bin
|
||||
|
||||
- name: Build objc example
|
||||
run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphonesimulator build
|
||||
@ -380,7 +346,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Install Java
|
||||
uses: actions/setup-java@v3
|
||||
@ -395,58 +361,3 @@ jobs:
|
||||
run: |
|
||||
cd examples/whisper.android
|
||||
./gradlew assembleRelease --no-daemon
|
||||
|
||||
java:
|
||||
needs: [ 'windows' ]
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Install Java
|
||||
uses: actions/setup-java@v1
|
||||
with:
|
||||
java-version: 17
|
||||
|
||||
- name: Download Windows lib
|
||||
uses: actions/download-artifact@v3
|
||||
with:
|
||||
name: win32-x86-64_whisper.dll
|
||||
path: bindings/java/build/generated/resources/main/win32-x86-64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
models\download-ggml-model.cmd tiny.en
|
||||
cd bindings/java
|
||||
chmod +x ./gradlew
|
||||
./gradlew build
|
||||
|
||||
- name: Upload jar
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: whispercpp.jar
|
||||
path: bindings/java/build/libs/whispercpp-*.jar
|
||||
|
||||
- name: Publish package
|
||||
if: ${{ github.ref == 'refs/heads/master' }}
|
||||
uses: gradle/gradle-build-action@v2.4.2
|
||||
with:
|
||||
arguments: publish
|
||||
build-root-directory: bindings/java
|
||||
env:
|
||||
MAVEN_USERNAME: ${{ secrets.JIRA_USER }}
|
||||
MAVEN_PASSWORD: ${{ secrets.JIRA_PASS }}
|
||||
PGP_SECRET: ${{ secrets.GPG_PRIVATE_KEY }}
|
||||
PGP_PASSPHRASE: ${{ secrets.GPG_PASSPHRASE }}
|
||||
|
||||
quantize:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Test quantize
|
||||
run: |
|
||||
./models/download-ggml-model.sh tiny.en
|
||||
make quantize
|
||||
./quantize models/ggml-tiny.en.bin models/ggml-tiny.en-q4_0.bin q4_0
|
||||
|
68
.github/workflows/release-deb.yml
vendored
Normal file
68
.github/workflows/release-deb.yml
vendored
Normal file
@ -0,0 +1,68 @@
|
||||
name: release-deb
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [created]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- name: Configure
|
||||
run: |
|
||||
set -x -e
|
||||
VERSION=$(echo $GITHUB_REF | cut --delimiter=/ -f 3)
|
||||
ID="whisper-cpp-small_${VERSION}_amd64"
|
||||
|
||||
echo "PKG_VERSION=$VERSION" >> $GITHUB_ENV
|
||||
echo "PKG_ID=$ID" >> $GITHUB_ENV
|
||||
|
||||
- name: Install deps
|
||||
run: |
|
||||
sudo apt install -y --no-install-recommends intel-mkl
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -S . -B build-mkl \
|
||||
-DCMAKE_BUILD_TYPE=Release\
|
||||
-DBUILD_SHARED_LIBS=0\
|
||||
-DWHISPER_BLAS=1\
|
||||
-DWHISPER_BLAS_VENDOR=Intel10_64lp
|
||||
cd build-mkl
|
||||
make
|
||||
cd ..
|
||||
|
||||
- name: Create package tree
|
||||
env:
|
||||
GITHUB_REPO: ${{ github.repository }}
|
||||
run: |
|
||||
export ROOT=$PKG_ID/opt/project/whisper.cpp
|
||||
mkdir -p $ROOT/bin
|
||||
mkdir -p $ROOT/share
|
||||
mkdir -p $PKG_ID/DEBIAN
|
||||
|
||||
cp build-mkl/bin/main $ROOT/bin/whisper
|
||||
cp -r contrib/debian/control $PKG_ID/DEBIAN/
|
||||
|
||||
echo "Version: $PKG_VERSION" >> $PKG_ID/DEBIAN/control
|
||||
echo "Vcs-Git: $GITHUB_REPO" >> $PKG_ID/DEBIAN/control
|
||||
echo "Vcs-Git-Commit: $GITHUB_SHA" >> $PKG_ID/DEBIAN/control
|
||||
|
||||
models/download-ggml-model.sh small
|
||||
build-mkl/bin/quantize models/ggml-small.bin \
|
||||
$ROOT/share/ggml-small-q5_1.bin q5_1
|
||||
|
||||
- name: Create deb package
|
||||
run: |
|
||||
mkdir artifacts
|
||||
dpkg-deb --build --root-owner-group $PKG_ID
|
||||
|
||||
- name: Upload Release Asset
|
||||
uses: xresloader/upload-to-github-release@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
with:
|
||||
release_id: ${{ github.event.release.id }}
|
||||
file: ${{ env.PKG_ID }}.deb
|
7
.gitignore
vendored
7
.gitignore
vendored
@ -5,18 +5,19 @@
|
||||
.test/
|
||||
.vs/
|
||||
.vscode/
|
||||
.idea/
|
||||
.DS_Store
|
||||
|
||||
build/
|
||||
build-em/
|
||||
build-debug/
|
||||
build-release/
|
||||
build-rwdi/
|
||||
build-static/
|
||||
build-cublas/
|
||||
build-no-accel/
|
||||
build-sanitize-addr/
|
||||
build-sanitize-thread/
|
||||
cmake-build-debug/
|
||||
|
||||
/main
|
||||
/stream
|
||||
@ -25,7 +26,6 @@ build-sanitize-thread/
|
||||
/talk-llama
|
||||
/bench
|
||||
/quantize
|
||||
/lsp
|
||||
|
||||
arm_neon.h
|
||||
sync.sh
|
||||
@ -43,6 +43,3 @@ extra/bench-gg.txt
|
||||
models/*.mlmodel
|
||||
models/*.mlmodelc
|
||||
models/*.mlpackage
|
||||
bindings/java/.gradle/
|
||||
bindings/java/.idea/
|
||||
.idea/
|
||||
|
177
CMakeLists.txt
177
CMakeLists.txt
@ -1,6 +1,6 @@
|
||||
cmake_minimum_required (VERSION 3.0)
|
||||
|
||||
project(whisper.cpp VERSION 1.4.2)
|
||||
project(whisper.cpp VERSION 1.4.1)
|
||||
|
||||
# Add path to modules
|
||||
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
|
||||
@ -54,8 +54,6 @@ option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
|
||||
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
|
||||
option(WHISPER_NO_F16C "whisper: disable F16c" OFF)
|
||||
|
||||
option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
|
||||
|
||||
if (APPLE)
|
||||
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
|
||||
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
|
||||
@ -65,7 +63,6 @@ else()
|
||||
option(WHISPER_BLAS_VENDOR "whisper: BLAS library vendor" Generic)
|
||||
option(WHISPER_OPENBLAS "whisper: prefer OpenBLAS" OFF)
|
||||
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
|
||||
option(WHISPER_HIPBLAS "whisper: support for hipBLAS" OFF)
|
||||
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
|
||||
endif()
|
||||
|
||||
@ -126,7 +123,7 @@ if (APPLE)
|
||||
endif()
|
||||
|
||||
if (WHISPER_COREML_ALLOW_FALLBACK)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_COREML_ALLOW_FALLBACK)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML_ALLOW_FALLBACK)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
@ -137,34 +134,25 @@ if (WHISPER_OPENBLAS)
|
||||
endif()
|
||||
|
||||
if (WHISPER_BLAS)
|
||||
if (WIN32)
|
||||
if(DEFINED ENV{OPENBLAS_PATH})
|
||||
set(BLAS_LIBRARIES $ENV{OPENBLAS_PATH}/lib/libopenblas.dll.a)
|
||||
message(STATUS "Libraries ${BLAS_LIBRARIES}")
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
|
||||
include_directories($ENV{OPENBLAS_PATH}/include)
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
else ()
|
||||
message(WARNING "BLAS library was not found. Environment variable OPENBLAS_PATH not defined.")
|
||||
endif ()
|
||||
else ()
|
||||
if (WHISPER_STATIC)
|
||||
set(BLA_STATIC 1)
|
||||
set(BLA_VENDOR ${WHISPER_BLAS_VENDOR})
|
||||
# set(BLA_PREFER_PKGCONFIG 1)
|
||||
set(BLA_SIZEOF_INTEGER 8)
|
||||
find_package(BLAS)
|
||||
|
||||
if(BLAS_FOUND)
|
||||
message(STATUS "BLAS compatible library found")
|
||||
message(STATUS "Libraries ${BLAS_LIBRARIES}")
|
||||
find_path(BLAS_INCLUDE_DIRS cblas.h /usr/include/openblas /usr/local/include/openblas $ENV{BLAS_HOME}/include)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
|
||||
include_directories(${BLAS_INCLUDE_DIRS})
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
else()
|
||||
message(WARNING "BLAS library was not found")
|
||||
endif()
|
||||
else()
|
||||
set(BLA_STATIC 0)
|
||||
endif ()
|
||||
set(BLA_VENDOR ${WHISPER_BLAS_VENDOR})
|
||||
set(BLA_SIZEOF_INTEGER 8)
|
||||
find_package(BLAS)
|
||||
|
||||
if(BLAS_FOUND)
|
||||
message(STATUS "BLAS compatible library found")
|
||||
message(STATUS "Libraries ${BLAS_LIBRARIES}")
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
|
||||
|
||||
include_directories(${BLAS_INCLUDE_DIRS})
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
else()
|
||||
message(WARNING "BLAS library was not found")
|
||||
endif()
|
||||
endif ()
|
||||
|
||||
if (WHISPER_CUBLAS)
|
||||
@ -174,7 +162,7 @@ if (WHISPER_CUBLAS)
|
||||
|
||||
if (CUDAToolkit_FOUND)
|
||||
message(STATUS "cuBLAS found")
|
||||
|
||||
set(CMAKE_CUDA_COMPILER /usr/local/cuda/bin/nvcc)
|
||||
enable_language(CUDA)
|
||||
|
||||
set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h)
|
||||
@ -192,43 +180,12 @@ if (WHISPER_CUBLAS)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
||||
if (WHISPER_HIPBLAS)
|
||||
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
|
||||
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
|
||||
endif()
|
||||
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
|
||||
endif()
|
||||
|
||||
find_package(hip)
|
||||
find_package(hipblas)
|
||||
find_package(rocblas)
|
||||
|
||||
if (${hipblas_FOUND} AND ${hip_FOUND})
|
||||
message(STATUS "HIP and hipBLAS found")
|
||||
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
|
||||
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
|
||||
set_property(TARGET ggml-rocm PROPERTY POSITION_INDEPENDENT_CODE ON)
|
||||
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
|
||||
target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||
|
||||
if (WHISPER_STATIC)
|
||||
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||
endif()
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ggml-rocm)
|
||||
else()
|
||||
message(WARNING "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_CLBLAST)
|
||||
find_package(CLBlast)
|
||||
if (CLBlast_FOUND)
|
||||
message(STATUS "CLBlast found")
|
||||
|
||||
set(GGML_OPENCL_SOURCES ggml-opencl.cpp ggml-opencl.h)
|
||||
set(GGML_OPENCL_SOURCES ggml-opencl.c ggml-opencl.h)
|
||||
|
||||
add_compile_definitions(GGML_USE_CLBLAST)
|
||||
|
||||
@ -238,10 +195,6 @@ if (WHISPER_CLBLAST)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if( WHISPER_OPENVINO )
|
||||
find_package(OpenVINO REQUIRED COMPONENTS Runtime)
|
||||
endif()
|
||||
|
||||
# compiler flags
|
||||
|
||||
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
|
||||
@ -281,25 +234,12 @@ message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
||||
message(STATUS "ARM detected")
|
||||
elseif(${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
|
||||
message(STATUS "PowerPC detected")
|
||||
else()
|
||||
message(STATUS "x86 detected")
|
||||
if (MSVC)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /utf-8")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /utf-8")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /utf-8")
|
||||
if(NOT WHISPER_NO_AVX2)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
|
||||
else()
|
||||
if(NOT WHISPER_NO_AVX)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX")
|
||||
endif()
|
||||
endif()
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
|
||||
else()
|
||||
if (EMSCRIPTEN)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread")
|
||||
@ -321,53 +261,6 @@ else()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
#
|
||||
# POSIX conformance
|
||||
#
|
||||
|
||||
# clock_gettime came in POSIX.1b (1993)
|
||||
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
|
||||
# posix_memalign came in POSIX.1-2001 / SUSv3
|
||||
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
|
||||
add_compile_definitions(_XOPEN_SOURCE=600)
|
||||
|
||||
# Somehow in OpenBSD whenever POSIX conformance is specified
|
||||
# some string functions rely on locale_t availability,
|
||||
# which was introduced in POSIX.1-2008, forcing us to go higher
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
|
||||
remove_definitions(-D_XOPEN_SOURCE=600)
|
||||
add_compile_definitions(_XOPEN_SOURCE=700)
|
||||
endif()
|
||||
|
||||
# Data types, macros and functions related to controlling CPU affinity
|
||||
# are available on Linux through GNU extensions in libc
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
add_compile_definitions(_GNU_SOURCE)
|
||||
endif()
|
||||
|
||||
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
|
||||
# and on macOS its availability depends on enabling Darwin extensions
|
||||
# similarly on DragonFly, enabling BSD extensions is necessary
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Darwin")
|
||||
add_compile_definitions(_DARWIN_C_SOURCE)
|
||||
endif()
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "DragonFly")
|
||||
add_compile_definitions(_DARWIN_C_SOURCE)
|
||||
endif()
|
||||
|
||||
# alloca is a non-standard interface that is not visible on BSDs when
|
||||
# POSIX conformance is specified, but not all of them provide a clean way
|
||||
# to enable it in such cases
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
|
||||
add_compile_definitions(__BSD_VISIBLE)
|
||||
endif()
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
|
||||
add_compile_definitions(_NETBSD_SOURCE)
|
||||
endif()
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
|
||||
add_compile_definitions(_BSD_SOURCE)
|
||||
endif()
|
||||
|
||||
if (WHISPER_PERF)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
|
||||
endif()
|
||||
@ -399,24 +292,6 @@ if (WHISPER_COREML)
|
||||
)
|
||||
endif()
|
||||
|
||||
if (WHISPER_OPENVINO)
|
||||
set(TARGET whisper.openvino)
|
||||
|
||||
add_library(${TARGET} OBJECT
|
||||
openvino/whisper-openvino-encoder.h
|
||||
openvino/whisper-openvino-encoder.cpp
|
||||
)
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
)
|
||||
|
||||
set_property(TARGET ${TARGET} PROPERTY POSITION_INDEPENDENT_CODE ON)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_OPENVINO)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE openvino::runtime)
|
||||
endif()
|
||||
|
||||
#
|
||||
# whisper - this is the main library of the project
|
||||
#
|
||||
@ -442,10 +317,6 @@ if (WHISPER_COREML)
|
||||
target_link_libraries(${TARGET} PRIVATE whisper.coreml)
|
||||
endif()
|
||||
|
||||
if (WHISPER_OPENVINO)
|
||||
target_link_libraries(${TARGET} PRIVATE whisper.openvino)
|
||||
endif()
|
||||
|
||||
if (MSVC)
|
||||
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
|
235
Makefile
235
Makefile
@ -12,12 +12,6 @@ ifndef UNAME_M
|
||||
UNAME_M := $(shell uname -m)
|
||||
endif
|
||||
|
||||
ifndef NVCC_VERSION
|
||||
ifeq ($(call,$(shell which nvcc))$(.SHELLSTATUS),0)
|
||||
NVCC_VERSION := $(shell nvcc --version | egrep -o "V[0-9]+.[0-9]+.[0-9]+" | cut -c2-)
|
||||
endif
|
||||
endif
|
||||
|
||||
CCV := $(shell $(CC) --version | head -n 1)
|
||||
CXXV := $(shell $(CXX) --version | head -n 1)
|
||||
|
||||
@ -42,59 +36,27 @@ CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
|
||||
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
|
||||
LDFLAGS =
|
||||
|
||||
# clock_gettime came in POSIX.1b (1993)
|
||||
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
|
||||
# posix_memalign came in POSIX.1-2001 / SUSv3
|
||||
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
|
||||
CFLAGS += -D_XOPEN_SOURCE=600
|
||||
CXXFLAGS += -D_XOPEN_SOURCE=600
|
||||
|
||||
# Somehow in OpenBSD whenever POSIX conformance is specified
|
||||
# some string functions rely on locale_t availability,
|
||||
# which was introduced in POSIX.1-2008, forcing us to go higher
|
||||
ifeq ($(UNAME_S),OpenBSD)
|
||||
CFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700
|
||||
CXXFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700
|
||||
endif
|
||||
|
||||
# Data types, macros and functions related to controlling CPU affinity
|
||||
# are available on Linux through GNU extensions in libc
|
||||
ifeq ($(UNAME_S),Linux)
|
||||
CFLAGS += -D_GNU_SOURCE
|
||||
CXXFLAGS += -D_GNU_SOURCE
|
||||
endif
|
||||
|
||||
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
|
||||
# and on macOS its availability depends on enabling Darwin extensions
|
||||
# similarly on DragonFly, enabling BSD extensions is necessary
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -D_DARWIN_C_SOURCE
|
||||
CXXFLAGS += -D_DARWIN_C_SOURCE
|
||||
endif
|
||||
ifeq ($(UNAME_S),DragonFly)
|
||||
CFLAGS += -D__BSD_VISIBLE
|
||||
CXXFLAGS += -D__BSD_VISIBLE
|
||||
endif
|
||||
|
||||
# alloca is a non-standard interface that is not visible on BSDs when
|
||||
# POSIX conformance is specified, but not all of them provide a clean way
|
||||
# to enable it in such cases
|
||||
ifeq ($(UNAME_S),FreeBSD)
|
||||
CFLAGS += -D__BSD_VISIBLE
|
||||
CXXFLAGS += -D__BSD_VISIBLE
|
||||
endif
|
||||
ifeq ($(UNAME_S),NetBSD)
|
||||
CFLAGS += -D_NETBSD_SOURCE
|
||||
CXXFLAGS += -D_NETBSD_SOURCE
|
||||
endif
|
||||
ifeq ($(UNAME_S),OpenBSD)
|
||||
CFLAGS += -D_BSD_SOURCE
|
||||
CXXFLAGS += -D_BSD_SOURCE
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/37
|
||||
ifneq ($(wildcard /usr/include/musl/*),)
|
||||
CFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
CXXFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
endif
|
||||
|
||||
# OS specific
|
||||
# TODO: support Windows
|
||||
ifeq ($(filter $(UNAME_S),Linux Darwin DragonFly FreeBSD NetBSD OpenBSD Haiku),$(UNAME_S))
|
||||
ifeq ($(UNAME_S),Linux)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),FreeBSD)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),Haiku)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
@ -102,57 +64,67 @@ endif
|
||||
# Architecture specific
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CPUINFO_CMD := sysctl machdep.cpu.features machdep.cpu.leaf7_features
|
||||
CFLAGS += -mf16c
|
||||
AVX1_M := $(shell sysctl machdep.cpu.features)
|
||||
ifneq (,$(findstring FMA,$(AVX1_M)))
|
||||
CFLAGS += -mfma
|
||||
endif
|
||||
ifneq (,$(findstring AVX1.0,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
AVX2_M := $(shell sysctl machdep.cpu.leaf7_features)
|
||||
ifneq (,$(findstring AVX2,$(AVX2_M)))
|
||||
CFLAGS += -mavx2
|
||||
endif
|
||||
else ifeq ($(UNAME_S),Linux)
|
||||
CPUINFO_CMD := cat /proc/cpuinfo
|
||||
else ifneq (,$(filter MINGW32_NT% MINGW64_NT%,$(UNAME_S)))
|
||||
CPUINFO_CMD := cat /proc/cpuinfo
|
||||
else ifneq (,$(filter DragonFly FreeBSD,$(UNAME_S)))
|
||||
CPUINFO_CMD := grep Features /var/run/dmesg.boot
|
||||
AVX2_M := $(shell grep "avx2 " /proc/cpuinfo)
|
||||
ifneq (,$(findstring avx2,$(AVX2_M)))
|
||||
CFLAGS += -mavx2
|
||||
endif
|
||||
FMA_M := $(shell grep "fma " /proc/cpuinfo)
|
||||
ifneq (,$(findstring fma,$(FMA_M)))
|
||||
CFLAGS += -mfma
|
||||
endif
|
||||
F16C_M := $(shell grep "f16c " /proc/cpuinfo)
|
||||
ifneq (,$(findstring f16c,$(F16C_M)))
|
||||
CFLAGS += -mf16c
|
||||
|
||||
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
endif
|
||||
SSE3_M := $(shell grep "sse3 " /proc/cpuinfo)
|
||||
ifneq (,$(findstring sse3,$(SSE3_M)))
|
||||
CFLAGS += -msse3
|
||||
endif
|
||||
else ifeq ($(UNAME_S),Haiku)
|
||||
CPUINFO_CMD := sysinfo -cpu
|
||||
endif
|
||||
|
||||
ifdef CPUINFO_CMD
|
||||
AVX_M := $(shell $(CPUINFO_CMD) | grep -iwE 'AVX|AVX1.0')
|
||||
ifneq (,$(AVX_M))
|
||||
CFLAGS += -mavx
|
||||
CXXFLAGS += -mavx
|
||||
endif
|
||||
|
||||
AVX2_M := $(shell $(CPUINFO_CMD) | grep -iw 'AVX2')
|
||||
ifneq (,$(AVX2_M))
|
||||
CFLAGS += -mavx2
|
||||
CXXFLAGS += -mavx2
|
||||
endif
|
||||
|
||||
FMA_M := $(shell $(CPUINFO_CMD) | grep -iw 'FMA')
|
||||
ifneq (,$(FMA_M))
|
||||
CFLAGS += -mfma
|
||||
CXXFLAGS += -mfma
|
||||
endif
|
||||
|
||||
F16C_M := $(shell $(CPUINFO_CMD) | grep -iw 'F16C')
|
||||
ifneq (,$(F16C_M))
|
||||
CFLAGS += -mf16c
|
||||
CXXFLAGS += -mf16c
|
||||
endif
|
||||
|
||||
SSE3_M := $(shell $(CPUINFO_CMD) | grep -iwE 'PNI|SSE3')
|
||||
ifneq (,$(SSE3_M))
|
||||
CFLAGS += -msse3
|
||||
CXXFLAGS += -msse3
|
||||
endif
|
||||
|
||||
SSSE3_M := $(shell $(CPUINFO_CMD) | grep -iw 'SSSE3')
|
||||
ifneq (,$(SSSE3_M))
|
||||
CFLAGS += -mssse3
|
||||
CXXFLAGS += -mssse3
|
||||
endif
|
||||
AVX2_M := $(shell sysinfo -cpu | grep "AVX2 ")
|
||||
ifneq (,$(findstring avx2,$(AVX2_M)))
|
||||
CFLAGS += -mavx2
|
||||
endif
|
||||
FMA_M := $(shell sysinfo -cpu | grep "FMA ")
|
||||
ifneq (,$(findstring fma,$(FMA_M)))
|
||||
CFLAGS += -mfma
|
||||
endif
|
||||
F16C_M := $(shell sysinfo -cpu | grep "F16C ")
|
||||
ifneq (,$(findstring f16c,$(F16C_M)))
|
||||
CFLAGS += -mf16c
|
||||
|
||||
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
endif
|
||||
else
|
||||
CFLAGS += -mfma -mf16c -mavx -mavx2
|
||||
endif
|
||||
endif
|
||||
ifeq ($(UNAME_M),amd64)
|
||||
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
||||
endif
|
||||
|
||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||
@ -183,56 +155,29 @@ endif
|
||||
endif
|
||||
|
||||
ifdef WHISPER_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
|
||||
LDFLAGS += -lopenblas
|
||||
endif
|
||||
|
||||
ifdef WHISPER_CUBLAS
|
||||
ifeq ($(shell expr $(NVCC_VERSION) \>= 11.6), 1)
|
||||
CUDA_ARCH_FLAG=native
|
||||
else
|
||||
CUDA_ARCH_FLAG=all
|
||||
endif
|
||||
|
||||
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib
|
||||
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
WHISPER_OBJ += ggml-cuda.o
|
||||
NVCC = nvcc
|
||||
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=$(CUDA_ARCH_FLAG)
|
||||
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=native
|
||||
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
|
||||
endif
|
||||
|
||||
ifdef WHISPER_HIPBLAS
|
||||
ROCM_PATH ?= /opt/rocm
|
||||
HIPCC ?= $(ROCM_PATH)/bin/hipcc
|
||||
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
||||
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||
LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
|
||||
WHISPER_OBJ += ggml-cuda.o
|
||||
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||
endif
|
||||
|
||||
ifdef WHISPER_CLBLAST
|
||||
CFLAGS += -DGGML_USE_CLBLAST
|
||||
CXXFLAGS += -DGGML_USE_CLBLAST
|
||||
LDFLAGS += -lclblast
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
LDFLAGS += -framework OpenCL
|
||||
else
|
||||
LDFLAGS += -lOpenCL
|
||||
endif
|
||||
LDFLAGS += -lclblast -lOpenCL
|
||||
WHISPER_OBJ += ggml-opencl.o
|
||||
|
||||
ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
ggml-opencl.o: ggml-opencl.c ggml-opencl.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
endif
|
||||
|
||||
ifdef WHISPER_GPROF
|
||||
@ -295,7 +240,7 @@ ifndef WHISPER_COREML
|
||||
WHISPER_OBJ += whisper.o
|
||||
else
|
||||
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
|
||||
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder.mm -o whisper-encoder.o
|
||||
$(CXX) -O3 -I . -c coreml/whisper-encoder.mm -o whisper-encoder.o
|
||||
|
||||
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
|
||||
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
|
||||
@ -310,7 +255,7 @@ libwhisper.so: ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o $(WHISPER_OBJ) $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -f *.o main stream command talk talk-llama bench quantize lsp libwhisper.a libwhisper.so
|
||||
rm -f *.o main stream command talk talk-llama bench quantize libwhisper.a libwhisper.so
|
||||
|
||||
#
|
||||
# Examples
|
||||
@ -337,9 +282,6 @@ stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHIS
|
||||
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
lsp: examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o lsp $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
@ -359,19 +301,12 @@ samples:
|
||||
@wget --quiet --show-progress -O samples/gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
|
||||
@wget --quiet --show-progress -O samples/hp0.ogg https://upload.wikimedia.org/wikipedia/en/d/d4/En.henryfphillips.ogg
|
||||
@wget --quiet --show-progress -O samples/mm1.wav https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav
|
||||
@wget --quiet --show-progress -O samples/a13.mp3 https://upload.wikimedia.org/wikipedia/commons/transcoded/6/6f/Apollo13-wehaveaproblem.ogg/Apollo13-wehaveaproblem.ogg.mp3
|
||||
@wget --quiet --show-progress -O samples/diffusion2023-07-03.flac https://archive.org/download/diffusion2023-07-03/diffusion2023-07-03.flac
|
||||
@echo "Converting to 16-bit WAV ..."
|
||||
@ffmpeg -loglevel -0 -y -i samples/gb0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb0.wav
|
||||
@ffmpeg -loglevel -0 -y -i samples/gb1.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb1.wav
|
||||
@ffmpeg -loglevel -0 -y -i samples/hp0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/hp0.wav
|
||||
@rm samples/*.ogg
|
||||
@ffmpeg -loglevel -0 -y -i samples/mm1.wav -ar 16000 -ac 1 -c:a pcm_s16le samples/mm0.wav
|
||||
@rm samples/mm1.wav
|
||||
@ffmpeg -loglevel -0 -y -i samples/a13.mp3 -ar 16000 -ac 1 -c:a pcm_s16le -ss 00:00:00 -to 00:00:30 samples/a13.wav
|
||||
@rm samples/a13.mp3
|
||||
@ffmpeg -loglevel -0 -y -i samples/diffusion2023-07-03.flac -ar 16000 -ac 1 -c:a pcm_s16le samples/diffusion2023-07-03.wav
|
||||
@rm samples/diffusion2023-07-03.flac
|
||||
|
||||
#
|
||||
# Models
|
||||
@ -413,4 +348,4 @@ tiny.en tiny base.en base small.en small medium.en medium large-v1 large: main
|
||||
|
||||
.PHONY: tests
|
||||
tests:
|
||||
bash ./tests/run-tests.sh $(word 2, $(MAKECMDGOALS))
|
||||
bash ./tests/run-tests.sh
|
||||
|
153
README.md
153
README.md
@ -6,7 +6,7 @@
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://www.npmjs.com/package/whisper.cpp/)
|
||||
|
||||
Beta: [v1.4.2](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.4.2) / Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
Beta: [v1.4.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.4.1) / Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
|
||||
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
||||
|
||||
@ -21,8 +21,6 @@ High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisp
|
||||
- Runs on the CPU
|
||||
- [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
|
||||
- [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast)
|
||||
- [BLAS CPU support via OpenBLAS](https://github.com/ggerganov/whisper.cpp#blas-cpu-support-via-openblas)
|
||||
- [OpenVINO Support](https://github.com/ggerganov/whisper.cpp#openvino-support)
|
||||
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
|
||||
|
||||
Supported platforms:
|
||||
@ -30,7 +28,6 @@ Supported platforms:
|
||||
- [x] Mac OS (Intel and Arm)
|
||||
- [x] [iOS](examples/whisper.objc)
|
||||
- [x] [Android](examples/whisper.android)
|
||||
- [x] [Java](bindings/java/README.md)
|
||||
- [x] Linux / [FreeBSD](https://github.com/ggerganov/whisper.cpp/issues/56#issuecomment-1350920264)
|
||||
- [x] [WebAssembly](examples/whisper.wasm)
|
||||
- [x] Windows ([MSVC](https://github.com/ggerganov/whisper.cpp/blob/master/.github/workflows/build.yml#L117-L144) and [MinGW](https://github.com/ggerganov/whisper.cpp/issues/168)]
|
||||
@ -61,7 +58,7 @@ Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
|
||||
- Various other examples are available in the [examples](examples) folder
|
||||
|
||||
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD
|
||||
intrinsics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
|
||||
instrisics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
|
||||
the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
|
||||
|
||||
## Quick start
|
||||
@ -74,8 +71,6 @@ Then, download one of the Whisper models converted in [ggml format](models). For
|
||||
bash ./models/download-ggml-model.sh base.en
|
||||
```
|
||||
|
||||
If you wish to convert the Whisper models to ggml format yourself, instructions are in [models/README.md](models/README.md).
|
||||
|
||||
Now build the [main](examples/main) example and transcribe an audio file like this:
|
||||
|
||||
```bash
|
||||
@ -116,7 +111,6 @@ options:
|
||||
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
|
||||
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-tdrz, --tinydiarize [false ] enable tinydiarize (requires a tdrz model)
|
||||
-di, --diarize [false ] stereo audio diarization
|
||||
-nf, --no-fallback [false ] do not use temperature fallback while decoding
|
||||
-otxt, --output-txt [false ] output result in a text file
|
||||
@ -265,12 +259,6 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
|
||||
pip install coremltools
|
||||
```
|
||||
|
||||
- To ensure `coremltools` operates correctly, please confirm that [Xcode](https://developer.apple.com/xcode/) is installed and execute `xcode-select --install` to install the command-line tools.
|
||||
- Python 3.10 is recommended.
|
||||
- [OPTIONAL] It is recommended to utilize a Python version management system, such as [Miniconda](https://docs.conda.io/en/latest/miniconda.html) for this step:
|
||||
- To create an environment, use: `conda create -n py310-whisper python=3.10 -y`
|
||||
- To activate the environment, use: `conda activate py310-whisper`
|
||||
|
||||
- Generate a Core ML model. For example, to generate a `base.en` model, use:
|
||||
|
||||
```bash
|
||||
@ -287,8 +275,8 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
|
||||
WHISPER_COREML=1 make -j
|
||||
|
||||
# using CMake
|
||||
cmake -B build -DWHISPER_COREML=1
|
||||
cmake --build build -j --config Release
|
||||
cd build
|
||||
cmake -DWHISPER_COREML=1 ..
|
||||
```
|
||||
|
||||
- Run the examples as usual. For example:
|
||||
@ -312,88 +300,9 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
|
||||
|
||||
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
|
||||
|
||||
## OpenVINO support
|
||||
|
||||
On platforms that support [OpenVINO](https://github.com/openvinotoolkit/openvino), the Encoder inference can be executed
|
||||
on OpenVINO-supported devices including x86 CPUs and Intel GPUs (integrated & discrete).
|
||||
|
||||
This can result in significant speedup in encoder performance. Here are the instructions for generating the OpenVINO model and using it with `whisper.cpp`:
|
||||
|
||||
- First, setup python virtual env. and install python dependencies. Python 3.10 is recommended.
|
||||
|
||||
Windows:
|
||||
```
|
||||
cd models
|
||||
python -m venv openvino_conv_env
|
||||
openvino_conv_env\Scripts\activate
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r openvino-conversion-requirements.txt
|
||||
```
|
||||
|
||||
Linux and macOS:
|
||||
```
|
||||
cd models
|
||||
python3 -m venv openvino_conv_env
|
||||
source openvino_conv_env/bin/activate
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r openvino-conversion-requirements.txt
|
||||
```
|
||||
|
||||
- Generate an OpenVINO encoder model. For example, to generate a `base.en` model, use:
|
||||
|
||||
```
|
||||
python convert-whisper-to-openvino.py --model base.en
|
||||
```
|
||||
|
||||
This will produce ggml-base.en-encoder-openvino.xml/.bin IR model files. It's recommended to relocate these to the same folder as ggml models, as that
|
||||
is the default location that the OpenVINO extension will search at runtime.
|
||||
|
||||
- Build `whisper.cpp` with OpenVINO support:
|
||||
|
||||
Download OpenVINO package from [release page](https://github.com/openvinotoolkit/openvino/releases). The recommended version to use is [2023.0.0](https://github.com/openvinotoolkit/openvino/releases/tag/2023.0.0).
|
||||
|
||||
After downloading & extracting package onto your development system, set up required environment by sourcing setupvars script. For example:
|
||||
|
||||
Linux:
|
||||
```bash
|
||||
source /path/to/l_openvino_toolkit_ubuntu22_2023.0.0.10926.b4452d56304_x86_64/setupvars.sh
|
||||
```
|
||||
|
||||
Windows (cmd):
|
||||
```
|
||||
C:\Path\To\w_openvino_toolkit_windows_2023.0.0.10926.b4452d56304_x86_64\setupvars.bat
|
||||
```
|
||||
|
||||
And then build the project using cmake:
|
||||
```bash
|
||||
cmake -B build -DWHISPER_OPENVINO=1
|
||||
cmake --build build -j --config Release
|
||||
```
|
||||
|
||||
- Run the examples as usual. For example:
|
||||
```bash
|
||||
./main -m models/ggml-base.en.bin -f samples/jfk.wav
|
||||
|
||||
...
|
||||
|
||||
whisper_ctx_init_openvino_encoder: loading OpenVINO model from 'models/ggml-base.en-encoder-openvino.xml'
|
||||
whisper_ctx_init_openvino_encoder: first run on a device may take a while ...
|
||||
whisper_openvino_init: path_model = models/ggml-base.en-encoder-openvino.xml, device = GPU, cache_dir = models/ggml-base.en-encoder-openvino-cache
|
||||
whisper_ctx_init_openvino_encoder: OpenVINO model loaded
|
||||
|
||||
system_info: n_threads = 4 / 8 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | COREML = 0 | OPENVINO = 1 |
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
The first time run on an OpenVINO device is slow, since the OpenVINO framework will compile the IR (Intermediate Representation) model to a device-specific 'blob'. This device-specific blob will get
|
||||
cached for the next run.
|
||||
|
||||
For more information about the Core ML implementation please refer to PR [#1037](https://github.com/ggerganov/whisper.cpp/pull/1037).
|
||||
|
||||
## NVIDIA GPU support via cuBLAS
|
||||
|
||||
With NVIDIA cards the Encoder processing can to a large extent be offloaded to the GPU through cuBLAS.
|
||||
With NVIDIA cards, the Encoder processing can be offloaded to the GPU to a large extend through cuBLAS.
|
||||
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
|
||||
|
||||
Now build `whisper.cpp` with cuBLAS support:
|
||||
@ -405,7 +314,7 @@ WHISPER_CUBLAS=1 make -j
|
||||
|
||||
## OpenCL GPU support via CLBlast
|
||||
|
||||
For cards and integrated GPUs that support OpenCL, the Encoder processing can be largely offloaded to the GPU through CLBlast. This is especially useful for users with AMD APUs or low end devices for up to ~2x speedup.
|
||||
For cards and integrated GPUs that support OpenCL, the Encoder processing can be largely offloaded to the GPU through CLBlast. This is especially useful for users with AMD APU's or low end devices for up to ~2x speedup.
|
||||
|
||||
First, make sure you have installed `CLBlast` for your OS or Distribution: https://github.com/CNugteren/CLBlast
|
||||
|
||||
@ -418,26 +327,16 @@ make clean
|
||||
WHISPER_CLBLAST=1 make -j
|
||||
|
||||
CMake:
|
||||
cd whisper.cpp
|
||||
cmake -B build -DWHISPER_CLBLAST=ON
|
||||
cmake --build build -j --config Release
|
||||
cd whisper.cpp ; mkdir build ; cd build
|
||||
cmake -DWHISPER_CLBLAST=ON ..
|
||||
make clean
|
||||
make -j
|
||||
cp bin/* ../
|
||||
```
|
||||
|
||||
|
||||
Run all the examples as usual.
|
||||
|
||||
## BLAS CPU support via OpenBLAS
|
||||
|
||||
Encoder processing can be accelerated on the CPU via OpenBLAS.
|
||||
First, make sure you have installed `openblas`: https://www.openblas.net/
|
||||
|
||||
Now build `whisper.cpp` with OpenBLAS support:
|
||||
|
||||
```
|
||||
make clean
|
||||
WHISPER_OPENBLAS=1 make -j
|
||||
```
|
||||
|
||||
## Limitations
|
||||
|
||||
- Inference only
|
||||
@ -572,7 +471,7 @@ main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 pr
|
||||
[00:00:10.020 --> 00:00:11.000] country.
|
||||
```
|
||||
|
||||
## Word-level timestamp (experimental)
|
||||
## Word-level timestamp
|
||||
|
||||
The `--max-len` argument can be used to obtain word-level timestamps. Simply use `-ml 1`:
|
||||
|
||||
@ -613,32 +512,6 @@ main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 pr
|
||||
[00:00:10.510 --> 00:00:11.000] .
|
||||
```
|
||||
|
||||
## Speaker segmentation via tinydiarize (experimental)
|
||||
|
||||
More information about this approach is available here: https://github.com/ggerganov/whisper.cpp/pull/1058
|
||||
|
||||
Sample usage:
|
||||
|
||||
```py
|
||||
# download a tinydiarize compatible model
|
||||
./models/download-ggml-model.sh small.en-tdrz
|
||||
|
||||
# run as usual, adding the "-tdrz" command-line argument
|
||||
./main -f ./samples/a13.wav -m ./models/ggml-small.en-tdrz.bin -tdrz
|
||||
...
|
||||
main: processing './samples/a13.wav' (480000 samples, 30.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, tdrz = 1, timestamps = 1 ...
|
||||
...
|
||||
[00:00:00.000 --> 00:00:03.800] Okay Houston, we've had a problem here. [SPEAKER_TURN]
|
||||
[00:00:03.800 --> 00:00:06.200] This is Houston. Say again please. [SPEAKER_TURN]
|
||||
[00:00:06.200 --> 00:00:08.260] Uh Houston we've had a problem.
|
||||
[00:00:08.260 --> 00:00:11.320] We've had a main beam up on a volt. [SPEAKER_TURN]
|
||||
[00:00:11.320 --> 00:00:13.820] Roger main beam interval. [SPEAKER_TURN]
|
||||
[00:00:13.820 --> 00:00:15.100] Uh uh [SPEAKER_TURN]
|
||||
[00:00:15.100 --> 00:00:18.020] So okay stand, by thirteen we're looking at it. [SPEAKER_TURN]
|
||||
[00:00:18.020 --> 00:00:25.740] Okay uh right now uh Houston the uh voltage is uh is looking good um.
|
||||
[00:00:27.620 --> 00:00:29.940] And we had a a pretty large bank or so.
|
||||
```
|
||||
|
||||
## Karaoke-style movie generation (experimental)
|
||||
|
||||
The [main](examples/main) example provides support for output of karaoke-style movies, where the
|
||||
@ -722,8 +595,6 @@ in [models](models).
|
||||
- [X] Javascript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
|
||||
- React Native (iOS / Android): [whisper.rn](https://github.com/mybigday/whisper.rn)
|
||||
- [X] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
|
||||
- [X] Java:
|
||||
- [GiviMAD/whisper-jni](https://github.com/GiviMAD/whisper-jni)
|
||||
- [X] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
|
||||
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
|
||||
- [exPHAT/SwiftWhisper](https://github.com/exPHAT/SwiftWhisper)
|
||||
|
@ -32,7 +32,7 @@ mkdir:
|
||||
modtidy:
|
||||
@go mod tidy
|
||||
|
||||
clean:
|
||||
clean:
|
||||
@echo Clean
|
||||
@rm -fr $(BUILD_DIR)
|
||||
@go clean
|
||||
|
@ -31,7 +31,7 @@ func main() {
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
if err := context.Process(samples, nil, nil); err != nil {
|
||||
if err := context.Process(samples, nil); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
@ -71,7 +71,7 @@ The examples are placed in the `build` directory. Once built, you can download a
|
||||
And you can then test a model against samples with the following command:
|
||||
|
||||
```bash
|
||||
./build/go-whisper -model models/ggml-tiny.en.bin samples/jfk.wav
|
||||
./build/go-whisper -model models/ggml-tiny.en.bin samples/jfk.wav
|
||||
```
|
||||
|
||||
## Using the bindings
|
||||
|
@ -67,7 +67,7 @@ func Process(model whisper.Model, path string, flags *Flags) error {
|
||||
// Process the data
|
||||
fmt.Fprintf(flags.Output(), " ...processing %q\n", path)
|
||||
context.ResetTimings()
|
||||
if err := context.Process(data, cb, nil); err != nil {
|
||||
if err := context.Process(data, cb); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
|
@ -19,10 +19,6 @@ func (p *Params) SetTranslate(v bool) {
|
||||
p.translate = toBool(v)
|
||||
}
|
||||
|
||||
func (p *Params) SetSplitOnWord(v bool) {
|
||||
p.split_on_word = toBool(v)
|
||||
}
|
||||
|
||||
func (p *Params) SetNoContext(v bool) {
|
||||
p.no_context = toBool(v)
|
||||
}
|
||||
|
@ -81,10 +81,6 @@ func (context *context) SetSpeedup(v bool) {
|
||||
context.params.SetSpeedup(v)
|
||||
}
|
||||
|
||||
func (context *context) SetSplitOnWord(v bool) {
|
||||
context.params.SetSplitOnWord(v)
|
||||
}
|
||||
|
||||
// Set number of threads to use
|
||||
func (context *context) SetThreads(v uint) {
|
||||
context.params.SetThreads(int(v))
|
||||
@ -97,7 +93,7 @@ func (context *context) SetOffset(v time.Duration) {
|
||||
|
||||
// Set duration of audio to process
|
||||
func (context *context) SetDuration(v time.Duration) {
|
||||
context.params.SetDuration(int(v.Milliseconds()))
|
||||
context.params.SetOffset(int(v.Milliseconds()))
|
||||
}
|
||||
|
||||
// Set timestamp token probability threshold (~0.01)
|
||||
@ -156,16 +152,12 @@ func (context *context) WhisperLangAutoDetect(offset_ms int, n_threads int) ([]f
|
||||
}
|
||||
|
||||
// Process new sample data and return any errors
|
||||
func (context *context) Process(
|
||||
data []float32,
|
||||
callNewSegment SegmentCallback,
|
||||
callProgress ProgressCallback,
|
||||
) error {
|
||||
func (context *context) Process(data []float32, cb SegmentCallback) error {
|
||||
if context.model.ctx == nil {
|
||||
return ErrInternalAppError
|
||||
}
|
||||
// If the callback is defined then we force on single_segment mode
|
||||
if callNewSegment != nil {
|
||||
if cb != nil {
|
||||
context.params.SetSingleSegment(true)
|
||||
}
|
||||
|
||||
@ -173,28 +165,24 @@ func (context *context) Process(
|
||||
processors := 0
|
||||
if processors > 1 {
|
||||
if err := context.model.ctx.Whisper_full_parallel(context.params, data, processors, nil, func(new int) {
|
||||
if callNewSegment != nil {
|
||||
if cb != nil {
|
||||
num_segments := context.model.ctx.Whisper_full_n_segments()
|
||||
s0 := num_segments - new
|
||||
for i := s0; i < num_segments; i++ {
|
||||
callNewSegment(toSegment(context.model.ctx, i))
|
||||
cb(toSegment(context.model.ctx, i))
|
||||
}
|
||||
}
|
||||
}); err != nil {
|
||||
return err
|
||||
}
|
||||
} else if err := context.model.ctx.Whisper_full(context.params, data, nil, func(new int) {
|
||||
if callNewSegment != nil {
|
||||
if cb != nil {
|
||||
num_segments := context.model.ctx.Whisper_full_n_segments()
|
||||
s0 := num_segments - new
|
||||
for i := s0; i < num_segments; i++ {
|
||||
callNewSegment(toSegment(context.model.ctx, i))
|
||||
cb(toSegment(context.model.ctx, i))
|
||||
}
|
||||
}
|
||||
}, func(progress int) {
|
||||
if callProgress != nil {
|
||||
callProgress(progress)
|
||||
}
|
||||
}); err != nil {
|
||||
return err
|
||||
}
|
||||
|
@ -12,10 +12,6 @@ import (
|
||||
// time. It is called during the Process function
|
||||
type SegmentCallback func(Segment)
|
||||
|
||||
// ProgressCallback is the callback function for reporting progress during
|
||||
// processing. It is called during the Process function
|
||||
type ProgressCallback func(int)
|
||||
|
||||
// Model is the interface to a whisper model. Create a new model with the
|
||||
// function whisper.New(string)
|
||||
type Model interface {
|
||||
@ -42,7 +38,6 @@ type Context interface {
|
||||
SetDuration(time.Duration) // Set duration
|
||||
SetThreads(uint) // Set number of threads to use
|
||||
SetSpeedup(bool) // Set speedup flag
|
||||
SetSplitOnWord(bool) // Set split on word flag
|
||||
SetTokenThreshold(float32) // Set timestamp token probability threshold
|
||||
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
|
||||
SetMaxSegmentLength(uint) // Set max segment length in characters
|
||||
@ -52,7 +47,7 @@ type Context interface {
|
||||
// Process mono audio data and return any errors.
|
||||
// If defined, newly generated segments are passed to the
|
||||
// callback function during processing.
|
||||
Process([]float32, SegmentCallback, ProgressCallback) error
|
||||
Process([]float32, SegmentCallback) error
|
||||
|
||||
// After process is called, return segments until the end of the stream
|
||||
// is reached, when io.EOF is returned.
|
||||
|
@ -15,7 +15,6 @@ import (
|
||||
#include <stdlib.h>
|
||||
|
||||
extern void callNewSegment(void* user_data, int new);
|
||||
extern void callProgress(void* user_data, int progress);
|
||||
extern bool callEncoderBegin(void* user_data);
|
||||
|
||||
// Text segment callback
|
||||
@ -27,15 +26,6 @@ static void whisper_new_segment_cb(struct whisper_context* ctx, struct whisper_s
|
||||
}
|
||||
}
|
||||
|
||||
// Progress callback
|
||||
// Called on every newly generated text segment
|
||||
// Use the whisper_full_...() functions to obtain the text segments
|
||||
static void whisper_progress_cb(struct whisper_context* ctx, struct whisper_state* state, int progress, void* user_data) {
|
||||
if(user_data != NULL && ctx != NULL) {
|
||||
callProgress(user_data, progress);
|
||||
}
|
||||
}
|
||||
|
||||
// Encoder begin callback
|
||||
// If not NULL, called before the encoder starts
|
||||
// If it returns false, the computation is aborted
|
||||
@ -53,8 +43,6 @@ static struct whisper_full_params whisper_full_default_params_cb(struct whisper_
|
||||
params.new_segment_callback_user_data = (void*)(ctx);
|
||||
params.encoder_begin_callback = whisper_encoder_begin_cb;
|
||||
params.encoder_begin_callback_user_data = (void*)(ctx);
|
||||
params.progress_callback = whisper_progress_cb;
|
||||
params.progress_callback_user_data = (void*)(ctx);
|
||||
return params;
|
||||
}
|
||||
*/
|
||||
@ -270,13 +258,13 @@ func (ctx *Context) Whisper_token_lang(lang_id int) Token {
|
||||
}
|
||||
|
||||
// Task tokens
|
||||
func (ctx *Context) Whisper_token_translate() Token {
|
||||
return Token(C.whisper_token_translate((*C.struct_whisper_context)(ctx)))
|
||||
func Whisper_token_translate() Token {
|
||||
return Token(C.whisper_token_translate())
|
||||
}
|
||||
|
||||
// Task tokens
|
||||
func (ctx *Context) Whisper_token_transcribe() Token {
|
||||
return Token(C.whisper_token_transcribe((*C.struct_whisper_context)(ctx)))
|
||||
func Whisper_token_transcribe() Token {
|
||||
return Token(C.whisper_token_transcribe())
|
||||
}
|
||||
|
||||
// Performance information
|
||||
@ -302,19 +290,11 @@ func (ctx *Context) Whisper_full_default_params(strategy SamplingStrategy) Param
|
||||
|
||||
// Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
|
||||
// Uses the specified decoding strategy to obtain the text.
|
||||
func (ctx *Context) Whisper_full(
|
||||
params Params,
|
||||
samples []float32,
|
||||
encoderBeginCallback func() bool,
|
||||
newSegmentCallback func(int),
|
||||
progressCallback func(int),
|
||||
) error {
|
||||
func (ctx *Context) Whisper_full(params Params, samples []float32, encoderBeginCallback func() bool, newSegmentCallback func(int)) error {
|
||||
registerEncoderBeginCallback(ctx, encoderBeginCallback)
|
||||
registerNewSegmentCallback(ctx, newSegmentCallback)
|
||||
registerProgressCallback(ctx, progressCallback)
|
||||
defer registerEncoderBeginCallback(ctx, nil)
|
||||
defer registerNewSegmentCallback(ctx, nil)
|
||||
defer registerProgressCallback(ctx, nil)
|
||||
if C.whisper_full((*C.struct_whisper_context)(ctx), (C.struct_whisper_full_params)(params), (*C.float)(&samples[0]), C.int(len(samples))) == 0 {
|
||||
return nil
|
||||
} else {
|
||||
@ -338,18 +318,6 @@ func (ctx *Context) Whisper_full_parallel(params Params, samples []float32, proc
|
||||
}
|
||||
}
|
||||
|
||||
// Return the id of the autodetected language, returns -1 if not found
|
||||
// Added to whisper.cpp in
|
||||
// https://github.com/ggerganov/whisper.cpp/commit/a1c1583cc7cd8b75222857afc936f0638c5683d6
|
||||
//
|
||||
// Examples:
|
||||
//
|
||||
// "de" -> 2
|
||||
// "german" -> 2
|
||||
func (ctx *Context) Whisper_full_lang_id() int {
|
||||
return int(C.whisper_full_lang_id((*C.struct_whisper_context)(ctx)))
|
||||
}
|
||||
|
||||
// Number of generated text segments.
|
||||
// A segment can be a few words, a sentence, or even a paragraph.
|
||||
func (ctx *Context) Whisper_full_n_segments() int {
|
||||
@ -402,7 +370,6 @@ func (ctx *Context) Whisper_full_get_token_p(segment int, token int) float32 {
|
||||
|
||||
var (
|
||||
cbNewSegment = make(map[unsafe.Pointer]func(int))
|
||||
cbProgress = make(map[unsafe.Pointer]func(int))
|
||||
cbEncoderBegin = make(map[unsafe.Pointer]func() bool)
|
||||
)
|
||||
|
||||
@ -414,14 +381,6 @@ func registerNewSegmentCallback(ctx *Context, fn func(int)) {
|
||||
}
|
||||
}
|
||||
|
||||
func registerProgressCallback(ctx *Context, fn func(int)) {
|
||||
if fn == nil {
|
||||
delete(cbProgress, unsafe.Pointer(ctx))
|
||||
} else {
|
||||
cbProgress[unsafe.Pointer(ctx)] = fn
|
||||
}
|
||||
}
|
||||
|
||||
func registerEncoderBeginCallback(ctx *Context, fn func() bool) {
|
||||
if fn == nil {
|
||||
delete(cbEncoderBegin, unsafe.Pointer(ctx))
|
||||
@ -437,13 +396,6 @@ func callNewSegment(user_data unsafe.Pointer, new C.int) {
|
||||
}
|
||||
}
|
||||
|
||||
//export callProgress
|
||||
func callProgress(user_data unsafe.Pointer, progress C.int) {
|
||||
if fn, ok := cbProgress[user_data]; ok {
|
||||
fn(int(progress))
|
||||
}
|
||||
}
|
||||
|
||||
//export callEncoderBegin
|
||||
func callEncoderBegin(user_data unsafe.Pointer) C.bool {
|
||||
if fn, ok := cbEncoderBegin[user_data]; ok {
|
||||
@ -463,7 +415,3 @@ func (t TokenData) T0() int64 {
|
||||
func (t TokenData) T1() int64 {
|
||||
return int64(t.t1)
|
||||
}
|
||||
|
||||
func (t TokenData) Id() Token {
|
||||
return Token(t.id)
|
||||
}
|
||||
|
@ -52,7 +52,7 @@ func Test_Whisper_001(t *testing.T) {
|
||||
defer ctx.Whisper_free()
|
||||
params := ctx.Whisper_full_default_params(whisper.SAMPLING_GREEDY)
|
||||
data := buf.AsFloat32Buffer().Data
|
||||
err = ctx.Whisper_full(params, data, nil, nil, nil)
|
||||
err = ctx.Whisper_full(params, data, nil, nil)
|
||||
assert.NoError(err)
|
||||
|
||||
// Print out tokens
|
||||
|
Submodule bindings/ios updated: de46d9e781...af745e4f2f
124
bindings/java/.idea/uiDesigner.xml
generated
124
bindings/java/.idea/uiDesigner.xml
generated
@ -1,124 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="Palette2">
|
||||
<group name="Swing">
|
||||
<item class="com.intellij.uiDesigner.HSpacer" tooltip-text="Horizontal Spacer" icon="/com/intellij/uiDesigner/icons/hspacer.svg" removable="false" auto-create-binding="false" can-attach-label="false">
|
||||
<default-constraints vsize-policy="1" hsize-policy="6" anchor="0" fill="1" />
|
||||
</item>
|
||||
<item class="com.intellij.uiDesigner.VSpacer" tooltip-text="Vertical Spacer" icon="/com/intellij/uiDesigner/icons/vspacer.svg" removable="false" auto-create-binding="false" can-attach-label="false">
|
||||
<default-constraints vsize-policy="6" hsize-policy="1" anchor="0" fill="2" />
|
||||
</item>
|
||||
<item class="javax.swing.JPanel" icon="/com/intellij/uiDesigner/icons/panel.svg" removable="false" auto-create-binding="false" can-attach-label="false">
|
||||
<default-constraints vsize-policy="3" hsize-policy="3" anchor="0" fill="3" />
|
||||
</item>
|
||||
<item class="javax.swing.JScrollPane" icon="/com/intellij/uiDesigner/icons/scrollPane.svg" removable="false" auto-create-binding="false" can-attach-label="true">
|
||||
<default-constraints vsize-policy="7" hsize-policy="7" anchor="0" fill="3" />
|
||||
</item>
|
||||
<item class="javax.swing.JButton" icon="/com/intellij/uiDesigner/icons/button.svg" removable="false" auto-create-binding="true" can-attach-label="false">
|
||||
<default-constraints vsize-policy="0" hsize-policy="3" anchor="0" fill="1" />
|
||||
<initial-values>
|
||||
<property name="text" value="Button" />
|
||||
</initial-values>
|
||||
</item>
|
||||
<item class="javax.swing.JRadioButton" icon="/com/intellij/uiDesigner/icons/radioButton.svg" removable="false" auto-create-binding="true" can-attach-label="false">
|
||||
<default-constraints vsize-policy="0" hsize-policy="3" anchor="8" fill="0" />
|
||||
<initial-values>
|
||||
<property name="text" value="RadioButton" />
|
||||
</initial-values>
|
||||
</item>
|
||||
<item class="javax.swing.JCheckBox" icon="/com/intellij/uiDesigner/icons/checkBox.svg" removable="false" auto-create-binding="true" can-attach-label="false">
|
||||
<default-constraints vsize-policy="0" hsize-policy="3" anchor="8" fill="0" />
|
||||
<initial-values>
|
||||
<property name="text" value="CheckBox" />
|
||||
</initial-values>
|
||||
</item>
|
||||
<item class="javax.swing.JLabel" icon="/com/intellij/uiDesigner/icons/label.svg" removable="false" auto-create-binding="false" can-attach-label="false">
|
||||
<default-constraints vsize-policy="0" hsize-policy="0" anchor="8" fill="0" />
|
||||
<initial-values>
|
||||
<property name="text" value="Label" />
|
||||
</initial-values>
|
||||
</item>
|
||||
<item class="javax.swing.JTextField" icon="/com/intellij/uiDesigner/icons/textField.svg" removable="false" auto-create-binding="true" can-attach-label="true">
|
||||
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1">
|
||||
<preferred-size width="150" height="-1" />
|
||||
</default-constraints>
|
||||
</item>
|
||||
<item class="javax.swing.JPasswordField" icon="/com/intellij/uiDesigner/icons/passwordField.svg" removable="false" auto-create-binding="true" can-attach-label="true">
|
||||
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1">
|
||||
<preferred-size width="150" height="-1" />
|
||||
</default-constraints>
|
||||
</item>
|
||||
<item class="javax.swing.JFormattedTextField" icon="/com/intellij/uiDesigner/icons/formattedTextField.svg" removable="false" auto-create-binding="true" can-attach-label="true">
|
||||
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1">
|
||||
<preferred-size width="150" height="-1" />
|
||||
</default-constraints>
|
||||
</item>
|
||||
<item class="javax.swing.JTextArea" icon="/com/intellij/uiDesigner/icons/textArea.svg" removable="false" auto-create-binding="true" can-attach-label="true">
|
||||
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
|
||||
<preferred-size width="150" height="50" />
|
||||
</default-constraints>
|
||||
</item>
|
||||
<item class="javax.swing.JTextPane" icon="/com/intellij/uiDesigner/icons/textPane.svg" removable="false" auto-create-binding="true" can-attach-label="true">
|
||||
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
|
||||
<preferred-size width="150" height="50" />
|
||||
</default-constraints>
|
||||
</item>
|
||||
<item class="javax.swing.JEditorPane" icon="/com/intellij/uiDesigner/icons/editorPane.svg" removable="false" auto-create-binding="true" can-attach-label="true">
|
||||
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
|
||||
<preferred-size width="150" height="50" />
|
||||
</default-constraints>
|
||||
</item>
|
||||
<item class="javax.swing.JComboBox" icon="/com/intellij/uiDesigner/icons/comboBox.svg" removable="false" auto-create-binding="true" can-attach-label="true">
|
||||
<default-constraints vsize-policy="0" hsize-policy="2" anchor="8" fill="1" />
|
||||
</item>
|
||||
<item class="javax.swing.JTable" icon="/com/intellij/uiDesigner/icons/table.svg" removable="false" auto-create-binding="true" can-attach-label="false">
|
||||
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
|
||||
<preferred-size width="150" height="50" />
|
||||
</default-constraints>
|
||||
</item>
|
||||
<item class="javax.swing.JList" icon="/com/intellij/uiDesigner/icons/list.svg" removable="false" auto-create-binding="true" can-attach-label="false">
|
||||
<default-constraints vsize-policy="6" hsize-policy="2" anchor="0" fill="3">
|
||||
<preferred-size width="150" height="50" />
|
||||
</default-constraints>
|
||||
</item>
|
||||
<item class="javax.swing.JTree" icon="/com/intellij/uiDesigner/icons/tree.svg" removable="false" auto-create-binding="true" can-attach-label="false">
|
||||
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
|
||||
<preferred-size width="150" height="50" />
|
||||
</default-constraints>
|
||||
</item>
|
||||
<item class="javax.swing.JTabbedPane" icon="/com/intellij/uiDesigner/icons/tabbedPane.svg" removable="false" auto-create-binding="true" can-attach-label="false">
|
||||
<default-constraints vsize-policy="3" hsize-policy="3" anchor="0" fill="3">
|
||||
<preferred-size width="200" height="200" />
|
||||
</default-constraints>
|
||||
</item>
|
||||
<item class="javax.swing.JSplitPane" icon="/com/intellij/uiDesigner/icons/splitPane.svg" removable="false" auto-create-binding="false" can-attach-label="false">
|
||||
<default-constraints vsize-policy="3" hsize-policy="3" anchor="0" fill="3">
|
||||
<preferred-size width="200" height="200" />
|
||||
</default-constraints>
|
||||
</item>
|
||||
<item class="javax.swing.JSpinner" icon="/com/intellij/uiDesigner/icons/spinner.svg" removable="false" auto-create-binding="true" can-attach-label="true">
|
||||
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1" />
|
||||
</item>
|
||||
<item class="javax.swing.JSlider" icon="/com/intellij/uiDesigner/icons/slider.svg" removable="false" auto-create-binding="true" can-attach-label="false">
|
||||
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1" />
|
||||
</item>
|
||||
<item class="javax.swing.JSeparator" icon="/com/intellij/uiDesigner/icons/separator.svg" removable="false" auto-create-binding="false" can-attach-label="false">
|
||||
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3" />
|
||||
</item>
|
||||
<item class="javax.swing.JProgressBar" icon="/com/intellij/uiDesigner/icons/progressbar.svg" removable="false" auto-create-binding="true" can-attach-label="false">
|
||||
<default-constraints vsize-policy="0" hsize-policy="6" anchor="0" fill="1" />
|
||||
</item>
|
||||
<item class="javax.swing.JToolBar" icon="/com/intellij/uiDesigner/icons/toolbar.svg" removable="false" auto-create-binding="false" can-attach-label="false">
|
||||
<default-constraints vsize-policy="0" hsize-policy="6" anchor="0" fill="1">
|
||||
<preferred-size width="-1" height="20" />
|
||||
</default-constraints>
|
||||
</item>
|
||||
<item class="javax.swing.JToolBar$Separator" icon="/com/intellij/uiDesigner/icons/toolbarSeparator.svg" removable="false" auto-create-binding="false" can-attach-label="false">
|
||||
<default-constraints vsize-policy="0" hsize-policy="0" anchor="0" fill="1" />
|
||||
</item>
|
||||
<item class="javax.swing.JScrollBar" icon="/com/intellij/uiDesigner/icons/scrollbar.svg" removable="false" auto-create-binding="true" can-attach-label="false">
|
||||
<default-constraints vsize-policy="6" hsize-policy="0" anchor="0" fill="2" />
|
||||
</item>
|
||||
</group>
|
||||
</component>
|
||||
</project>
|
@ -1,71 +0,0 @@
|
||||
# Java JNI bindings for Whisper
|
||||
|
||||
This package provides Java JNI bindings for whisper.cpp. They have been tested on:
|
||||
|
||||
* <strike>Darwin (OS X) 12.6 on x64_64</strike>
|
||||
* Ubuntu on x86_64
|
||||
* Windows on x86_64
|
||||
|
||||
The "low level" bindings are in `WhisperCppJnaLibrary`. The most simple usage is as follows:
|
||||
|
||||
JNA will attempt to load the `whispercpp` shared library from:
|
||||
|
||||
- jna.library.path
|
||||
- jna.platform.library
|
||||
- ~/Library/Frameworks
|
||||
- /Library/Frameworks
|
||||
- /System/Library/Frameworks
|
||||
- classpath
|
||||
|
||||
```java
|
||||
import io.github.ggerganov.whispercpp.WhisperCpp;
|
||||
|
||||
public class Example {
|
||||
|
||||
public static void main(String[] args) {
|
||||
WhisperCpp whisper = new WhisperCpp();
|
||||
// By default, models are loaded from ~/.cache/whisper/ and are usually named "ggml-${name}.bin"
|
||||
// or you can provide the absolute path to the model file.
|
||||
long context = whisper.initContext("base.en");
|
||||
try {
|
||||
var whisperParams = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
|
||||
// custom configuration if required
|
||||
whisperParams.temperature_inc = 0f;
|
||||
|
||||
var samples = readAudio(); // divide each value by 32767.0f
|
||||
whisper.fullTranscribe(whisperParams, samples);
|
||||
|
||||
int segmentCount = whisper.getTextSegmentCount(context);
|
||||
for (int i = 0; i < segmentCount; i++) {
|
||||
String text = whisper.getTextSegment(context, i);
|
||||
System.out.println(segment.getText());
|
||||
}
|
||||
} finally {
|
||||
whisper.freeContext(context);
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Building & Testing
|
||||
|
||||
In order to build, you need to have the JDK 8 or higher installed. Run the tests with:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/whisper.cpp.git
|
||||
cd whisper.cpp/bindings/java
|
||||
|
||||
./gradlew build
|
||||
```
|
||||
|
||||
You need to have the `whisper` library in your [JNA library path](https://java-native-access.github.io/jna/4.2.1/com/sun/jna/NativeLibrary.html). On Windows the dll is included in the jar and you can update it:
|
||||
|
||||
```bash
|
||||
copy /y ..\..\build\bin\Release\whisper.dll build\generated\resources\main\win32-x86-64\whisper.dll
|
||||
```
|
||||
|
||||
|
||||
## License
|
||||
|
||||
The license for the Go bindings is the same as the license for the rest of the whisper.cpp project, which is the MIT License. See the `LICENSE` file for more details.
|
||||
|
@ -1,132 +0,0 @@
|
||||
plugins {
|
||||
id 'java'
|
||||
id 'java-library'
|
||||
id 'maven-publish'
|
||||
id 'signing'
|
||||
}
|
||||
|
||||
archivesBaseName = 'whispercpp'
|
||||
group = 'io.github.ggerganov'
|
||||
version = '1.4.0'
|
||||
|
||||
sourceCompatibility = 1.8
|
||||
targetCompatibility = 1.8
|
||||
|
||||
sourceSets {
|
||||
main {
|
||||
resources {
|
||||
srcDirs = ['src/main/resources', 'build/generated/resources/main']
|
||||
}
|
||||
}
|
||||
test {
|
||||
runtimeClasspath += files('build/generated/resources/main')
|
||||
}
|
||||
}
|
||||
|
||||
tasks.register('copyLibwhisperDynlib', Copy) {
|
||||
from '../../build'
|
||||
include 'libwhisper.dynlib'
|
||||
into 'build/generated/resources/main/darwin'
|
||||
}
|
||||
|
||||
tasks.register('copyLibwhisperSo', Copy) {
|
||||
from '../../build'
|
||||
include 'libwhisper.so'
|
||||
into 'build/generated/resources/main/linux-x86-64'
|
||||
}
|
||||
|
||||
tasks.register('copyWhisperDll', Copy) {
|
||||
from '../../build/Release'
|
||||
include 'whisper.dll'
|
||||
into 'build/generated/resources/main/windows-x86-64'
|
||||
}
|
||||
|
||||
tasks.register('copyLibs') {
|
||||
dependsOn copyLibwhisperDynlib, copyLibwhisperSo, copyWhisperDll
|
||||
}
|
||||
|
||||
test {
|
||||
systemProperty 'jna.library.path', project.file('build/generated/resources/main').absolutePath
|
||||
}
|
||||
|
||||
java {
|
||||
withSourcesJar()
|
||||
withJavadocJar()
|
||||
}
|
||||
|
||||
jar {
|
||||
exclude '**/whisper_java.exp', '**/whisper_java.lib'
|
||||
}
|
||||
|
||||
javadoc {
|
||||
options.addStringOption('Xdoclint:none', '-quiet')
|
||||
}
|
||||
|
||||
tasks.withType(Test) {
|
||||
useJUnitPlatform()
|
||||
}
|
||||
|
||||
dependencies {
|
||||
implementation "net.java.dev.jna:jna:5.13.0"
|
||||
testImplementation "org.junit.jupiter:junit-jupiter:5.9.2"
|
||||
testImplementation "org.assertj:assertj-core:3.24.2"
|
||||
}
|
||||
|
||||
repositories {
|
||||
mavenCentral()
|
||||
}
|
||||
|
||||
publishing {
|
||||
publications {
|
||||
mavenJava(MavenPublication) {
|
||||
artifactId = 'whispercpp'
|
||||
from components.java
|
||||
pom {
|
||||
name = 'whispercpp'
|
||||
description = "Java JNA bindings for OpenAI's Whisper model, implemented in C/C++"
|
||||
url = 'https://github.com/ggerganov/whisper.cpp'
|
||||
licenses {
|
||||
license {
|
||||
name = 'MIT licence'
|
||||
url = 'https://raw.githubusercontent.com/ggerganov/whisper.cpp/master/LICENSE'
|
||||
}
|
||||
}
|
||||
developers {
|
||||
developer {
|
||||
id = 'ggerganov'
|
||||
name = 'Georgi Gerganov'
|
||||
email = 'ggerganov@gmail.com'
|
||||
}
|
||||
developer {
|
||||
id = 'nalbion'
|
||||
name = 'Nicholas Albion'
|
||||
email = 'nalbion@yahoo.com'
|
||||
}
|
||||
}
|
||||
scm {
|
||||
connection = 'scm:git:git://github.com/ggerganov/whisper.cpp.git'
|
||||
url = 'https://github.com/ggerganov/whisper.cpp'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
repositories {
|
||||
maven {
|
||||
def releasesRepoUrl = 'https://s01.oss.sonatype.org/service/local/staging/deploy/maven2/'
|
||||
def snapshotsRepoUrl = 'https://s01.oss.sonatype.org/content/repositories/snapshots/'
|
||||
url = version.endsWith('-SNAPSHOT') ? snapshotsRepoUrl : releasesRepoUrl
|
||||
credentials {
|
||||
username = System.getenv("MAVEN_USERNAME")
|
||||
password = System.getenv("MAVEN_PASSWORD")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
signing {
|
||||
def signingKey = System.getenv("PGP_SECRET")
|
||||
def signingPassword = System.getenv("PGP_PASSPHRASE")
|
||||
useInMemoryPgpKeys(signingKey, signingPassword)
|
||||
sign publishing.publications.mavenJava
|
||||
}
|
@ -1,6 +0,0 @@
|
||||
org.gradle.jvmargs=-Xms256m -Xmx1024m
|
||||
system.include.dir=/usr/include
|
||||
#system.local.include.dir=../../include
|
||||
system.local.include.dir=./build/generated/sources/headers/java/main
|
||||
jni.include.dir=/usr/lib/jvm/java-8-openjdk-amd64/include/
|
||||
jni.lib.dir=/usr/lib/jvm/java-8-openjdk-amd64/lib/
|
BIN
bindings/java/gradle/wrapper/gradle-wrapper.jar
vendored
BIN
bindings/java/gradle/wrapper/gradle-wrapper.jar
vendored
Binary file not shown.
@ -1,6 +0,0 @@
|
||||
distributionBase=GRADLE_USER_HOME
|
||||
distributionPath=wrapper/dists
|
||||
distributionUrl=https\://services.gradle.org/distributions/gradle-8.1-bin.zip
|
||||
networkTimeout=10000
|
||||
zipStoreBase=GRADLE_USER_HOME
|
||||
zipStorePath=wrapper/dists
|
244
bindings/java/gradlew
vendored
244
bindings/java/gradlew
vendored
@ -1,244 +0,0 @@
|
||||
#!/bin/sh
|
||||
|
||||
#
|
||||
# Copyright © 2015-2021 the original authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# https://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
##############################################################################
|
||||
#
|
||||
# Gradle start up script for POSIX generated by Gradle.
|
||||
#
|
||||
# Important for running:
|
||||
#
|
||||
# (1) You need a POSIX-compliant shell to run this script. If your /bin/sh is
|
||||
# noncompliant, but you have some other compliant shell such as ksh or
|
||||
# bash, then to run this script, type that shell name before the whole
|
||||
# command line, like:
|
||||
#
|
||||
# ksh Gradle
|
||||
#
|
||||
# Busybox and similar reduced shells will NOT work, because this script
|
||||
# requires all of these POSIX shell features:
|
||||
# * functions;
|
||||
# * expansions «$var», «${var}», «${var:-default}», «${var+SET}»,
|
||||
# «${var#prefix}», «${var%suffix}», and «$( cmd )»;
|
||||
# * compound commands having a testable exit status, especially «case»;
|
||||
# * various built-in commands including «command», «set», and «ulimit».
|
||||
#
|
||||
# Important for patching:
|
||||
#
|
||||
# (2) This script targets any POSIX shell, so it avoids extensions provided
|
||||
# by Bash, Ksh, etc; in particular arrays are avoided.
|
||||
#
|
||||
# The "traditional" practice of packing multiple parameters into a
|
||||
# space-separated string is a well documented source of bugs and security
|
||||
# problems, so this is (mostly) avoided, by progressively accumulating
|
||||
# options in "$@", and eventually passing that to Java.
|
||||
#
|
||||
# Where the inherited environment variables (DEFAULT_JVM_OPTS, JAVA_OPTS,
|
||||
# and GRADLE_OPTS) rely on word-splitting, this is performed explicitly;
|
||||
# see the in-line comments for details.
|
||||
#
|
||||
# There are tweaks for specific operating systems such as AIX, CygWin,
|
||||
# Darwin, MinGW, and NonStop.
|
||||
#
|
||||
# (3) This script is generated from the Groovy template
|
||||
# https://github.com/gradle/gradle/blob/HEAD/subprojects/plugins/src/main/resources/org/gradle/api/internal/plugins/unixStartScript.txt
|
||||
# within the Gradle project.
|
||||
#
|
||||
# You can find Gradle at https://github.com/gradle/gradle/.
|
||||
#
|
||||
##############################################################################
|
||||
|
||||
# Attempt to set APP_HOME
|
||||
|
||||
# Resolve links: $0 may be a link
|
||||
app_path=$0
|
||||
|
||||
# Need this for daisy-chained symlinks.
|
||||
while
|
||||
APP_HOME=${app_path%"${app_path##*/}"} # leaves a trailing /; empty if no leading path
|
||||
[ -h "$app_path" ]
|
||||
do
|
||||
ls=$( ls -ld "$app_path" )
|
||||
link=${ls#*' -> '}
|
||||
case $link in #(
|
||||
/*) app_path=$link ;; #(
|
||||
*) app_path=$APP_HOME$link ;;
|
||||
esac
|
||||
done
|
||||
|
||||
# This is normally unused
|
||||
# shellcheck disable=SC2034
|
||||
APP_BASE_NAME=${0##*/}
|
||||
APP_HOME=$( cd "${APP_HOME:-./}" && pwd -P ) || exit
|
||||
|
||||
# Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
|
||||
DEFAULT_JVM_OPTS='"-Xmx64m" "-Xms64m"'
|
||||
|
||||
# Use the maximum available, or set MAX_FD != -1 to use that value.
|
||||
MAX_FD=maximum
|
||||
|
||||
warn () {
|
||||
echo "$*"
|
||||
} >&2
|
||||
|
||||
die () {
|
||||
echo
|
||||
echo "$*"
|
||||
echo
|
||||
exit 1
|
||||
} >&2
|
||||
|
||||
# OS specific support (must be 'true' or 'false').
|
||||
cygwin=false
|
||||
msys=false
|
||||
darwin=false
|
||||
nonstop=false
|
||||
case "$( uname )" in #(
|
||||
CYGWIN* ) cygwin=true ;; #(
|
||||
Darwin* ) darwin=true ;; #(
|
||||
MSYS* | MINGW* ) msys=true ;; #(
|
||||
NONSTOP* ) nonstop=true ;;
|
||||
esac
|
||||
|
||||
CLASSPATH=$APP_HOME/gradle/wrapper/gradle-wrapper.jar
|
||||
|
||||
|
||||
# Determine the Java command to use to start the JVM.
|
||||
if [ -n "$JAVA_HOME" ] ; then
|
||||
if [ -x "$JAVA_HOME/jre/sh/java" ] ; then
|
||||
# IBM's JDK on AIX uses strange locations for the executables
|
||||
JAVACMD=$JAVA_HOME/jre/sh/java
|
||||
else
|
||||
JAVACMD=$JAVA_HOME/bin/java
|
||||
fi
|
||||
if [ ! -x "$JAVACMD" ] ; then
|
||||
die "ERROR: JAVA_HOME is set to an invalid directory: $JAVA_HOME
|
||||
|
||||
Please set the JAVA_HOME variable in your environment to match the
|
||||
location of your Java installation."
|
||||
fi
|
||||
else
|
||||
JAVACMD=java
|
||||
which java >/dev/null 2>&1 || die "ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
|
||||
|
||||
Please set the JAVA_HOME variable in your environment to match the
|
||||
location of your Java installation."
|
||||
fi
|
||||
|
||||
# Increase the maximum file descriptors if we can.
|
||||
if ! "$cygwin" && ! "$darwin" && ! "$nonstop" ; then
|
||||
case $MAX_FD in #(
|
||||
max*)
|
||||
# In POSIX sh, ulimit -H is undefined. That's why the result is checked to see if it worked.
|
||||
# shellcheck disable=SC3045
|
||||
MAX_FD=$( ulimit -H -n ) ||
|
||||
warn "Could not query maximum file descriptor limit"
|
||||
esac
|
||||
case $MAX_FD in #(
|
||||
'' | soft) :;; #(
|
||||
*)
|
||||
# In POSIX sh, ulimit -n is undefined. That's why the result is checked to see if it worked.
|
||||
# shellcheck disable=SC3045
|
||||
ulimit -n "$MAX_FD" ||
|
||||
warn "Could not set maximum file descriptor limit to $MAX_FD"
|
||||
esac
|
||||
fi
|
||||
|
||||
# Collect all arguments for the java command, stacking in reverse order:
|
||||
# * args from the command line
|
||||
# * the main class name
|
||||
# * -classpath
|
||||
# * -D...appname settings
|
||||
# * --module-path (only if needed)
|
||||
# * DEFAULT_JVM_OPTS, JAVA_OPTS, and GRADLE_OPTS environment variables.
|
||||
|
||||
# For Cygwin or MSYS, switch paths to Windows format before running java
|
||||
if "$cygwin" || "$msys" ; then
|
||||
APP_HOME=$( cygpath --path --mixed "$APP_HOME" )
|
||||
CLASSPATH=$( cygpath --path --mixed "$CLASSPATH" )
|
||||
|
||||
JAVACMD=$( cygpath --unix "$JAVACMD" )
|
||||
|
||||
# Now convert the arguments - kludge to limit ourselves to /bin/sh
|
||||
for arg do
|
||||
if
|
||||
case $arg in #(
|
||||
-*) false ;; # don't mess with options #(
|
||||
/?*) t=${arg#/} t=/${t%%/*} # looks like a POSIX filepath
|
||||
[ -e "$t" ] ;; #(
|
||||
*) false ;;
|
||||
esac
|
||||
then
|
||||
arg=$( cygpath --path --ignore --mixed "$arg" )
|
||||
fi
|
||||
# Roll the args list around exactly as many times as the number of
|
||||
# args, so each arg winds up back in the position where it started, but
|
||||
# possibly modified.
|
||||
#
|
||||
# NB: a `for` loop captures its iteration list before it begins, so
|
||||
# changing the positional parameters here affects neither the number of
|
||||
# iterations, nor the values presented in `arg`.
|
||||
shift # remove old arg
|
||||
set -- "$@" "$arg" # push replacement arg
|
||||
done
|
||||
fi
|
||||
|
||||
# Collect all arguments for the java command;
|
||||
# * $DEFAULT_JVM_OPTS, $JAVA_OPTS, and $GRADLE_OPTS can contain fragments of
|
||||
# shell script including quotes and variable substitutions, so put them in
|
||||
# double quotes to make sure that they get re-expanded; and
|
||||
# * put everything else in single quotes, so that it's not re-expanded.
|
||||
|
||||
set -- \
|
||||
"-Dorg.gradle.appname=$APP_BASE_NAME" \
|
||||
-classpath "$CLASSPATH" \
|
||||
org.gradle.wrapper.GradleWrapperMain \
|
||||
"$@"
|
||||
|
||||
# Stop when "xargs" is not available.
|
||||
if ! command -v xargs >/dev/null 2>&1
|
||||
then
|
||||
die "xargs is not available"
|
||||
fi
|
||||
|
||||
# Use "xargs" to parse quoted args.
|
||||
#
|
||||
# With -n1 it outputs one arg per line, with the quotes and backslashes removed.
|
||||
#
|
||||
# In Bash we could simply go:
|
||||
#
|
||||
# readarray ARGS < <( xargs -n1 <<<"$var" ) &&
|
||||
# set -- "${ARGS[@]}" "$@"
|
||||
#
|
||||
# but POSIX shell has neither arrays nor command substitution, so instead we
|
||||
# post-process each arg (as a line of input to sed) to backslash-escape any
|
||||
# character that might be a shell metacharacter, then use eval to reverse
|
||||
# that process (while maintaining the separation between arguments), and wrap
|
||||
# the whole thing up as a single "set" statement.
|
||||
#
|
||||
# This will of course break if any of these variables contains a newline or
|
||||
# an unmatched quote.
|
||||
#
|
||||
|
||||
eval "set -- $(
|
||||
printf '%s\n' "$DEFAULT_JVM_OPTS $JAVA_OPTS $GRADLE_OPTS" |
|
||||
xargs -n1 |
|
||||
sed ' s~[^-[:alnum:]+,./:=@_]~\\&~g; ' |
|
||||
tr '\n' ' '
|
||||
)" '"$@"'
|
||||
|
||||
exec "$JAVACMD" "$@"
|
92
bindings/java/gradlew.bat
vendored
92
bindings/java/gradlew.bat
vendored
@ -1,92 +0,0 @@
|
||||
@rem
|
||||
@rem Copyright 2015 the original author or authors.
|
||||
@rem
|
||||
@rem Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@rem you may not use this file except in compliance with the License.
|
||||
@rem You may obtain a copy of the License at
|
||||
@rem
|
||||
@rem https://www.apache.org/licenses/LICENSE-2.0
|
||||
@rem
|
||||
@rem Unless required by applicable law or agreed to in writing, software
|
||||
@rem distributed under the License is distributed on an "AS IS" BASIS,
|
||||
@rem WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
@rem See the License for the specific language governing permissions and
|
||||
@rem limitations under the License.
|
||||
@rem
|
||||
|
||||
@if "%DEBUG%"=="" @echo off
|
||||
@rem ##########################################################################
|
||||
@rem
|
||||
@rem Gradle startup script for Windows
|
||||
@rem
|
||||
@rem ##########################################################################
|
||||
|
||||
@rem Set local scope for the variables with windows NT shell
|
||||
if "%OS%"=="Windows_NT" setlocal
|
||||
|
||||
set DIRNAME=%~dp0
|
||||
if "%DIRNAME%"=="" set DIRNAME=.
|
||||
@rem This is normally unused
|
||||
set APP_BASE_NAME=%~n0
|
||||
set APP_HOME=%DIRNAME%
|
||||
|
||||
@rem Resolve any "." and ".." in APP_HOME to make it shorter.
|
||||
for %%i in ("%APP_HOME%") do set APP_HOME=%%~fi
|
||||
|
||||
@rem Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
|
||||
set DEFAULT_JVM_OPTS="-Xmx64m" "-Xms64m"
|
||||
|
||||
@rem Find java.exe
|
||||
if defined JAVA_HOME goto findJavaFromJavaHome
|
||||
|
||||
set JAVA_EXE=java.exe
|
||||
%JAVA_EXE% -version >NUL 2>&1
|
||||
if %ERRORLEVEL% equ 0 goto execute
|
||||
|
||||
echo.
|
||||
echo ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
|
||||
echo.
|
||||
echo Please set the JAVA_HOME variable in your environment to match the
|
||||
echo location of your Java installation.
|
||||
|
||||
goto fail
|
||||
|
||||
:findJavaFromJavaHome
|
||||
set JAVA_HOME=%JAVA_HOME:"=%
|
||||
set JAVA_EXE=%JAVA_HOME%/bin/java.exe
|
||||
|
||||
if exist "%JAVA_EXE%" goto execute
|
||||
|
||||
echo.
|
||||
echo ERROR: JAVA_HOME is set to an invalid directory: %JAVA_HOME%
|
||||
echo.
|
||||
echo Please set the JAVA_HOME variable in your environment to match the
|
||||
echo location of your Java installation.
|
||||
|
||||
goto fail
|
||||
|
||||
:execute
|
||||
@rem Setup the command line
|
||||
|
||||
set CLASSPATH=%APP_HOME%\gradle\wrapper\gradle-wrapper.jar
|
||||
|
||||
|
||||
@rem Execute Gradle
|
||||
"%JAVA_EXE%" %DEFAULT_JVM_OPTS% %JAVA_OPTS% %GRADLE_OPTS% "-Dorg.gradle.appname=%APP_BASE_NAME%" -classpath "%CLASSPATH%" org.gradle.wrapper.GradleWrapperMain %*
|
||||
|
||||
:end
|
||||
@rem End local scope for the variables with windows NT shell
|
||||
if %ERRORLEVEL% equ 0 goto mainEnd
|
||||
|
||||
:fail
|
||||
rem Set variable GRADLE_EXIT_CONSOLE if you need the _script_ return code instead of
|
||||
rem the _cmd.exe /c_ return code!
|
||||
set EXIT_CODE=%ERRORLEVEL%
|
||||
if %EXIT_CODE% equ 0 set EXIT_CODE=1
|
||||
if not ""=="%GRADLE_EXIT_CONSOLE%" exit %EXIT_CODE%
|
||||
exit /b %EXIT_CODE%
|
||||
|
||||
:mainEnd
|
||||
if "%OS%"=="Windows_NT" endlocal
|
||||
|
||||
:omega
|
@ -1 +0,0 @@
|
||||
rootProject.name = "whispercpp"
|
@ -1,39 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp;
|
||||
|
||||
import com.sun.jna.Structure;
|
||||
import com.sun.jna.ptr.PointerByReference;
|
||||
import io.github.ggerganov.whispercpp.ggml.GgmlType;
|
||||
import io.github.ggerganov.whispercpp.WhisperModel;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
public class WhisperContext extends Structure {
|
||||
int t_load_us = 0;
|
||||
int t_start_us = 0;
|
||||
|
||||
/** weight type (FP32 / FP16 / QX) */
|
||||
GgmlType wtype = GgmlType.GGML_TYPE_F16;
|
||||
/** intermediate type (FP32 or FP16) */
|
||||
GgmlType itype = GgmlType.GGML_TYPE_F16;
|
||||
|
||||
// WhisperModel model;
|
||||
public PointerByReference model;
|
||||
// whisper_vocab vocab;
|
||||
// whisper_state * state = nullptr;
|
||||
public PointerByReference vocab;
|
||||
public PointerByReference state;
|
||||
|
||||
/** populated by whisper_init_from_file() */
|
||||
String path_model;
|
||||
|
||||
// public static class ByReference extends WhisperContext implements Structure.ByReference {
|
||||
// }
|
||||
//
|
||||
// public static class ByValue extends WhisperContext implements Structure.ByValue {
|
||||
// }
|
||||
//
|
||||
// @Override
|
||||
// protected List<String> getFieldOrder() {
|
||||
// return List.of("t_load_us", "t_start_us", "wtype", "itype", "model", "vocab", "state", "path_model");
|
||||
// }
|
||||
}
|
@ -1,151 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp;
|
||||
|
||||
import com.sun.jna.Native;
|
||||
import com.sun.jna.Pointer;
|
||||
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
|
||||
import io.github.ggerganov.whispercpp.params.WhisperSamplingStrategy;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.FileNotFoundException;
|
||||
import java.io.IOException;
|
||||
|
||||
/**
|
||||
* Before calling most methods, you must call `initContext(modelPath)` to initialise the `ctx` Pointer.
|
||||
*/
|
||||
public class WhisperCpp implements AutoCloseable {
|
||||
private WhisperCppJnaLibrary lib = WhisperCppJnaLibrary.instance;
|
||||
private Pointer ctx = null;
|
||||
private Pointer greedyPointer = null;
|
||||
private Pointer beamPointer = null;
|
||||
|
||||
public File modelDir() {
|
||||
String modelDirPath = System.getenv("XDG_CACHE_HOME");
|
||||
if (modelDirPath == null) {
|
||||
modelDirPath = System.getProperty("user.home") + "/.cache";
|
||||
}
|
||||
|
||||
return new File(modelDirPath, "whisper");
|
||||
}
|
||||
|
||||
/**
|
||||
* @param modelPath - absolute path, or just the name (eg: "base", "base-en" or "base.en")
|
||||
*/
|
||||
public void initContext(String modelPath) throws FileNotFoundException {
|
||||
if (ctx != null) {
|
||||
lib.whisper_free(ctx);
|
||||
}
|
||||
|
||||
if (!modelPath.contains("/") && !modelPath.contains("\\")) {
|
||||
if (!modelPath.endsWith(".bin")) {
|
||||
modelPath = "ggml-" + modelPath.replace("-", ".") + ".bin";
|
||||
}
|
||||
|
||||
modelPath = new File(modelDir(), modelPath).getAbsolutePath();
|
||||
}
|
||||
|
||||
ctx = lib.whisper_init_from_file(modelPath);
|
||||
|
||||
if (ctx == null) {
|
||||
throw new FileNotFoundException(modelPath);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides default params which can be used with `whisper_full()` etc.
|
||||
* Because this function allocates memory for the params, the caller must call either:
|
||||
* - call `whisper_free_params()`
|
||||
* - `Native.free(Pointer.nativeValue(pointer));`
|
||||
*
|
||||
* @param strategy - GREEDY
|
||||
*/
|
||||
public WhisperFullParams getFullDefaultParams(WhisperSamplingStrategy strategy) {
|
||||
Pointer pointer;
|
||||
|
||||
// whisper_full_default_params_by_ref allocates memory which we need to delete, so only create max 1 pointer for each strategy.
|
||||
if (strategy == WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY) {
|
||||
if (greedyPointer == null) {
|
||||
greedyPointer = lib.whisper_full_default_params_by_ref(strategy.ordinal());
|
||||
}
|
||||
pointer = greedyPointer;
|
||||
} else {
|
||||
if (beamPointer == null) {
|
||||
beamPointer = lib.whisper_full_default_params_by_ref(strategy.ordinal());
|
||||
}
|
||||
pointer = beamPointer;
|
||||
}
|
||||
|
||||
WhisperFullParams params = new WhisperFullParams(pointer);
|
||||
params.read();
|
||||
return params;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void close() {
|
||||
freeContext();
|
||||
freeParams();
|
||||
System.out.println("Whisper closed");
|
||||
}
|
||||
|
||||
private void freeContext() {
|
||||
if (ctx != null) {
|
||||
lib.whisper_free(ctx);
|
||||
}
|
||||
}
|
||||
|
||||
private void freeParams() {
|
||||
if (greedyPointer != null) {
|
||||
Native.free(Pointer.nativeValue(greedyPointer));
|
||||
greedyPointer = null;
|
||||
}
|
||||
if (beamPointer != null) {
|
||||
Native.free(Pointer.nativeValue(beamPointer));
|
||||
beamPointer = null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text.
|
||||
* Not thread safe for same context
|
||||
* Uses the specified decoding strategy to obtain the text.
|
||||
*/
|
||||
public String fullTranscribe(WhisperFullParams whisperParams, float[] audioData) throws IOException {
|
||||
if (ctx == null) {
|
||||
throw new IllegalStateException("Model not initialised");
|
||||
}
|
||||
|
||||
if (lib.whisper_full(ctx, whisperParams, audioData, audioData.length) != 0) {
|
||||
throw new IOException("Failed to process audio");
|
||||
}
|
||||
|
||||
int nSegments = lib.whisper_full_n_segments(ctx);
|
||||
|
||||
StringBuilder str = new StringBuilder();
|
||||
|
||||
for (int i = 0; i < nSegments; i++) {
|
||||
String text = lib.whisper_full_get_segment_text(ctx, i);
|
||||
System.out.println("Segment:" + text);
|
||||
str.append(text);
|
||||
}
|
||||
|
||||
return str.toString().trim();
|
||||
}
|
||||
|
||||
// public int getTextSegmentCount(Pointer ctx) {
|
||||
// return lib.whisper_full_n_segments(ctx);
|
||||
// }
|
||||
// public String getTextSegment(Pointer ctx, int index) {
|
||||
// return lib.whisper_full_get_segment_text(ctx, index);
|
||||
// }
|
||||
|
||||
public String getSystemInfo() {
|
||||
return lib.whisper_print_system_info();
|
||||
}
|
||||
|
||||
public int benchMemcpy(int nthread) {
|
||||
return lib.whisper_bench_memcpy(nthread);
|
||||
}
|
||||
|
||||
public int benchGgmlMulMat(int nthread) {
|
||||
return lib.whisper_bench_ggml_mul_mat(nthread);
|
||||
}
|
||||
}
|
@ -1,376 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp;
|
||||
|
||||
import com.sun.jna.Library;
|
||||
import com.sun.jna.Native;
|
||||
import com.sun.jna.Pointer;
|
||||
import io.github.ggerganov.whispercpp.model.WhisperModelLoader;
|
||||
import io.github.ggerganov.whispercpp.model.WhisperTokenData;
|
||||
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
|
||||
|
||||
public interface WhisperCppJnaLibrary extends Library {
|
||||
WhisperCppJnaLibrary instance = Native.load("whisper", WhisperCppJnaLibrary.class);
|
||||
|
||||
String whisper_print_system_info();
|
||||
|
||||
/**
|
||||
* Allocate (almost) all memory needed for the model by loading from a file.
|
||||
*
|
||||
* @param path_model Path to the model file
|
||||
* @return Whisper context on success, null on failure
|
||||
*/
|
||||
Pointer whisper_init_from_file(String path_model);
|
||||
|
||||
/**
|
||||
* Allocate (almost) all memory needed for the model by loading from a buffer.
|
||||
*
|
||||
* @param buffer Model buffer
|
||||
* @param buffer_size Size of the model buffer
|
||||
* @return Whisper context on success, null on failure
|
||||
*/
|
||||
Pointer whisper_init_from_buffer(Pointer buffer, int buffer_size);
|
||||
|
||||
/**
|
||||
* Allocate (almost) all memory needed for the model using a model loader.
|
||||
*
|
||||
* @param loader Model loader
|
||||
* @return Whisper context on success, null on failure
|
||||
*/
|
||||
Pointer whisper_init(WhisperModelLoader loader);
|
||||
|
||||
/**
|
||||
* Allocate (almost) all memory needed for the model by loading from a file without allocating the state.
|
||||
*
|
||||
* @param path_model Path to the model file
|
||||
* @return Whisper context on success, null on failure
|
||||
*/
|
||||
Pointer whisper_init_from_file_no_state(String path_model);
|
||||
|
||||
/**
|
||||
* Allocate (almost) all memory needed for the model by loading from a buffer without allocating the state.
|
||||
*
|
||||
* @param buffer Model buffer
|
||||
* @param buffer_size Size of the model buffer
|
||||
* @return Whisper context on success, null on failure
|
||||
*/
|
||||
Pointer whisper_init_from_buffer_no_state(Pointer buffer, int buffer_size);
|
||||
|
||||
// Pointer whisper_init_from_buffer_no_state(Pointer buffer, long buffer_size);
|
||||
|
||||
/**
|
||||
* Allocate (almost) all memory needed for the model using a model loader without allocating the state.
|
||||
*
|
||||
* @param loader Model loader
|
||||
* @return Whisper context on success, null on failure
|
||||
*/
|
||||
Pointer whisper_init_no_state(WhisperModelLoader loader);
|
||||
|
||||
/**
|
||||
* Allocate memory for the Whisper state.
|
||||
*
|
||||
* @param ctx Whisper context
|
||||
* @return Whisper state on success, null on failure
|
||||
*/
|
||||
Pointer whisper_init_state(Pointer ctx);
|
||||
|
||||
/**
|
||||
* Free all allocated memory associated with the Whisper context.
|
||||
*
|
||||
* @param ctx Whisper context
|
||||
*/
|
||||
void whisper_free(Pointer ctx);
|
||||
|
||||
/**
|
||||
* Free all allocated memory associated with the Whisper state.
|
||||
*
|
||||
* @param state Whisper state
|
||||
*/
|
||||
void whisper_free_state(Pointer state);
|
||||
|
||||
|
||||
/**
|
||||
* Convert RAW PCM audio to log mel spectrogram.
|
||||
* The resulting spectrogram is stored inside the default state of the provided whisper context.
|
||||
*
|
||||
* @param ctx - Pointer to a WhisperContext
|
||||
* @return 0 on success
|
||||
*/
|
||||
int whisper_pcm_to_mel(Pointer ctx, final float[] samples, int n_samples, int n_threads);
|
||||
|
||||
/**
|
||||
* @param ctx Pointer to a WhisperContext
|
||||
* @param state Pointer to WhisperState
|
||||
* @param n_samples
|
||||
* @param n_threads
|
||||
* @return 0 on success
|
||||
*/
|
||||
int whisper_pcm_to_mel_with_state(Pointer ctx, Pointer state, final float[] samples, int n_samples, int n_threads);
|
||||
|
||||
/**
|
||||
* This can be used to set a custom log mel spectrogram inside the default state of the provided whisper context.
|
||||
* Use this instead of whisper_pcm_to_mel() if you want to provide your own log mel spectrogram.
|
||||
* n_mel must be 80
|
||||
* @return 0 on success
|
||||
*/
|
||||
int whisper_set_mel(Pointer ctx, final float[] data, int n_len, int n_mel);
|
||||
int whisper_set_mel_with_state(Pointer ctx, Pointer state, final float[] data, int n_len, int n_mel);
|
||||
|
||||
/**
|
||||
* Run the Whisper encoder on the log mel spectrogram stored inside the default state in the provided whisper context.
|
||||
* Make sure to call whisper_pcm_to_mel() or whisper_set_mel() first.
|
||||
* Offset can be used to specify the offset of the first frame in the spectrogram.
|
||||
* @return 0 on success
|
||||
*/
|
||||
int whisper_encode(Pointer ctx, int offset, int n_threads);
|
||||
|
||||
int whisper_encode_with_state(Pointer ctx, Pointer state, int offset, int n_threads);
|
||||
|
||||
/**
|
||||
* Run the Whisper decoder to obtain the logits and probabilities for the next token.
|
||||
* Make sure to call whisper_encode() first.
|
||||
* tokens + n_tokens is the provided context for the decoder.
|
||||
* n_past is the number of tokens to use from previous decoder calls.
|
||||
* Returns 0 on success
|
||||
* TODO: add support for multiple decoders
|
||||
*/
|
||||
int whisper_decode(Pointer ctx, Pointer tokens, int n_tokens, int n_past, int n_threads);
|
||||
|
||||
/**
|
||||
* @param ctx
|
||||
* @param state
|
||||
* @param tokens Pointer to int tokens
|
||||
* @param n_tokens
|
||||
* @param n_past
|
||||
* @param n_threads
|
||||
* @return
|
||||
*/
|
||||
int whisper_decode_with_state(Pointer ctx, Pointer state, Pointer tokens, int n_tokens, int n_past, int n_threads);
|
||||
|
||||
/**
|
||||
* Convert the provided text into tokens.
|
||||
* The tokens pointer must be large enough to hold the resulting tokens.
|
||||
* Returns the number of tokens on success, no more than n_max_tokens
|
||||
* Returns -1 on failure
|
||||
* TODO: not sure if correct
|
||||
*/
|
||||
int whisper_tokenize(Pointer ctx, String text, Pointer tokens, int n_max_tokens);
|
||||
|
||||
/** Largest language id (i.e. number of available languages - 1) */
|
||||
int whisper_lang_max_id();
|
||||
|
||||
/**
|
||||
* @return the id of the specified language, returns -1 if not found.
|
||||
* Examples:
|
||||
* "de" -> 2
|
||||
* "german" -> 2
|
||||
*/
|
||||
int whisper_lang_id(String lang);
|
||||
|
||||
/** @return the short string of the specified language id (e.g. 2 -> "de"), returns nullptr if not found */
|
||||
String whisper_lang_str(int id);
|
||||
|
||||
/**
|
||||
* Use mel data at offset_ms to try and auto-detect the spoken language.
|
||||
* Make sure to call whisper_pcm_to_mel() or whisper_set_mel() first
|
||||
* Returns the top language id or negative on failure
|
||||
* If not null, fills the lang_probs array with the probabilities of all languages
|
||||
* The array must be whisper_lang_max_id() + 1 in size
|
||||
*
|
||||
* ref: https://github.com/openai/whisper/blob/main/whisper/decoding.py#L18-L69
|
||||
*/
|
||||
int whisper_lang_auto_detect(Pointer ctx, int offset_ms, int n_threads, float[] lang_probs);
|
||||
|
||||
int whisper_lang_auto_detect_with_state(Pointer ctx, Pointer state, int offset_ms, int n_threads, float[] lang_probs);
|
||||
|
||||
int whisper_n_len (Pointer ctx); // mel length
|
||||
int whisper_n_len_from_state(Pointer state); // mel length
|
||||
int whisper_n_vocab (Pointer ctx);
|
||||
int whisper_n_text_ctx (Pointer ctx);
|
||||
int whisper_n_audio_ctx (Pointer ctx);
|
||||
int whisper_is_multilingual (Pointer ctx);
|
||||
|
||||
int whisper_model_n_vocab (Pointer ctx);
|
||||
int whisper_model_n_audio_ctx (Pointer ctx);
|
||||
int whisper_model_n_audio_state(Pointer ctx);
|
||||
int whisper_model_n_audio_head (Pointer ctx);
|
||||
int whisper_model_n_audio_layer(Pointer ctx);
|
||||
int whisper_model_n_text_ctx (Pointer ctx);
|
||||
int whisper_model_n_text_state (Pointer ctx);
|
||||
int whisper_model_n_text_head (Pointer ctx);
|
||||
int whisper_model_n_text_layer (Pointer ctx);
|
||||
int whisper_model_n_mels (Pointer ctx);
|
||||
int whisper_model_ftype (Pointer ctx);
|
||||
int whisper_model_type (Pointer ctx);
|
||||
|
||||
/**
|
||||
* Token logits obtained from the last call to whisper_decode().
|
||||
* The logits for the last token are stored in the last row
|
||||
* Rows: n_tokens
|
||||
* Cols: n_vocab
|
||||
*/
|
||||
float[] whisper_get_logits (Pointer ctx);
|
||||
float[] whisper_get_logits_from_state(Pointer state);
|
||||
|
||||
// Token Id -> String. Uses the vocabulary in the provided context
|
||||
String whisper_token_to_str(Pointer ctx, int token);
|
||||
String whisper_model_type_readable(Pointer ctx);
|
||||
|
||||
// Special tokens
|
||||
int whisper_token_eot (Pointer ctx);
|
||||
int whisper_token_sot (Pointer ctx);
|
||||
int whisper_token_prev(Pointer ctx);
|
||||
int whisper_token_solm(Pointer ctx);
|
||||
int whisper_token_not (Pointer ctx);
|
||||
int whisper_token_beg (Pointer ctx);
|
||||
int whisper_token_lang(Pointer ctx, int lang_id);
|
||||
|
||||
// Task tokens
|
||||
int whisper_token_translate (Pointer ctx);
|
||||
int whisper_token_transcribe(Pointer ctx);
|
||||
|
||||
// Performance information from the default state.
|
||||
void whisper_print_timings(Pointer ctx);
|
||||
void whisper_reset_timings(Pointer ctx);
|
||||
|
||||
// Note: Even if `whisper_full_params is stripped back to just 4 ints, JNA throws "Invalid memory access"
|
||||
// when `whisper_full_default_params()` tries to return a struct.
|
||||
// WhisperFullParams whisper_full_default_params(int strategy);
|
||||
|
||||
/**
|
||||
* Provides default params which can be used with `whisper_full()` etc.
|
||||
* Because this function allocates memory for the params, the caller must call either:
|
||||
* - call `whisper_free_params()`
|
||||
* - `Native.free(Pointer.nativeValue(pointer));`
|
||||
*
|
||||
* @param strategy - WhisperSamplingStrategy.value
|
||||
*/
|
||||
Pointer whisper_full_default_params_by_ref(int strategy);
|
||||
|
||||
void whisper_free_params(Pointer params);
|
||||
|
||||
/**
|
||||
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
|
||||
* Not thread safe for same context
|
||||
* Uses the specified decoding strategy to obtain the text.
|
||||
*/
|
||||
int whisper_full(Pointer ctx, WhisperFullParams params, final float[] samples, int n_samples);
|
||||
|
||||
int whisper_full_with_state(Pointer ctx, Pointer state, WhisperFullParams params, final float[] samples, int n_samples);
|
||||
|
||||
// Split the input audio in chunks and process each chunk separately using whisper_full_with_state()
|
||||
// Result is stored in the default state of the context
|
||||
// Not thread safe if executed in parallel on the same context.
|
||||
// It seems this approach can offer some speedup in some cases.
|
||||
// However, the transcription accuracy can be worse at the beginning and end of each chunk.
|
||||
int whisper_full_parallel(Pointer ctx, WhisperFullParams params, final float[] samples, int n_samples, int n_processors);
|
||||
|
||||
/**
|
||||
* Number of generated text segments.
|
||||
* A segment can be a few words, a sentence, or even a paragraph.
|
||||
* @param ctx Pointer to WhisperContext
|
||||
*/
|
||||
int whisper_full_n_segments (Pointer ctx);
|
||||
|
||||
/**
|
||||
* @param state Pointer to WhisperState
|
||||
*/
|
||||
int whisper_full_n_segments_from_state(Pointer state);
|
||||
|
||||
/**
|
||||
* Language id associated with the context's default state.
|
||||
* @param ctx Pointer to WhisperContext
|
||||
*/
|
||||
int whisper_full_lang_id(Pointer ctx);
|
||||
|
||||
/** Language id associated with the provided state */
|
||||
int whisper_full_lang_id_from_state(Pointer state);
|
||||
|
||||
/**
|
||||
* Convert RAW PCM audio to log mel spectrogram but applies a Phase Vocoder to speed up the audio x2.
|
||||
* The resulting spectrogram is stored inside the default state of the provided whisper context.
|
||||
* @return 0 on success
|
||||
*/
|
||||
int whisper_pcm_to_mel_phase_vocoder(Pointer ctx, final float[] samples, int n_samples, int n_threads);
|
||||
|
||||
int whisper_pcm_to_mel_phase_vocoder_with_state(Pointer ctx, Pointer state, final float[] samples, int n_samples, int n_threads);
|
||||
|
||||
/** Get the start time of the specified segment. */
|
||||
long whisper_full_get_segment_t0(Pointer ctx, int i_segment);
|
||||
|
||||
/** Get the start time of the specified segment from the state. */
|
||||
long whisper_full_get_segment_t0_from_state(Pointer state, int i_segment);
|
||||
|
||||
/** Get the end time of the specified segment. */
|
||||
long whisper_full_get_segment_t1(Pointer ctx, int i_segment);
|
||||
|
||||
/** Get the end time of the specified segment from the state. */
|
||||
long whisper_full_get_segment_t1_from_state(Pointer state, int i_segment);
|
||||
|
||||
/** Get the text of the specified segment. */
|
||||
String whisper_full_get_segment_text(Pointer ctx, int i_segment);
|
||||
|
||||
/** Get the text of the specified segment from the state. */
|
||||
String whisper_full_get_segment_text_from_state(Pointer state, int i_segment);
|
||||
|
||||
/** Get the number of tokens in the specified segment. */
|
||||
int whisper_full_n_tokens(Pointer ctx, int i_segment);
|
||||
|
||||
/** Get the number of tokens in the specified segment from the state. */
|
||||
int whisper_full_n_tokens_from_state(Pointer state, int i_segment);
|
||||
|
||||
/** Get the token text of the specified token in the specified segment. */
|
||||
String whisper_full_get_token_text(Pointer ctx, int i_segment, int i_token);
|
||||
|
||||
|
||||
/** Get the token text of the specified token in the specified segment from the state. */
|
||||
String whisper_full_get_token_text_from_state(Pointer ctx, Pointer state, int i_segment, int i_token);
|
||||
|
||||
/** Get the token ID of the specified token in the specified segment. */
|
||||
int whisper_full_get_token_id(Pointer ctx, int i_segment, int i_token);
|
||||
|
||||
/** Get the token ID of the specified token in the specified segment from the state. */
|
||||
int whisper_full_get_token_id_from_state(Pointer state, int i_segment, int i_token);
|
||||
|
||||
/** Get token data for the specified token in the specified segment. */
|
||||
WhisperTokenData whisper_full_get_token_data(Pointer ctx, int i_segment, int i_token);
|
||||
|
||||
/** Get token data for the specified token in the specified segment from the state. */
|
||||
WhisperTokenData whisper_full_get_token_data_from_state(Pointer state, int i_segment, int i_token);
|
||||
|
||||
/** Get the probability of the specified token in the specified segment. */
|
||||
float whisper_full_get_token_p(Pointer ctx, int i_segment, int i_token);
|
||||
|
||||
/** Get the probability of the specified token in the specified segment from the state. */
|
||||
float whisper_full_get_token_p_from_state(Pointer state, int i_segment, int i_token);
|
||||
|
||||
/**
|
||||
* Benchmark function for memcpy.
|
||||
*
|
||||
* @param nThreads Number of threads to use for the benchmark.
|
||||
* @return The result of the benchmark.
|
||||
*/
|
||||
int whisper_bench_memcpy(int nThreads);
|
||||
|
||||
/**
|
||||
* Benchmark function for memcpy as a string.
|
||||
*
|
||||
* @param nThreads Number of threads to use for the benchmark.
|
||||
* @return The result of the benchmark as a string.
|
||||
*/
|
||||
String whisper_bench_memcpy_str(int nThreads);
|
||||
|
||||
/**
|
||||
* Benchmark function for ggml_mul_mat.
|
||||
*
|
||||
* @param nThreads Number of threads to use for the benchmark.
|
||||
* @return The result of the benchmark.
|
||||
*/
|
||||
int whisper_bench_ggml_mul_mat(int nThreads);
|
||||
|
||||
/**
|
||||
* Benchmark function for ggml_mul_mat as a string.
|
||||
*
|
||||
* @param nThreads Number of threads to use for the benchmark.
|
||||
* @return The result of the benchmark as a string.
|
||||
*/
|
||||
String whisper_bench_ggml_mul_mat_str(int nThreads);
|
||||
}
|
@ -1,24 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.callbacks;
|
||||
|
||||
import com.sun.jna.Callback;
|
||||
import com.sun.jna.Pointer;
|
||||
import io.github.ggerganov.whispercpp.WhisperContext;
|
||||
import io.github.ggerganov.whispercpp.model.WhisperState;
|
||||
|
||||
/**
|
||||
* Callback before the encoder starts.
|
||||
* If not null, called before the encoder starts.
|
||||
* If it returns false, the computation is aborted.
|
||||
*/
|
||||
public interface WhisperEncoderBeginCallback extends Callback {
|
||||
|
||||
/**
|
||||
* Callback method before the encoder starts.
|
||||
*
|
||||
* @param ctx The whisper context.
|
||||
* @param state The whisper state.
|
||||
* @param user_data User data.
|
||||
* @return True if the computation should proceed, false otherwise.
|
||||
*/
|
||||
boolean callback(Pointer ctx, Pointer state, Pointer user_data);
|
||||
}
|
@ -1,25 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.callbacks;
|
||||
|
||||
import com.sun.jna.Callback;
|
||||
import com.sun.jna.Pointer;
|
||||
import io.github.ggerganov.whispercpp.model.WhisperTokenData;
|
||||
|
||||
/**
|
||||
* Callback to filter logits.
|
||||
* Can be used to modify the logits before sampling.
|
||||
* If not null, called after applying temperature to logits.
|
||||
*/
|
||||
public interface WhisperLogitsFilterCallback extends Callback {
|
||||
|
||||
/**
|
||||
* Callback method to filter logits.
|
||||
*
|
||||
* @param ctx The whisper context.
|
||||
* @param state The whisper state.
|
||||
* @param tokens The array of whisper_token_data.
|
||||
* @param n_tokens The number of tokens.
|
||||
* @param logits The array of logits.
|
||||
* @param user_data User data.
|
||||
*/
|
||||
void callback(Pointer ctx, Pointer state, WhisperTokenData[] tokens, int n_tokens, float[] logits, Pointer user_data);
|
||||
}
|
@ -1,24 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.callbacks;
|
||||
|
||||
import com.sun.jna.Callback;
|
||||
import com.sun.jna.Pointer;
|
||||
import io.github.ggerganov.whispercpp.WhisperContext;
|
||||
import io.github.ggerganov.whispercpp.model.WhisperState;
|
||||
|
||||
/**
|
||||
* Callback for the text segment.
|
||||
* Called on every newly generated text segment.
|
||||
* Use the whisper_full_...() functions to obtain the text segments.
|
||||
*/
|
||||
public interface WhisperNewSegmentCallback extends Callback {
|
||||
|
||||
/**
|
||||
* Callback method for the text segment.
|
||||
*
|
||||
* @param ctx The whisper context.
|
||||
* @param state The whisper state.
|
||||
* @param n_new The number of newly generated text segments.
|
||||
* @param user_data User data.
|
||||
*/
|
||||
void callback(Pointer ctx, Pointer state, int n_new, Pointer user_data);
|
||||
}
|
@ -1,22 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.callbacks;
|
||||
|
||||
import com.sun.jna.Callback;
|
||||
import com.sun.jna.Pointer;
|
||||
import io.github.ggerganov.whispercpp.WhisperContext;
|
||||
import io.github.ggerganov.whispercpp.model.WhisperState;
|
||||
|
||||
/**
|
||||
* Callback for progress updates.
|
||||
*/
|
||||
public interface WhisperProgressCallback extends Callback {
|
||||
|
||||
/**
|
||||
* Callback method for progress updates.
|
||||
*
|
||||
* @param ctx The whisper context.
|
||||
* @param state The whisper state.
|
||||
* @param progress The progress value.
|
||||
* @param user_data User data.
|
||||
*/
|
||||
void callback(Pointer ctx, Pointer state, int progress, Pointer user_data);
|
||||
}
|
@ -1,4 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.ggml;
|
||||
|
||||
public class GgmlTensor {
|
||||
}
|
@ -1,18 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.ggml;
|
||||
|
||||
public enum GgmlType {
|
||||
GGML_TYPE_F32,
|
||||
GGML_TYPE_F16,
|
||||
GGML_TYPE_Q4_0,
|
||||
GGML_TYPE_Q4_1,
|
||||
REMOVED_GGML_TYPE_Q4_2, // support has been removed
|
||||
REMOVED_GGML_TYPE_Q4_3, // support has been removed
|
||||
GGML_TYPE_Q5_0,
|
||||
GGML_TYPE_Q5_1,
|
||||
GGML_TYPE_Q8_0,
|
||||
GGML_TYPE_Q8_1,
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
GGML_TYPE_COUNT,
|
||||
}
|
@ -1,10 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.model;
|
||||
|
||||
public enum EModel {
|
||||
MODEL_UNKNOWN,
|
||||
MODEL_TINY,
|
||||
MODEL_BASE,
|
||||
MODEL_SMALL,
|
||||
MODEL_MEDIUM,
|
||||
MODEL_LARGE,
|
||||
}
|
@ -1,49 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp;
|
||||
|
||||
import io.github.ggerganov.whispercpp.ggml.GgmlTensor;
|
||||
import io.github.ggerganov.whispercpp.model.EModel;
|
||||
|
||||
public class WhisperModel {
|
||||
// EModel type = EModel.MODEL_UNKNOWN;
|
||||
//
|
||||
// WhisperHParams hparams;
|
||||
// WhisperFilters filters;
|
||||
//
|
||||
// // encoder.positional_embedding
|
||||
// GgmlTensor e_pe;
|
||||
//
|
||||
// // encoder.conv1
|
||||
// GgmlTensor e_conv_1_w;
|
||||
// GgmlTensor e_conv_1_b;
|
||||
//
|
||||
// // encoder.conv2
|
||||
// GgmlTensor e_conv_2_w;
|
||||
// GgmlTensor e_conv_2_b;
|
||||
//
|
||||
// // encoder.ln_post
|
||||
// GgmlTensor e_ln_w;
|
||||
// GgmlTensor e_ln_b;
|
||||
//
|
||||
// // decoder.positional_embedding
|
||||
// GgmlTensor d_pe;
|
||||
//
|
||||
// // decoder.token_embedding
|
||||
// GgmlTensor d_te;
|
||||
//
|
||||
// // decoder.ln
|
||||
// GgmlTensor d_ln_w;
|
||||
// GgmlTensor d_ln_b;
|
||||
//
|
||||
// std::vector<whisper_layer_encoder> layers_encoder;
|
||||
// std::vector<whisper_layer_decoder> layers_decoder;
|
||||
//
|
||||
// // context
|
||||
// struct ggml_context * ctx;
|
||||
//
|
||||
// // the model memory buffer is read-only and can be shared between processors
|
||||
// std::vector<uint8_t> * buf;
|
||||
//
|
||||
// // tensors
|
||||
// int n_loaded;
|
||||
// Map<String, GgmlTensor> tensors;
|
||||
}
|
@ -1,62 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.model;
|
||||
|
||||
import com.sun.jna.Callback;
|
||||
import com.sun.jna.Pointer;
|
||||
import com.sun.jna.Structure;
|
||||
|
||||
|
||||
public class WhisperModelLoader extends Structure {
|
||||
public Pointer context;
|
||||
public ReadFunction read;
|
||||
public EOFFunction eof;
|
||||
public CloseFunction close;
|
||||
|
||||
public static class ReadFunction implements Callback {
|
||||
public Pointer invoke(Pointer ctx, Pointer output, int readSize) {
|
||||
// TODO
|
||||
return ctx;
|
||||
}
|
||||
}
|
||||
|
||||
public static class EOFFunction implements Callback {
|
||||
public boolean invoke(Pointer ctx) {
|
||||
// TODO
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
public static class CloseFunction implements Callback {
|
||||
public void invoke(Pointer ctx) {
|
||||
// TODO
|
||||
}
|
||||
}
|
||||
|
||||
// public WhisperModelLoader(Pointer p) {
|
||||
// super(p);
|
||||
// read = new ReadFunction();
|
||||
// eof = new EOFFunction();
|
||||
// close = new CloseFunction();
|
||||
// read.setCallback(this);
|
||||
// eof.setCallback(this);
|
||||
// close.setCallback(this);
|
||||
// read.write();
|
||||
// eof.write();
|
||||
// close.write();
|
||||
// }
|
||||
|
||||
public WhisperModelLoader() {
|
||||
super();
|
||||
}
|
||||
|
||||
public interface ReadCallback extends Callback {
|
||||
Pointer invoke(Pointer ctx, Pointer output, int readSize);
|
||||
}
|
||||
|
||||
public interface EOFCallback extends Callback {
|
||||
boolean invoke(Pointer ctx);
|
||||
}
|
||||
|
||||
public interface CloseCallback extends Callback {
|
||||
void invoke(Pointer ctx);
|
||||
}
|
||||
}
|
@ -1,4 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.model;
|
||||
|
||||
public class WhisperState {
|
||||
}
|
@ -1,50 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.model;
|
||||
|
||||
import com.sun.jna.Structure;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Structure representing token data.
|
||||
*/
|
||||
public class WhisperTokenData extends Structure {
|
||||
|
||||
/** Token ID. */
|
||||
public int id;
|
||||
|
||||
/** Forced timestamp token ID. */
|
||||
public int tid;
|
||||
|
||||
/** Probability of the token. */
|
||||
public float p;
|
||||
|
||||
/** Log probability of the token. */
|
||||
public float plog;
|
||||
|
||||
/** Probability of the timestamp token. */
|
||||
public float pt;
|
||||
|
||||
/** Sum of probabilities of all timestamp tokens. */
|
||||
public float ptsum;
|
||||
|
||||
/**
|
||||
* Start time of the token (token-level timestamp data).
|
||||
* Do not use if you haven't computed token-level timestamps.
|
||||
*/
|
||||
public long t0;
|
||||
|
||||
/**
|
||||
* End time of the token (token-level timestamp data).
|
||||
* Do not use if you haven't computed token-level timestamps.
|
||||
*/
|
||||
public long t1;
|
||||
|
||||
/** Voice length of the token. */
|
||||
public float vlen;
|
||||
|
||||
@Override
|
||||
protected List<String> getFieldOrder() {
|
||||
return Arrays.asList("id", "tid", "p", "plog", "pt", "ptsum", "t0", "t1", "vlen");
|
||||
}
|
||||
}
|
@ -1,19 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.params;
|
||||
|
||||
import com.sun.jna.Structure;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
public class BeamSearchParams extends Structure {
|
||||
/** ref: <a href="https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/transcribe.py#L265">...</a> */
|
||||
public int beam_size;
|
||||
|
||||
/** ref: <a href="https://arxiv.org/pdf/2204.05424.pdf">...</a> */
|
||||
public float patience;
|
||||
|
||||
@Override
|
||||
protected List<String> getFieldOrder() {
|
||||
return Arrays.asList("beam_size", "patience");
|
||||
}
|
||||
}
|
@ -1,30 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.params;
|
||||
|
||||
import com.sun.jna.IntegerType;
|
||||
|
||||
import java.util.function.BooleanSupplier;
|
||||
|
||||
public class CBool extends IntegerType implements BooleanSupplier {
|
||||
public static final int SIZE = 1;
|
||||
public static final CBool FALSE = new CBool(0);
|
||||
public static final CBool TRUE = new CBool(1);
|
||||
|
||||
|
||||
public CBool() {
|
||||
this(0);
|
||||
}
|
||||
|
||||
public CBool(long value) {
|
||||
super(SIZE, value, true);
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean getAsBoolean() {
|
||||
return intValue() == 1;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return intValue() == 1 ? "true" : "false";
|
||||
}
|
||||
}
|
@ -1,16 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.params;
|
||||
|
||||
import com.sun.jna.Structure;
|
||||
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
|
||||
public class GreedyParams extends Structure {
|
||||
/** <a href="https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/transcribe.py#L264">...</a> */
|
||||
public int best_of;
|
||||
|
||||
@Override
|
||||
protected List<String> getFieldOrder() {
|
||||
return Collections.singletonList("best_of");
|
||||
}
|
||||
}
|
@ -1,10 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.params;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
public class WhisperFilters {
|
||||
int n_mel;
|
||||
int n_fft;
|
||||
|
||||
List<Float> data;
|
||||
}
|
@ -1,321 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.params;
|
||||
|
||||
import com.sun.jna.*;
|
||||
import io.github.ggerganov.whispercpp.callbacks.WhisperEncoderBeginCallback;
|
||||
import io.github.ggerganov.whispercpp.callbacks.WhisperLogitsFilterCallback;
|
||||
import io.github.ggerganov.whispercpp.callbacks.WhisperNewSegmentCallback;
|
||||
import io.github.ggerganov.whispercpp.callbacks.WhisperProgressCallback;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Parameters for the whisper_full() function.
|
||||
* If you change the order or add new parameters, make sure to update the default values in whisper.cpp:
|
||||
* whisper_full_default_params()
|
||||
*/
|
||||
public class WhisperFullParams extends Structure {
|
||||
|
||||
public WhisperFullParams(Pointer p) {
|
||||
super(p);
|
||||
// super(p, ALIGN_MSVC);
|
||||
// super(p, ALIGN_GNUC);
|
||||
}
|
||||
|
||||
/** Sampling strategy for whisper_full() function. */
|
||||
public int strategy;
|
||||
|
||||
/** Number of threads. (default = 4) */
|
||||
public int n_threads;
|
||||
|
||||
/** Maximum tokens to use from past text as a prompt for the decoder. (default = 16384) */
|
||||
public int n_max_text_ctx;
|
||||
|
||||
/** Start offset in milliseconds. (default = 0) */
|
||||
public int offset_ms;
|
||||
|
||||
/** Audio duration to process in milliseconds. (default = 0) */
|
||||
public int duration_ms;
|
||||
|
||||
/** Translate flag. (default = false) */
|
||||
public CBool translate;
|
||||
|
||||
/** The compliment of translateMode() */
|
||||
public void transcribeMode() {
|
||||
translate = CBool.FALSE;
|
||||
}
|
||||
|
||||
/** The compliment of transcribeMode() */
|
||||
public void translateMode() {
|
||||
translate = CBool.TRUE;
|
||||
}
|
||||
|
||||
/** Flag to indicate whether to use past transcription (if any) as an initial prompt for the decoder. (default = true) */
|
||||
public CBool no_context;
|
||||
|
||||
/** Flag to indicate whether to use past transcription (if any) as an initial prompt for the decoder. (default = true) */
|
||||
public void enableContext(boolean enable) {
|
||||
no_context = enable ? CBool.FALSE : CBool.TRUE;
|
||||
}
|
||||
|
||||
/** Flag to force single segment output (useful for streaming). (default = false) */
|
||||
public CBool single_segment;
|
||||
|
||||
/** Flag to force single segment output (useful for streaming). (default = false) */
|
||||
public void singleSegment(boolean single) {
|
||||
single_segment = single ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
/** Flag to print special tokens (e.g., <SOT>, <EOT>, <BEG>, etc.). (default = false) */
|
||||
public CBool print_special;
|
||||
|
||||
/** Flag to print special tokens (e.g., <SOT>, <EOT>, <BEG>, etc.). (default = false) */
|
||||
public void printSpecial(boolean enable) {
|
||||
print_special = enable ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
/** Flag to print progress information. (default = true) */
|
||||
public CBool print_progress;
|
||||
|
||||
/** Flag to print progress information. (default = true) */
|
||||
public void printProgress(boolean enable) {
|
||||
print_progress = enable ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
/** Flag to print results from within whisper.cpp (avoid it, use callback instead). (default = true) */
|
||||
public CBool print_realtime;
|
||||
|
||||
/** Flag to print results from within whisper.cpp (avoid it, use callback instead). (default = true) */
|
||||
public void printRealtime(boolean enable) {
|
||||
print_realtime = enable ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
/** Flag to print timestamps for each text segment when printing realtime. (default = true) */
|
||||
public CBool print_timestamps;
|
||||
|
||||
/** Flag to print timestamps for each text segment when printing realtime. (default = true) */
|
||||
public void printTimestamps(boolean enable) {
|
||||
print_timestamps = enable ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
/** [EXPERIMENTAL] Flag to enable token-level timestamps. (default = false) */
|
||||
public CBool token_timestamps;
|
||||
|
||||
/** [EXPERIMENTAL] Flag to enable token-level timestamps. (default = false) */
|
||||
public void tokenTimestamps(boolean enable) {
|
||||
token_timestamps = enable ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
/** [EXPERIMENTAL] Timestamp token probability threshold (~0.01). (default = 0.01) */
|
||||
public float thold_pt;
|
||||
|
||||
/** [EXPERIMENTAL] Timestamp token sum probability threshold (~0.01). */
|
||||
public float thold_ptsum;
|
||||
|
||||
/** Maximum segment length in characters. (default = 0) */
|
||||
public int max_len;
|
||||
|
||||
/** Flag to split on word rather than on token (when used with max_len). (default = false) */
|
||||
public CBool split_on_word;
|
||||
|
||||
/** Flag to split on word rather than on token (when used with max_len). (default = false) */
|
||||
public void splitOnWord(boolean enable) {
|
||||
split_on_word = enable ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
/** Maximum tokens per segment (0, default = no limit) */
|
||||
public int max_tokens;
|
||||
|
||||
/** Flag to speed up the audio by 2x using Phase Vocoder. (default = false) */
|
||||
public CBool speed_up;
|
||||
|
||||
/** Flag to speed up the audio by 2x using Phase Vocoder. (default = false) */
|
||||
public void speedUp(boolean enable) {
|
||||
speed_up = enable ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
/** Overwrite the audio context size (0 = use default). */
|
||||
public int audio_ctx;
|
||||
|
||||
/** Enable tinydiarize (default = false) */
|
||||
public CBool tdrz_enable;
|
||||
|
||||
/** Enable tinydiarize (default = false) */
|
||||
public void tdrzEnable(boolean enable) {
|
||||
tdrz_enable = enable ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
/** Tokens to provide to the whisper decoder as an initial prompt.
|
||||
* These are prepended to any existing text context from a previous call. */
|
||||
public String initial_prompt;
|
||||
|
||||
/** Prompt tokens. (int*) */
|
||||
public Pointer prompt_tokens;
|
||||
|
||||
public void setPromptTokens(int[] tokens) {
|
||||
Memory mem = new Memory(tokens.length * 4L);
|
||||
mem.write(0, tokens, 0, tokens.length);
|
||||
prompt_tokens = mem;
|
||||
}
|
||||
|
||||
/** Number of prompt tokens. */
|
||||
public int prompt_n_tokens;
|
||||
|
||||
/** Language for auto-detection.
|
||||
* For auto-detection, set to `null`, `""`, or "auto". */
|
||||
public String language;
|
||||
|
||||
/** Flag to indicate whether to detect language automatically. */
|
||||
public CBool detect_language;
|
||||
|
||||
/** Flag to indicate whether to detect language automatically. */
|
||||
public void detectLanguage(boolean enable) {
|
||||
detect_language = enable ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
// Common decoding parameters.
|
||||
|
||||
/** Flag to suppress blank tokens. */
|
||||
public CBool suppress_blank;
|
||||
|
||||
public void suppressBlanks(boolean enable) {
|
||||
suppress_blank = enable ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
/** Flag to suppress non-speech tokens. */
|
||||
public CBool suppress_non_speech_tokens;
|
||||
|
||||
/** Flag to suppress non-speech tokens. */
|
||||
public void suppressNonSpeechTokens(boolean enable) {
|
||||
suppress_non_speech_tokens = enable ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
/** Initial decoding temperature. */
|
||||
public float temperature;
|
||||
|
||||
/** Maximum initial timestamp. */
|
||||
public float max_initial_ts;
|
||||
|
||||
/** Length penalty. */
|
||||
public float length_penalty;
|
||||
|
||||
// Fallback parameters.
|
||||
|
||||
/** Temperature increment. */
|
||||
public float temperature_inc;
|
||||
|
||||
/** Entropy threshold (similar to OpenAI's "compression_ratio_threshold"). */
|
||||
public float entropy_thold;
|
||||
|
||||
/** Log probability threshold. */
|
||||
public float logprob_thold;
|
||||
|
||||
/** No speech threshold. */
|
||||
public float no_speech_thold;
|
||||
|
||||
/** Greedy decoding parameters. */
|
||||
public GreedyParams greedy;
|
||||
|
||||
/**
|
||||
* Beam search decoding parameters.
|
||||
*/
|
||||
public BeamSearchParams beam_search;
|
||||
|
||||
public void setBestOf(int bestOf) {
|
||||
if (greedy == null) {
|
||||
greedy = new GreedyParams();
|
||||
}
|
||||
greedy.best_of = bestOf;
|
||||
}
|
||||
|
||||
public void setBeamSize(int beamSize) {
|
||||
if (beam_search == null) {
|
||||
beam_search = new BeamSearchParams();
|
||||
}
|
||||
beam_search.beam_size = beamSize;
|
||||
}
|
||||
|
||||
public void setBeamSizeAndPatience(int beamSize, float patience) {
|
||||
if (beam_search == null) {
|
||||
beam_search = new BeamSearchParams();
|
||||
}
|
||||
beam_search.beam_size = beamSize;
|
||||
beam_search.patience = patience;
|
||||
}
|
||||
|
||||
/**
|
||||
* Callback for every newly generated text segment.
|
||||
* WhisperNewSegmentCallback
|
||||
*/
|
||||
public Pointer new_segment_callback;
|
||||
|
||||
/**
|
||||
* User data for the new_segment_callback.
|
||||
*/
|
||||
public Pointer new_segment_callback_user_data;
|
||||
|
||||
/**
|
||||
* Callback on each progress update.
|
||||
* WhisperProgressCallback
|
||||
*/
|
||||
public Pointer progress_callback;
|
||||
|
||||
/**
|
||||
* User data for the progress_callback.
|
||||
*/
|
||||
public Pointer progress_callback_user_data;
|
||||
|
||||
/**
|
||||
* Callback each time before the encoder starts.
|
||||
* WhisperEncoderBeginCallback
|
||||
*/
|
||||
public Pointer encoder_begin_callback;
|
||||
|
||||
/**
|
||||
* User data for the encoder_begin_callback.
|
||||
*/
|
||||
public Pointer encoder_begin_callback_user_data;
|
||||
|
||||
/**
|
||||
* Callback by each decoder to filter obtained logits.
|
||||
* WhisperLogitsFilterCallback
|
||||
*/
|
||||
public Pointer logits_filter_callback;
|
||||
|
||||
/**
|
||||
* User data for the logits_filter_callback.
|
||||
*/
|
||||
public Pointer logits_filter_callback_user_data;
|
||||
|
||||
|
||||
public void setNewSegmentCallback(WhisperNewSegmentCallback callback) {
|
||||
new_segment_callback = CallbackReference.getFunctionPointer(callback);
|
||||
}
|
||||
|
||||
public void setProgressCallback(WhisperProgressCallback callback) {
|
||||
progress_callback = CallbackReference.getFunctionPointer(callback);
|
||||
}
|
||||
|
||||
public void setEncoderBeginCallbackeginCallbackCallback(WhisperEncoderBeginCallback callback) {
|
||||
encoder_begin_callback = CallbackReference.getFunctionPointer(callback);
|
||||
}
|
||||
|
||||
public void setLogitsFilterCallback(WhisperLogitsFilterCallback callback) {
|
||||
logits_filter_callback = CallbackReference.getFunctionPointer(callback);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected List<String> getFieldOrder() {
|
||||
return Arrays.asList("strategy", "n_threads", "n_max_text_ctx", "offset_ms", "duration_ms", "translate",
|
||||
"no_context", "single_segment",
|
||||
"print_special", "print_progress", "print_realtime", "print_timestamps", "token_timestamps",
|
||||
"thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "speed_up", "audio_ctx",
|
||||
"tdrz_enable", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
|
||||
"suppress_blank", "suppress_non_speech_tokens", "temperature", "max_initial_ts", "length_penalty",
|
||||
"temperature_inc", "entropy_thold", "logprob_thold", "no_speech_thold", "greedy", "beam_search",
|
||||
"new_segment_callback", "new_segment_callback_user_data",
|
||||
"progress_callback", "progress_callback_user_data",
|
||||
"encoder_begin_callback", "encoder_begin_callback_user_data",
|
||||
"logits_filter_callback", "logits_filter_callback_user_data");
|
||||
}
|
||||
}
|
@ -1,15 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.params;
|
||||
|
||||
public class WhisperHParams {
|
||||
int n_vocab = 51864;
|
||||
int n_audio_ctx = 1500;
|
||||
int n_audio_state = 384;
|
||||
int n_audio_head = 6;
|
||||
int n_audio_layer = 4;
|
||||
int n_text_ctx = 448;
|
||||
int n_text_state = 384;
|
||||
int n_text_head = 6;
|
||||
int n_text_layer = 4;
|
||||
int n_mels = 80;
|
||||
int ftype = 1;
|
||||
}
|
@ -1,10 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp.params;
|
||||
|
||||
/** Available sampling strategies */
|
||||
public enum WhisperSamplingStrategy {
|
||||
/** similar to OpenAI's GreedyDecoder */
|
||||
WHISPER_SAMPLING_GREEDY,
|
||||
|
||||
/** similar to OpenAI's BeamSearchDecoder */
|
||||
WHISPER_SAMPLING_BEAM_SEARCH
|
||||
}
|
@ -1,102 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.*;
|
||||
|
||||
import io.github.ggerganov.whispercpp.params.CBool;
|
||||
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
|
||||
import io.github.ggerganov.whispercpp.params.WhisperSamplingStrategy;
|
||||
import org.junit.jupiter.api.BeforeAll;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import javax.sound.sampled.AudioInputStream;
|
||||
import javax.sound.sampled.AudioSystem;
|
||||
import java.io.File;
|
||||
import java.io.FileNotFoundException;
|
||||
|
||||
class WhisperCppTest {
|
||||
private static WhisperCpp whisper = new WhisperCpp();
|
||||
private static boolean modelInitialised = false;
|
||||
|
||||
@BeforeAll
|
||||
static void init() throws FileNotFoundException {
|
||||
// By default, models are loaded from ~/.cache/whisper/ and are usually named "ggml-${name}.bin"
|
||||
// or you can provide the absolute path to the model file.
|
||||
String modelName = "../../models/ggml-tiny.en.bin";
|
||||
try {
|
||||
whisper.initContext(modelName);
|
||||
// whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
|
||||
// whisper.getJavaDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
|
||||
modelInitialised = true;
|
||||
} catch (FileNotFoundException ex) {
|
||||
System.out.println("Model " + modelName + " not found");
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
void testGetDefaultFullParams_BeamSearch() {
|
||||
// When
|
||||
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
|
||||
|
||||
// Then
|
||||
assertEquals(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH.ordinal(), params.strategy);
|
||||
assertNotEquals(0, params.n_threads);
|
||||
assertEquals(16384, params.n_max_text_ctx);
|
||||
assertFalse(params.translate);
|
||||
assertEquals(0.01f, params.thold_pt);
|
||||
assertEquals(2, params.beam_search.beam_size);
|
||||
assertEquals(-1.0f, params.beam_search.patience);
|
||||
}
|
||||
|
||||
@Test
|
||||
void testGetDefaultFullParams_Greedy() {
|
||||
// When
|
||||
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
// Then
|
||||
assertEquals(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY.ordinal(), params.strategy);
|
||||
assertNotEquals(0, params.n_threads);
|
||||
assertEquals(16384, params.n_max_text_ctx);
|
||||
assertEquals(2, params.greedy.best_of);
|
||||
}
|
||||
|
||||
@Test
|
||||
void testFullTranscribe() throws Exception {
|
||||
if (!modelInitialised) {
|
||||
System.out.println("Model not initialised, skipping test");
|
||||
return;
|
||||
}
|
||||
|
||||
// Given
|
||||
File file = new File(System.getProperty("user.dir"), "../../samples/jfk.wav");
|
||||
AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(file);
|
||||
|
||||
byte[] b = new byte[audioInputStream.available()];
|
||||
float[] floats = new float[b.length / 2];
|
||||
|
||||
// WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
|
||||
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
|
||||
params.setProgressCallback((ctx, state, progress, user_data) -> System.out.println("progress: " + progress));
|
||||
params.print_progress = CBool.FALSE;
|
||||
// params.initial_prompt = "and so my fellow Americans um, like";
|
||||
|
||||
|
||||
try {
|
||||
audioInputStream.read(b);
|
||||
|
||||
for (int i = 0, j = 0; i < b.length; i += 2, j++) {
|
||||
int intSample = (int) (b[i + 1]) << 8 | (int) (b[i]) & 0xFF;
|
||||
floats[j] = intSample / 32767.0f;
|
||||
}
|
||||
|
||||
// When
|
||||
String result = whisper.fullTranscribe(params, floats);
|
||||
|
||||
// Then
|
||||
System.err.println(result);
|
||||
assertEquals("And so my fellow Americans ask not what your country can do for you " +
|
||||
"ask what you can do for your country.",
|
||||
result.replace(",", ""));
|
||||
} finally {
|
||||
audioInputStream.close();
|
||||
}
|
||||
}
|
||||
}
|
@ -1,17 +0,0 @@
|
||||
package io.github.ggerganov.whispercpp;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.*;
|
||||
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
class WhisperJnaLibraryTest {
|
||||
|
||||
@Test
|
||||
void testWhisperPrint_system_info() {
|
||||
String systemInfo = WhisperCppJnaLibrary.instance.whisper_print_system_info();
|
||||
// eg: "AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0
|
||||
// | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | COREML = 0 | "
|
||||
System.out.println("System info: " + systemInfo);
|
||||
assertTrue(systemInfo.length() > 10);
|
||||
}
|
||||
}
|
@ -1 +1 @@
|
||||
"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:f=>(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f),postMessage:msg=>parentPort.postMessage(msg),performance:global.performance||{now:Date.now}})}var initializedJS=false;function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"\n");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var module=Module["wasmModule"];Module["wasmModule"]=null;var instance=new WebAssembly.Instance(module,info);return receiveInstance(instance)};self.onunhandledrejection=e=>{throw e.reason||e};function handleMessage(e){try{if(e.data.cmd==="load"){let messageQueue=[];self.onmessage=e=>messageQueue.push(e);self.startWorker=instance=>{Module=instance;postMessage({"cmd":"loaded"});for(let msg of messageQueue){handleMessage(msg)}self.onmessage=handleMessage};Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=(...args)=>{postMessage({cmd:"callHandler",handler:handler,args:args})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}whisper_factory(Module)}else if(e.data.cmd==="run"){Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["__emscripten_thread_mailbox_await"](e.data.pthread_ptr);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){Module["__embind_initialize_bindings"]();initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){throw ex}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="checkMailbox"){if(initializedJS){Module["checkMailbox"]()}}else if(e.data.cmd){err(`worker.js received unknown command ${e.data.cmd}`);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}}self.onmessage=handleMessage;
|
||||
"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"\n");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:"callHandler",handler:handler,args:[...arguments]})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}whisper_factory(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){Module["__embind_initialize_bindings"]();pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};
|
||||
|
@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "whisper.cpp",
|
||||
"version": "1.4.2",
|
||||
"version": "1.4.1",
|
||||
"description": "Whisper speech recognition",
|
||||
"main": "whisper.js",
|
||||
"scripts": {
|
||||
|
File diff suppressed because one or more lines are too long
5
contrib/debian/control
Normal file
5
contrib/debian/control
Normal file
@ -0,0 +1,5 @@
|
||||
Package: whisper-small-cpp
|
||||
Architecture: amd64
|
||||
Maintainer: Alexey Kharlamov <alexey@kharlamov.biz>
|
||||
Description: Whisper Speech to Text Converter
|
||||
Depends: libc6 (>= 2.2.1), intel-mkl
|
@ -1,9 +1,5 @@
|
||||
#if !__has_feature(objc_arc)
|
||||
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
|
||||
#endif
|
||||
|
||||
#import "whisper-encoder.h"
|
||||
#import "whisper-encoder-impl.h"
|
||||
#import "coreml/whisper-encoder.h"
|
||||
#import "coreml/whisper-encoder-impl.h"
|
||||
|
||||
#import <CoreML/CoreML.h>
|
||||
|
||||
@ -53,11 +49,17 @@ void whisper_coreml_encode(
|
||||
error: nil
|
||||
];
|
||||
|
||||
@autoreleasepool {
|
||||
whisper_encoder_implOutput * outCoreML = [(__bridge id) ctx->data predictionFromLogmel_data:inMultiArray error:nil];
|
||||
whisper_encoder_implOutput * outCoreML = [(__bridge id) ctx->data predictionFromLogmel_data:inMultiArray error:nil];
|
||||
|
||||
memcpy(out, outCoreML.output.dataPointer, outCoreML.output.count * sizeof(float));
|
||||
}
|
||||
MLMultiArray * outMA = outCoreML.output;
|
||||
|
||||
//NSArray<NSNumber *> * shape = outMA.shape;
|
||||
//NSArray<NSNumber *> * strides = outMA.strides;
|
||||
|
||||
//printf("shape: %ld %ld %ld %ld\n", [shape[0] longValue], [shape[1] longValue], [shape[2] longValue], [shape[3] longValue]);
|
||||
//printf("strides: %ld %ld %ld %ld\n", [strides[0] longValue], [strides[1] longValue], [strides[2] longValue], [strides[3] longValue]);
|
||||
|
||||
memcpy(out, outMA.dataPointer, outMA.count * sizeof(float));
|
||||
}
|
||||
|
||||
#if __cplusplus
|
||||
|
@ -69,5 +69,4 @@ else()
|
||||
add_subdirectory(quantize)
|
||||
add_subdirectory(talk)
|
||||
add_subdirectory(talk-llama)
|
||||
add_subdirectory(lsp)
|
||||
endif()
|
||||
|
@ -6,8 +6,8 @@
|
||||
// ref: https://github.com/ggerganov/whisper.cpp/issues/171
|
||||
//
|
||||
|
||||
#include "common-sdl.h"
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <sstream>
|
||||
|
@ -6,6 +6,7 @@
|
||||
static const std::map<std::string, enum ggml_ftype> GGML_FTYPE_MAP = {
|
||||
{"q4_0", GGML_FTYPE_MOSTLY_Q4_0},
|
||||
{"q4_1", GGML_FTYPE_MOSTLY_Q4_1},
|
||||
{"q4_2", GGML_FTYPE_MOSTLY_Q4_2},
|
||||
{"q5_0", GGML_FTYPE_MOSTLY_Q5_0},
|
||||
{"q5_1", GGML_FTYPE_MOSTLY_Q5_1},
|
||||
{"q8_0", GGML_FTYPE_MOSTLY_Q8_0},
|
||||
@ -45,6 +46,7 @@ bool ggml_common_quantize_0(
|
||||
switch (ftype) {
|
||||
case GGML_FTYPE_MOSTLY_Q4_0: qtype = GGML_TYPE_Q4_0; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_1: qtype = GGML_TYPE_Q4_1; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_2: qtype = GGML_TYPE_Q4_2; break;
|
||||
case GGML_FTYPE_MOSTLY_Q5_0: qtype = GGML_TYPE_Q5_0; break;
|
||||
case GGML_FTYPE_MOSTLY_Q5_1: qtype = GGML_TYPE_Q5_1; break;
|
||||
case GGML_FTYPE_MOSTLY_Q8_0: qtype = GGML_TYPE_Q8_0; break;
|
||||
@ -52,11 +54,6 @@ bool ggml_common_quantize_0(
|
||||
case GGML_FTYPE_ALL_F32:
|
||||
case GGML_FTYPE_MOSTLY_F16:
|
||||
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16:
|
||||
case GGML_FTYPE_MOSTLY_Q2_K:
|
||||
case GGML_FTYPE_MOSTLY_Q3_K:
|
||||
case GGML_FTYPE_MOSTLY_Q4_K:
|
||||
case GGML_FTYPE_MOSTLY_Q5_K:
|
||||
case GGML_FTYPE_MOSTLY_Q6_K:
|
||||
{
|
||||
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
|
||||
return false;
|
||||
@ -174,6 +171,10 @@ bool ggml_common_quantize_0(
|
||||
{
|
||||
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q4_2:
|
||||
{
|
||||
cur_size = ggml_quantize_q4_2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
{
|
||||
cur_size = ggml_quantize_q5_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
@ -192,12 +193,6 @@ bool ggml_common_quantize_0(
|
||||
case GGML_TYPE_I16:
|
||||
case GGML_TYPE_I32:
|
||||
case GGML_TYPE_Q8_1:
|
||||
case GGML_TYPE_Q2_K:
|
||||
case GGML_TYPE_Q3_K:
|
||||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_COUNT:
|
||||
{
|
||||
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
|
||||
|
@ -1,5 +1,3 @@
|
||||
#define _USE_MATH_DEFINES // for M_PI
|
||||
|
||||
#include "common.h"
|
||||
|
||||
// third-party utilities
|
||||
@ -8,79 +6,39 @@
|
||||
#include "dr_wav.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <regex>
|
||||
#include <locale>
|
||||
#include <codecvt>
|
||||
#include <sstream>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
// Function to check if the next argument exists
|
||||
std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
|
||||
if (i + 1 < argc && argv[i + 1][0] != '-') {
|
||||
return argv[++i];
|
||||
} else {
|
||||
fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
|
||||
gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
params.seed = std::stoi(argv[++i]);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
|
||||
params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
params.n_threads = std::stoi(argv[++i]);
|
||||
} else if (arg == "-p" || arg == "--prompt") {
|
||||
params.prompt = get_next_arg(i, argc, argv, arg, params);
|
||||
params.prompt = argv[++i];
|
||||
} else if (arg == "-n" || arg == "--n_predict") {
|
||||
params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
params.n_predict = std::stoi(argv[++i]);
|
||||
} else if (arg == "--top_k") {
|
||||
params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
params.top_k = std::stoi(argv[++i]);
|
||||
} else if (arg == "--top_p") {
|
||||
params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
|
||||
params.top_p = std::stof(argv[++i]);
|
||||
} else if (arg == "--temp") {
|
||||
params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "--repeat-last-n") {
|
||||
params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "--repeat-penalty") {
|
||||
params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
|
||||
params.temp = std::stof(argv[++i]);
|
||||
} else if (arg == "-b" || arg == "--batch_size") {
|
||||
params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
params.n_batch = std::stoi(argv[++i]);
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
params.model = get_next_arg(i, argc, argv, arg, params);
|
||||
} else if (arg == "-i" || arg == "--interactive") {
|
||||
params.interactive = true;
|
||||
} else if (arg == "-ip" || arg == "--interactive-port") {
|
||||
params.interactive = true;
|
||||
params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
params.model = argv[++i];
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else if (arg == "-f" || arg == "--file") {
|
||||
get_next_arg(i, argc, argv, arg, params);
|
||||
std::ifstream file(argv[i]);
|
||||
if (!file) {
|
||||
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
||||
break;
|
||||
}
|
||||
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
|
||||
if (params.prompt.back() == '\n') {
|
||||
params.prompt.pop_back();
|
||||
}
|
||||
} else if (arg == "-tt" || arg == "--token_test") {
|
||||
params.token_test = get_next_arg(i, argc, argv, arg, params);
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
@ -97,19 +55,12 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
|
||||
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
|
||||
fprintf(stderr, " prompt to start generation with (default: random)\n");
|
||||
fprintf(stderr, " -f FNAME, --file FNAME\n");
|
||||
fprintf(stderr, " load prompt from a file\n");
|
||||
fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
|
||||
fprintf(stderr, " test tokenization\n");
|
||||
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
|
||||
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
|
||||
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
|
||||
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
|
||||
fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
|
||||
fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
|
||||
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||
@ -150,10 +101,6 @@ std::string replace(const std::string & s, const std::string & from, const std::
|
||||
return result;
|
||||
}
|
||||
|
||||
void gpt_vocab::add_special_token(const std::string & token) {
|
||||
special_tokens.push_back(token);
|
||||
}
|
||||
|
||||
std::map<std::string, int32_t> json_parse(const std::string & fname) {
|
||||
std::map<std::string, int32_t> result;
|
||||
|
||||
@ -245,82 +192,54 @@ std::map<std::string, int32_t> json_parse(const std::string & fname) {
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string convert_to_utf8(const std::wstring & input) {
|
||||
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
|
||||
return converter.to_bytes(input);
|
||||
}
|
||||
|
||||
|
||||
std::wstring convert_to_wstring(const std::string & input) {
|
||||
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
|
||||
return converter.from_bytes(input);
|
||||
}
|
||||
|
||||
void gpt_split_words(std::string str, std::vector<std::string>& words) {
|
||||
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||
const std::regex re(pattern);
|
||||
std::smatch m;
|
||||
|
||||
while (std::regex_search(str, m, re)) {
|
||||
for (auto x : m) {
|
||||
words.push_back(x);
|
||||
}
|
||||
str = m.suffix();
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
||||
std::vector<std::string> words;
|
||||
|
||||
// first split the text into words
|
||||
{
|
||||
std::string str = text;
|
||||
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||
|
||||
// Generate the subpattern from the special_tokens vector if it's not empty
|
||||
if (!vocab.special_tokens.empty()) {
|
||||
const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])");
|
||||
std::string special_tokens_subpattern;
|
||||
for (const auto & token : vocab.special_tokens) {
|
||||
if (!special_tokens_subpattern.empty()) {
|
||||
special_tokens_subpattern += "|";
|
||||
}
|
||||
special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)");
|
||||
}
|
||||
std::regex re(pat);
|
||||
std::smatch m;
|
||||
|
||||
std::regex re(special_tokens_subpattern);
|
||||
std::smatch m;
|
||||
// Split the text by special tokens.
|
||||
while (std::regex_search(str, m, re)) {
|
||||
// Split the substrings in-between special tokens into words.
|
||||
gpt_split_words(m.prefix(), words);
|
||||
// Add matched special tokens as words.
|
||||
for (auto x : m) {
|
||||
words.push_back(x);
|
||||
}
|
||||
str = m.suffix();
|
||||
while (std::regex_search(str, m, re)) {
|
||||
for (auto x : m) {
|
||||
words.push_back(x);
|
||||
}
|
||||
// Remaining text without special tokens will be handled below.
|
||||
str = m.suffix();
|
||||
}
|
||||
|
||||
gpt_split_words(str, words);
|
||||
}
|
||||
|
||||
// find the longest token that forms each word in words:
|
||||
// find the longest tokens that form the words:
|
||||
std::vector<gpt_vocab::id> tokens;
|
||||
for (const auto & word : words) {
|
||||
for (int i = 0; i < (int) word.size(); ){
|
||||
for (int j = word.size() - 1; j >= i; j--){
|
||||
auto cand = word.substr(i, j-i+1);
|
||||
auto it = vocab.token_to_id.find(cand);
|
||||
if (it != vocab.token_to_id.end()){ // word.substr(i, j-i+1) in vocab
|
||||
if (word.size() == 0) continue;
|
||||
|
||||
int i = 0;
|
||||
int n = word.size();
|
||||
while (i < n) {
|
||||
int j = n;
|
||||
while (j > i) {
|
||||
auto it = vocab.token_to_id.find(word.substr(i, j-i));
|
||||
if (it != vocab.token_to_id.end()) {
|
||||
tokens.push_back(it->second);
|
||||
i = j + 1;
|
||||
i = j;
|
||||
break;
|
||||
}
|
||||
else if (j == i){ // word.substr(i, 1) has no matching
|
||||
fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());
|
||||
i++;
|
||||
--j;
|
||||
}
|
||||
if (i == n) {
|
||||
break;
|
||||
}
|
||||
if (j == i) {
|
||||
auto sub = word.substr(i, 1);
|
||||
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
|
||||
tokens.push_back(vocab.token_to_id.at(sub));
|
||||
} else {
|
||||
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -328,70 +247,6 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
|
||||
return tokens;
|
||||
}
|
||||
|
||||
std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
|
||||
std::vector<gpt_vocab::id> output;
|
||||
std::stringstream ss(input);
|
||||
std::string token;
|
||||
|
||||
while (std::getline(ss, token, delimiter)) {
|
||||
output.push_back(std::stoi(token));
|
||||
}
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
|
||||
if (fpath_test.empty()){
|
||||
fprintf(stderr, "%s : No test file found.\n", __func__);
|
||||
return std::map<std::string, std::vector<gpt_vocab::id>>();
|
||||
}
|
||||
|
||||
std::map<std::string, std::vector<gpt_vocab::id>> tests;
|
||||
|
||||
auto fin = std::ifstream(fpath_test, std::ios_base::in);
|
||||
const char * delimeter = " => ";
|
||||
const char del_tok = ',';
|
||||
std::string line;
|
||||
while (std::getline(fin, line)) {
|
||||
size_t delimiterPos = line.find(delimeter);
|
||||
if (delimiterPos != std::string::npos) {
|
||||
std::string text = line.substr(0, delimiterPos);
|
||||
std::string s_tokens = line.substr(delimiterPos + std::strlen(delimeter));
|
||||
tests[text] = parse_tokens_from_string(s_tokens, del_tok);
|
||||
}
|
||||
}
|
||||
return tests;
|
||||
}
|
||||
|
||||
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test){
|
||||
std::map<std::string, std::vector<gpt_vocab::id>> tests = extract_tests_from_file(fpath_test);
|
||||
|
||||
size_t n_fails = 0;
|
||||
|
||||
for (const auto & test : tests) {
|
||||
std::vector<gpt_vocab::id> tokens = gpt_tokenize(vocab, test.first);
|
||||
|
||||
if (tokens != test.second){
|
||||
n_fails++;
|
||||
|
||||
// print out failure cases
|
||||
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test.first.c_str());
|
||||
fprintf(stderr, "%s : tokens in hf: ", __func__);
|
||||
for (const auto & t : test.second) {
|
||||
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s : tokens in ggml: ", __func__);
|
||||
for (const auto & t : tokens) {
|
||||
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s : %zu tests failed out of %zu tests.\n", __func__, n_fails, tests.size());
|
||||
}
|
||||
|
||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
|
||||
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
@ -491,122 +346,6 @@ gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
return logits_id[idx].second;
|
||||
}
|
||||
|
||||
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
const int32_t * last_n_tokens_data,
|
||||
size_t last_n_tokens_data_size,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
int repeat_last_n,
|
||||
float repeat_penalty,
|
||||
std::mt19937 & rng) {
|
||||
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
const auto * plogits = logits;
|
||||
|
||||
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size);
|
||||
|
||||
if (temp <= 0) {
|
||||
// select the token with the highest logit directly
|
||||
float max_logit = plogits[0];
|
||||
gpt_vocab::id max_id = 0;
|
||||
|
||||
for (int i = 1; i < n_logits; ++i) {
|
||||
if (plogits[i] > max_logit) {
|
||||
max_logit = plogits[i];
|
||||
max_id = i;
|
||||
}
|
||||
}
|
||||
return max_id;
|
||||
}
|
||||
|
||||
|
||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||
logits_id.reserve(n_logits);
|
||||
|
||||
{
|
||||
const float scale = 1.0f/temp;
|
||||
for (int i = 0; i < n_logits; ++i) {
|
||||
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
|
||||
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
|
||||
if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) {
|
||||
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
|
||||
if (plogits[i] < 0.0f) {
|
||||
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
|
||||
} else {
|
||||
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
|
||||
}
|
||||
} else {
|
||||
logits_id.push_back(std::make_pair(plogits[i]*scale, i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// find the top K tokens
|
||||
std::partial_sort(
|
||||
logits_id.begin(),
|
||||
logits_id.begin() + top_k, logits_id.end(),
|
||||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
logits_id.resize(top_k);
|
||||
|
||||
double maxl = -INFINITY;
|
||||
for (const auto & kv : logits_id) {
|
||||
maxl = std::max(maxl, kv.first);
|
||||
}
|
||||
|
||||
// compute probs for the top K tokens
|
||||
std::vector<double> probs;
|
||||
probs.reserve(logits_id.size());
|
||||
|
||||
double sum = 0.0;
|
||||
for (const auto & kv : logits_id) {
|
||||
double p = exp(kv.first - maxl);
|
||||
probs.push_back(p);
|
||||
sum += p;
|
||||
}
|
||||
|
||||
// normalize the probs
|
||||
for (auto & p : probs) {
|
||||
p /= sum;
|
||||
}
|
||||
|
||||
if (top_p < 1.0f) {
|
||||
double cumsum = 0.0f;
|
||||
for (int i = 0; i < top_k; i++) {
|
||||
cumsum += probs[i];
|
||||
if (cumsum >= top_p) {
|
||||
top_k = i + 1;
|
||||
probs.resize(top_k);
|
||||
logits_id.resize(top_k);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
cumsum = 1.0/cumsum;
|
||||
for (int i = 0; i < (int) probs.size(); i++) {
|
||||
probs[i] *= cumsum;
|
||||
}
|
||||
}
|
||||
|
||||
// printf("\n");
|
||||
// for (int i = 0; i < (int) probs.size(); i++) {
|
||||
// for (int i = 0; i < 10; i++) {
|
||||
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
||||
// }
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
int idx = dist(rng);
|
||||
|
||||
return logits_id[idx].second;
|
||||
|
||||
}
|
||||
|
||||
bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
|
||||
drwav wav;
|
||||
std::vector<uint8_t> wav_data; // used for pipe input from stdin
|
||||
@ -764,46 +503,3 @@ float similarity(const std::string & s0, const std::string & s1) {
|
||||
|
||||
return 1.0f - (dist / std::max(s0.size(), s1.size()));
|
||||
}
|
||||
|
||||
bool sam_params_parse(int argc, char ** argv, sam_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
params.seed = std::stoi(argv[++i]);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
params.n_threads = std::stoi(argv[++i]);
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
params.model = argv[++i];
|
||||
} else if (arg == "-i" || arg == "--inp") {
|
||||
params.fname_inp = argv[++i];
|
||||
} else if (arg == "-o" || arg == "--out") {
|
||||
params.fname_out = argv[++i];
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
sam_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
sam_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void sam_print_usage(int /*argc*/, char ** argv, const sam_params & params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, " -i FNAME, --inp FNAME\n");
|
||||
fprintf(stderr, " input file (default: %s)\n", params.fname_inp.c_str());
|
||||
fprintf(stderr, " -o FNAME, --out FNAME\n");
|
||||
fprintf(stderr, " output file (default: %s)\n", params.fname_out.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
@ -11,30 +11,23 @@
|
||||
#define COMMON_SAMPLE_RATE 16000
|
||||
|
||||
//
|
||||
// GPT CLI argument parsing
|
||||
// CLI argument parsing
|
||||
//
|
||||
|
||||
struct gpt_params {
|
||||
int32_t seed = -1; // RNG seed
|
||||
int32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t n_predict = 200; // new tokens to predict
|
||||
int32_t n_batch = 8; // batch size for prompt processing
|
||||
|
||||
// sampling parameters
|
||||
int32_t top_k = 40;
|
||||
float top_p = 0.9f;
|
||||
float temp = 0.9f;
|
||||
int32_t repeat_last_n = 64;
|
||||
float repeat_penalty = 1.00f;
|
||||
int32_t top_k = 40;
|
||||
float top_p = 0.9f;
|
||||
float temp = 0.9f;
|
||||
|
||||
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
|
||||
std::string prompt = "";
|
||||
std::string token_test = "";
|
||||
int32_t n_batch = 8; // batch size for prompt processing
|
||||
|
||||
bool interactive = false;
|
||||
int32_t interactive_port = -1;
|
||||
|
||||
int32_t n_gpu_layers = 0;
|
||||
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
|
||||
std::string prompt;
|
||||
};
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
@ -60,20 +53,11 @@ struct gpt_vocab {
|
||||
|
||||
std::map<token, id> token_to_id;
|
||||
std::map<id, token> id_to_token;
|
||||
std::vector<std::string> special_tokens;
|
||||
|
||||
void add_special_token(const std::string & token);
|
||||
};
|
||||
|
||||
// poor-man's JSON parsing
|
||||
std::map<std::string, int32_t> json_parse(const std::string & fname);
|
||||
|
||||
std::string convert_to_utf8(const std::wstring & input);
|
||||
|
||||
std::wstring convert_to_wstring(const std::string & input);
|
||||
|
||||
void gpt_split_words(std::string str, std::vector<std::string>& words);
|
||||
|
||||
// split text into tokens
|
||||
//
|
||||
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
|
||||
@ -86,15 +70,6 @@ void gpt_split_words(std::string str, std::vector<std::string>& words);
|
||||
//
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
|
||||
|
||||
// test outputs of gpt_tokenize
|
||||
//
|
||||
// - compare with tokens generated by the huggingface tokenizer
|
||||
// - test cases are chosen based on the model's main language (under 'prompt' directory)
|
||||
// - if all sentences are tokenized identically, print 'All tests passed.'
|
||||
// - otherwise, print sentence, huggingface tokens, ggml tokens
|
||||
//
|
||||
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test);
|
||||
|
||||
// load the tokens from encoder.json
|
||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
||||
|
||||
@ -114,18 +89,6 @@ gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
double temp,
|
||||
std::mt19937 & rng);
|
||||
|
||||
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
const int32_t * last_n_tokens_data,
|
||||
size_t last_n_tokens_data_size,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
int repeat_last_n,
|
||||
float repeat_penalty,
|
||||
std::mt19937 & rng);
|
||||
|
||||
//
|
||||
// Audio utils
|
||||
//
|
||||
@ -157,20 +120,3 @@ bool vad_simple(
|
||||
|
||||
// compute similarity between two strings using Levenshtein distance
|
||||
float similarity(const std::string & s0, const std::string & s1);
|
||||
|
||||
//
|
||||
// SAM argument parsing
|
||||
//
|
||||
|
||||
struct sam_params {
|
||||
int32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
|
||||
std::string model = "models/sam-vit-b/ggml-model-f16.bin"; // model path
|
||||
std::string fname_inp = "img.jpg";
|
||||
std::string fname_out = "img.out";
|
||||
};
|
||||
|
||||
bool sam_params_parse(int argc, char ** argv, sam_params & params);
|
||||
|
||||
void sam_print_usage(int argc, char ** argv, const sam_params & params);
|
||||
|
@ -1,9 +0,0 @@
|
||||
if (WHISPER_SDL2)
|
||||
# stream
|
||||
set(TARGET lsp)
|
||||
add_executable(${TARGET} lsp.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif ()
|
@ -1,104 +0,0 @@
|
||||
# Language Server
|
||||
|
||||
This example consists of a simple language server to expose both unguided
|
||||
and guided (command) transcriptions by sending json messages over stdout/stdin
|
||||
as well as a rather robust vim plugin that makes use of the language server.
|
||||
|
||||
## Vim plugin quick start
|
||||
|
||||
Compile the language server with
|
||||
|
||||
```bash
|
||||
make lsp
|
||||
```
|
||||
Install the plugin itself by copying or symlinking whisper.vim into ~/.vim/autoload/
|
||||
|
||||
In your vimrc, set the path of your whisper.cpp directory and optionally add some keybinds.
|
||||
|
||||
```vim
|
||||
let g:whisper_dir = "~/whisper.cpp"
|
||||
" Start listening for commands when Ctrl - g is pressed in normal mode
|
||||
nnoremap <C-G> call whisper#requestCommands()<CR>
|
||||
" Start unguided transcription when Ctrl - g is pressed in insert mode
|
||||
inoremap <C-G> <Cmd>call whisper#doTranscription()<CR>
|
||||
```
|
||||
|
||||
## Vim plugin usage
|
||||
|
||||
The vim plugin was designed to closely follow the mnemonics of vim
|
||||
|
||||
`s:spoken_dict` is used to translate keys to their spoken form.
|
||||
|
||||
|
||||
Keys corresponding to a string use that spoken value normally and when a motion is expected, but use the key itself when a character is expected.
|
||||
Keys corresponding to a dict, like `i`, can have manual difinitions given to each possible commandset.
|
||||
|
||||
0 is normal (insert), 1 is motion (inside), 2 is it's usage as a single key ([till] i), and 3 is it's usage in an area selection (s -> [around] sentence)
|
||||
|
||||
Some punctuation items, like `-` are explicitly given pronunciations to prevent them from being picked as punctuation instead of an actual command word.
|
||||
|
||||
Not all commands will tokenize to a single token and this can interfere with interpretation. "yank" as an example, takes multiple tokens and correspondingly, will give more accurate detection when only the first "ya" is used. While it could be changed to something else that is a single token (copy), value was placed on maintaining vim mnemonics.
|
||||
|
||||
Commands that would normally move the editor into insert mode (insert, append, open, change) will begin unguided transcription.
|
||||
Unguided transcription will end when a speech segment ends in exit.
|
||||
Presence of punctuation can be designated by whether or not you add a pause between the previous speech segment and exit.
|
||||
Exiting only occurs if exit is the last word, so "Take the first exit on your right" would not cause transcription to end.
|
||||
|
||||
After a command is evaluated, the plugin will continue listening for the next command.
|
||||
|
||||
While in command mode, "Exit" will end listening.
|
||||
|
||||
A best effort approach is taken to keep track of audio that is recorded while a previous chunk is still processing and immediately interpret it afterwards, but the current voice detection still needs a fairly sizable gap to determine when a command has been spoken.
|
||||
|
||||
Log information is sent to a special `whisper_log` buffer and can be accessed with
|
||||
```vim
|
||||
:e whisper_log
|
||||
```
|
||||
|
||||
## Vim plugin configuration
|
||||
|
||||
`g:whisper_dir`
|
||||
A full path to the whisper.cpp repo. It can be expanded in the definition like so:
|
||||
```vim
|
||||
let g:whisper_dir = expand("~/whisper.cpp/")
|
||||
```
|
||||
(The WHISPER_CPP_HOME environment variable is also checked for users of the existing whisper.nvim script)
|
||||
|
||||
`g:whisper_lsp_path`
|
||||
Can be used to manually set the path to the language server.
|
||||
If not defined, it will be inferred from the above whisper_dir
|
||||
|
||||
`g:whisper_model_path`
|
||||
A full path to the model to load. If not defined, it will default to ggml-base.en.bin
|
||||
|
||||
`g:whisper_user_commands`
|
||||
A dictionary of spoken commands that correspond to either strings or funcrefs.
|
||||
This can be used to create connections with other user plugins, for example
|
||||
```vim
|
||||
let g:whisper_user_commands = {"gen": "llama#doLlamaGen"}
|
||||
```
|
||||
will trigger the llama.cpp plugin to begin generation when "gen" is spoken
|
||||
|
||||
## Language server methods
|
||||
|
||||
`registerCommandset`
|
||||
`params` is a list of strings that should be checked for with this commandset. The server prepends a space to these strings before tokenizing.
|
||||
Responds with
|
||||
`result.index` an integer index for the commandset registered, which should be included when initiating a guided transcription to select this commandset.
|
||||
Will return an error if any of the commands in the commandset have duplicate tokenizations
|
||||
|
||||
`guided`
|
||||
`params.commandset_index` An index returned by a corresponding commandset registration. If not set, the most recently registered commandset is used.
|
||||
`params.timestamp` A positive unsigned integer which designates a point in time which audio should begin processing from. If left blank, the start point of audio processing will be the moment the message is recieved. This should be left blank unless you have a timestamp from a previous response.
|
||||
Responds with
|
||||
`result.command_index` The numerical index (starting from 0) of the detected command in the selected commandset
|
||||
`result.command_text` A string containing the command as provided in the commandset
|
||||
`result.timestamp` A positive unsigned integer that designates the point in time which audio stopped being processed at. Pass this timestamp back in a subsequent message to mask the latency of transcription.
|
||||
|
||||
`unguided`
|
||||
`params.no_context` Sets the corresponding whisper `no_context` param. Defaults to true. Might provide more accurate results for consecutive unguided transcriptions if those after the first are set to false.
|
||||
`params.prompt` If provided, sets the initial prompt used during transcription.
|
||||
`params.timestamp` A positive unsigned integer which designates a point in time which audio should begin processing from. If left blank, the start point of audio processing will be the moment the message is recieved. This should be left blank unless you have a timestamp from a previous response.
|
||||
Responds with
|
||||
`result.transcription` A string containing the transcribed text. N.B. This will almost always start with a space due to how text is tokenized.
|
||||
`result.timestamp` A positive unsigned integer that designates the point in time which audio stopped being processed at. Pass this timestamp back in a subsequent message to mask the latency of transcription.
|
24596
examples/lsp/json.hpp
24596
examples/lsp/json.hpp
File diff suppressed because it is too large
Load Diff
@ -1,458 +0,0 @@
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "whisper.h"
|
||||
#include "json.hpp"
|
||||
|
||||
#include <iostream>
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <deque>
|
||||
#include <set>
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t prompt_ms = 5000;
|
||||
int32_t command_ms = 8000;
|
||||
int32_t capture_id = -1;
|
||||
int32_t max_tokens = 32;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
float vad_thold = 0.6f;
|
||||
float freq_thold = 100.0f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool print_special = false;
|
||||
bool print_energy = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
};
|
||||
struct command {
|
||||
std::vector<whisper_token> tokens;
|
||||
std::string plaintext;
|
||||
};
|
||||
struct commandset {
|
||||
std::vector<struct command> commands;
|
||||
std::vector<whisper_token> prompt_tokens;
|
||||
// TODO: Store longest command?
|
||||
// Multi-token commands should have probabilities of subsequent logits
|
||||
// given that the prior logit is correct.
|
||||
// In this case, all commands must be iterated.
|
||||
// This however, is likely highly involved as different tokens
|
||||
// almost certainly have different spoken lengths
|
||||
// It would also have performance implications equivalent to a beam search
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
|
||||
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-pms" || arg == "--prompt-ms") { params.prompt_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-cms" || arg == "--command-ms") { params.command_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -pms N, --prompt-ms N [%-7d] prompt duration in milliseconds\n", params.prompt_ms);
|
||||
fprintf(stderr, " -cms N, --command-ms N [%-7d] command duration in milliseconds\n", params.command_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
||||
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
uint64_t wait_for_vad(audio_async & audio, json jparams, const whisper_params & params, uint64_t maxlength_ms, std::vector<float> & pcmf32) {
|
||||
using namespace std::chrono;
|
||||
uint64_t time_now = time_point_cast<milliseconds>(system_clock::now()).time_since_epoch().count();
|
||||
uint64_t start_time = time_now;
|
||||
if (jparams.contains("timestamp")) {
|
||||
start_time = jparams.at("timestamp");
|
||||
}
|
||||
if(time_now - start_time < 500) {
|
||||
//wait for a backlog of audio
|
||||
std::this_thread::sleep_for(milliseconds(500 - (time_now - start_time)));
|
||||
time_now = time_point_cast<milliseconds>(system_clock::now()).time_since_epoch().count();
|
||||
} else if (time_now - start_time > 1000) {
|
||||
audio.get(time_now-start_time, pcmf32);
|
||||
size_t max_offset = pcmf32.size() - WHISPER_SAMPLE_RATE;
|
||||
for(size_t offset=0;offset < max_offset;offset+=WHISPER_SAMPLE_RATE/10) {
|
||||
std::vector<float> audio_chunk(&pcmf32[offset], &pcmf32[offset+WHISPER_SAMPLE_RATE]);
|
||||
if(::vad_simple(audio_chunk, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
pcmf32.resize(offset+WHISPER_SAMPLE_RATE);
|
||||
if (offset*1000/WHISPER_SAMPLE_RATE+1000 > maxlength_ms) {
|
||||
//remove samples from the beginning
|
||||
pcmf32.erase(pcmf32.begin(),pcmf32.end()-(maxlength_ms*WHISPER_SAMPLE_RATE/1000));
|
||||
fprintf(stderr, "Shortened samples");
|
||||
}
|
||||
return start_time + offset*1000/WHISPER_SAMPLE_RATE+1000;
|
||||
}
|
||||
}
|
||||
}
|
||||
size_t window_duration = std::max((uint64_t)1000, time_now-start_time);
|
||||
audio.get(window_duration, pcmf32);
|
||||
while (!::vad_simple(pcmf32, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
std::this_thread::sleep_for(milliseconds(100));
|
||||
time_now = time_point_cast<milliseconds>(system_clock::now()).time_since_epoch().count();
|
||||
window_duration = std::max((uint64_t)1000,time_now-start_time);
|
||||
audio.get(window_duration, pcmf32);
|
||||
}
|
||||
if (time_now - start_time > maxlength_ms) {
|
||||
audio.get(maxlength_ms, pcmf32);
|
||||
} else {
|
||||
audio.get(time_now - start_time, pcmf32);
|
||||
}
|
||||
|
||||
return time_now;
|
||||
}
|
||||
|
||||
json unguided_transcription(struct whisper_context * ctx, audio_async &audio, json jparams, const whisper_params ¶ms) {
|
||||
std::vector<whisper_token> prompt_tokens;
|
||||
std::vector<float> pcmf32;
|
||||
uint64_t unprocessed_audio_timestamp = wait_for_vad(audio, jparams, params, 10000U, pcmf32);
|
||||
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
if (jparams.contains("prompt")) {
|
||||
// unlikely to see much use. Under normal circumstances, no_context would be set to false
|
||||
std::string prompt = jparams.at("prompt");
|
||||
prompt_tokens.resize(1024);
|
||||
int n = whisper_tokenize(ctx, prompt.c_str(), prompt_tokens.data(), 1024);
|
||||
prompt_tokens.resize(n);
|
||||
|
||||
wparams.prompt_tokens = prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = prompt_tokens.size();
|
||||
}
|
||||
wparams.print_progress = false;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = false;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = jparams.value("no_context", true);
|
||||
wparams.single_segment = true;
|
||||
wparams.max_tokens = params.max_tokens;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
wparams.suppress_non_speech_tokens = true;
|
||||
// run the transformer and a single decoding pass
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
fprintf(stderr, "%s: ERROR: whisper_full() failed\n", __func__);
|
||||
throw json{
|
||||
{"code", -32803},
|
||||
{"message", "ERROR: whisper_full() failed"}
|
||||
};
|
||||
}
|
||||
std::string result = whisper_full_get_segment_text(ctx,0);
|
||||
return json {
|
||||
{"transcription", result},
|
||||
{"timestamp", unprocessed_audio_timestamp}
|
||||
};
|
||||
}
|
||||
|
||||
// command-list mode
|
||||
// guide the transcription to match the most likely command from a provided list
|
||||
json guided_transcription(struct whisper_context * ctx, audio_async &audio, const whisper_params ¶ms, json jparams, std::vector<struct commandset> commandset_list) {
|
||||
struct commandset cs = commandset_list[jparams.value("commandset_index", commandset_list.size()-1)];
|
||||
std::vector<float> pcmf32;
|
||||
uint64_t unprocessed_audio_timestamp = wait_for_vad(audio, jparams, params, 2000U, pcmf32);
|
||||
|
||||
fprintf(stderr, "%s: Speech detected! Processing ...\n", __func__);
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.print_progress = false;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = false;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = true;
|
||||
wparams.max_tokens = 1;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
// TODO: Do some time testing. Does an overly long prompt slow down processing?
|
||||
// Set up command sets/precompute prompts
|
||||
wparams.prompt_tokens = cs.prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = cs.prompt_tokens.size();
|
||||
// TODO: properly expose as option
|
||||
wparams.suppress_non_speech_tokens = true;
|
||||
|
||||
// run the transformer and a single decoding pass
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
fprintf(stderr, "%s: ERROR: whisper_full() failed\n", __func__);
|
||||
throw json{
|
||||
{"code", -32803},
|
||||
{"message", "ERROR: whisper_full() failed"}//TODO: format string (sprintf?)
|
||||
};
|
||||
}
|
||||
|
||||
// estimate command probability
|
||||
// NOTE: not optimal
|
||||
{
|
||||
const auto * logits = whisper_get_logits(ctx);
|
||||
|
||||
std::vector<float> probs(whisper_n_vocab(ctx), 0.0f);
|
||||
|
||||
// compute probs from logits via softmax
|
||||
{
|
||||
float max = -1e9;
|
||||
for (int i = 0; i < (int) probs.size(); ++i) {
|
||||
max = std::max(max, logits[i]);
|
||||
}
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int i = 0; i < (int) probs.size(); ++i) {
|
||||
probs[i] = expf(logits[i] - max);
|
||||
sum += probs[i];
|
||||
}
|
||||
|
||||
for (int i = 0; i < (int) probs.size(); ++i) {
|
||||
probs[i] /= sum;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<float, int>> probs_id;
|
||||
|
||||
// In my testing, the most verbose token is always the desired.
|
||||
// TODO: Trim commandset struct once efficacy has been verified
|
||||
for (int i = 0; i < (int) cs.commands.size(); ++i) {
|
||||
probs_id.emplace_back(probs[cs.commands[i].tokens[0]], i);
|
||||
}
|
||||
|
||||
// sort descending
|
||||
{
|
||||
using pair_type = decltype(probs_id)::value_type;
|
||||
std::sort(probs_id.begin(), probs_id.end(), [](const pair_type & a, const pair_type & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
}
|
||||
int id = probs_id[0].second;
|
||||
return json{
|
||||
{"command_index", id},
|
||||
{"command_text", cs.commands[id].plaintext},
|
||||
{"timestamp", unprocessed_audio_timestamp},
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
json register_commandset(struct whisper_context * ctx, json jparams, std::vector<struct commandset> &commandset_list) {
|
||||
// TODO: check for token collision
|
||||
struct commandset cs;
|
||||
|
||||
std::string k_prompt = " select one from the available words: ";
|
||||
std::set<whisper_token> token_set;
|
||||
whisper_token tokens[32];
|
||||
for (std::string s : jparams) {
|
||||
std::vector<whisper_token> token_vec;
|
||||
// The existing command implementation uses a nested for loop to tokenize single characters
|
||||
// I fail to see the purpose of this when ' a' has a wholly different pronunciation than the start of ' apple'
|
||||
const int n = whisper_tokenize(ctx, (" " + s).c_str(), tokens, 32);
|
||||
if (n < 0) {
|
||||
fprintf(stderr, "%s: error: failed to tokenize command '%s'\n", __func__, s.c_str());
|
||||
return 3;
|
||||
}
|
||||
token_vec.push_back(tokens[0]);
|
||||
if (!token_set.insert(tokens[0]).second) {
|
||||
fprintf(stderr, "%s: warning: %s is a duplicate of an existing token\n", __func__, s.c_str());
|
||||
throw json{
|
||||
{"code",-31000},
|
||||
{"message", "Duplicate token in token set: " + s}
|
||||
};
|
||||
}
|
||||
if (n > 1) {// empty string if n=0? Should never occur
|
||||
fprintf(stderr, "%s: error: command is more than a single token: %s\n", __func__, s.c_str());
|
||||
}
|
||||
struct command command = {token_vec, s};
|
||||
cs.commands.push_back(command);
|
||||
k_prompt += s;
|
||||
}
|
||||
k_prompt = k_prompt.substr(0,k_prompt.length()-2) + ". Selected word:";
|
||||
cs.prompt_tokens.resize(1024);
|
||||
int n = whisper_tokenize(ctx, k_prompt.c_str(), cs.prompt_tokens.data(), 1024);
|
||||
cs.prompt_tokens.resize(n);
|
||||
// prepare response
|
||||
int index = commandset_list.size();
|
||||
commandset_list.push_back(cs);
|
||||
return json{{"index",index}};
|
||||
}
|
||||
json seek(struct whisper_context * /*ctx*/, audio_async & /*audio*/, json /*params*/) {
|
||||
// whisper_state has the pertinent offsets, but there also seem to be a large
|
||||
// number of scratch buffers that would prevent rewinding context in a manner similar to llama
|
||||
// I'll give this a another pass once everything else is implemented,
|
||||
// but for now, it's unsupported
|
||||
throw json {
|
||||
{"code", -32601},
|
||||
{"message", "Seeking is not yet supported."}
|
||||
};
|
||||
}
|
||||
json parse_job(const json &body, struct whisper_context * ctx, audio_async &audio, const whisper_params ¶ms, std::vector<struct commandset> &commandset_list) {
|
||||
// See: https://www.jsonrpc.org/specification
|
||||
json id = body.at("id");
|
||||
try {
|
||||
std::string version = body.at("jsonrpc");
|
||||
if (version != "2.0") {
|
||||
// unsupported version
|
||||
throw json{
|
||||
{"code", -3260},
|
||||
{"message", "invalid jsonrpc version"}
|
||||
};
|
||||
}
|
||||
std::string method = body.at("method");
|
||||
json jparams = json{{"dummy", "dummy"}};
|
||||
if (body.contains("params"))
|
||||
jparams = body.at("params");
|
||||
json res;
|
||||
// TODO: be consistent about argument order
|
||||
fprintf(stderr, "Dispatching a job\n");
|
||||
if (method == "unguided") { res = unguided_transcription(ctx, audio, jparams, params); }
|
||||
else if (method == "guided") { res = guided_transcription(ctx, audio, params, jparams, commandset_list); }
|
||||
else if (method == "seek") { res = seek(ctx, audio, jparams); }
|
||||
else if (method == "registerCommandset") { res = register_commandset(ctx, jparams, commandset_list); }
|
||||
else if (method == "echo") { res = jparams; }
|
||||
|
||||
|
||||
return json{
|
||||
{"jsonrpc", "2.0"},
|
||||
{"result", res},
|
||||
{"id", id}
|
||||
};
|
||||
} catch(json ex) {
|
||||
return json {
|
||||
{"jsonrpc", "2.0"},
|
||||
{"error", ex},
|
||||
{"id", id}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
void process_loop(struct whisper_context * ctx, audio_async &audio, const whisper_params ¶ms) {
|
||||
std::deque<json> jobqueue;
|
||||
std::vector<struct commandset> commandset_list;
|
||||
while (true) {
|
||||
// For eventual cancellation support, shouldn't block if job exists
|
||||
if (std::cin.rdbuf()->in_avail() > 22 || jobqueue.size() == 0) {
|
||||
int content_length;
|
||||
if (scanf("Content-Length: %d", &content_length) != 1) {
|
||||
fprintf(stderr, "Could not read input: %d", std::cin.peek());
|
||||
return;
|
||||
}
|
||||
// scanf leaves the new lines intact
|
||||
std::cin.ignore(2);
|
||||
if (std::cin.peek() != 13) {
|
||||
// Content-Type. jsonrpc necessitates utf8.
|
||||
std::cin.ignore(200,10);
|
||||
}
|
||||
std::cin.ignore(2);
|
||||
// A message is being sent and blocking is acceptable
|
||||
std::string content(content_length,'\0');
|
||||
std::cin.read(&content[0], content_length);
|
||||
json job = json::parse(content);
|
||||
// TODO: Some messages(cancellation) should skip queue here
|
||||
if (job.is_array()) {
|
||||
// response must also be batched. Will implement later
|
||||
// for (subjob : job.begin())
|
||||
// TODO: At the very least respond with an unsupported error.
|
||||
} else {
|
||||
jobqueue.push_back(job);
|
||||
}
|
||||
}
|
||||
assert(jobqueue.size() > 0);
|
||||
json job = jobqueue.front();
|
||||
json resp = parse_job(job, ctx, audio, params, commandset_list);
|
||||
if (resp != "unfinished") {
|
||||
jobqueue.pop_front();
|
||||
// send response
|
||||
std::string data = resp.dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
fprintf(stdout, "Content-Length: %d\r\n\r\n%s\n", (int)data.length()+1, data.c_str());
|
||||
std::cout.flush();
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// whisper init
|
||||
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
||||
// init audio
|
||||
|
||||
audio_async audio(30*1000);
|
||||
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
|
||||
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
audio.resume();
|
||||
// TODO: Investigate why this is required. An extra second of startup latency is not great
|
||||
// wait for 1 second to avoid any buffered noise
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
|
||||
audio.clear();
|
||||
// TODO: consider some sort of indicator to designate loading has finished?
|
||||
// Potentially better for the client to just start with a non-blocking message (register commands)
|
||||
process_loop(ctx, audio, params);
|
||||
|
||||
audio.pause();
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,362 +0,0 @@
|
||||
if !exists("g:whisper_dir")
|
||||
let g:whisper_dir = expand($WHISPER_CPP_HOME)
|
||||
if g:whisper_dir == ""
|
||||
echoerr "Please provide a path to the whisper.cpp repo in either the $WHISPER_CPP_HOME environment variable, or g:whisper_dir"
|
||||
endif
|
||||
endif
|
||||
if !exists("g:whisper_lsp_path")
|
||||
let g:whisper_lsp_path = g:whisper_dir .. "lsp"
|
||||
if !filereadable(g:whisper_lsp_path)
|
||||
echoerr "Was not able to locate a lsp executable at: " .. g:whisper_lsp_path
|
||||
throw "Executable not found"
|
||||
endif
|
||||
endif
|
||||
if !exists("g:whisper_model_path")
|
||||
" TODO: allow custom paths relative to the repo dir
|
||||
let g:whisper_model_path = g:whisper_dir .. "models/ggml-base.en.bin"
|
||||
if !filereadable(g:whisper_model_path)
|
||||
echoerr "Could not find model at: " .. g:whisper_model_path
|
||||
throw "Model not found"
|
||||
endif
|
||||
endif
|
||||
let s:output_buffer = bufnr("whisper_log", v:true)
|
||||
call setbufvar(s:output_buffer,"&buftype","nofile")
|
||||
let s:lsp_command = [g:whisper_lsp_path,"-m",g:whisper_model_path]
|
||||
" For faster execution. TODO: server load multiple models/run multiple servers?
|
||||
" let s:lsp_command = [g:whisper_lsp_path, "-m", g:whisper_dir .. "models/ggml-tiny.en.bin", "-ac", "128"]
|
||||
|
||||
" requestCommands([params_dict])
|
||||
func whisper#requestCommands(...)
|
||||
let l:req = {"method": "guided", "params": {"commandset_index": 0}}
|
||||
if a:0 > 0
|
||||
call extend(l:req.params, a:1)
|
||||
endif
|
||||
let resp = ch_sendexpr(g:lsp_job, l:req, {"callback": function("s:commandCallback", [l:req.params, 0])})
|
||||
endfunction
|
||||
|
||||
" doTranscription([params_dict])
|
||||
func whisper#doTranscription(...)
|
||||
let l:req = {"method": "unguided", "params": {}}
|
||||
if a:0 > 0
|
||||
call extend(l:req.params, a:1)
|
||||
endif
|
||||
let resp = ch_sendexpr(g:lsp_job, l:req, {"callback": function("s:transcriptionCallback", [function("s:insertText"),function("s:endTranscription")])})
|
||||
endfunction
|
||||
|
||||
" For testing
|
||||
func whisper#uppertest(cha)
|
||||
echo tr(a:cha, s:c_lowerkeys, s:c_upperkeys)
|
||||
endfunction
|
||||
|
||||
|
||||
" (upper, exit, count, motion, command, insert/append, save run) "base"
|
||||
" (upper, exit, count, motion, command, inside/around) "motion/visual"
|
||||
" (upper, exit, count, motion, line, inside/around) "command already entered"
|
||||
" (upper, exit, key, ) "from/till"
|
||||
|
||||
" upper and lower keys is used to translate between cases with tr
|
||||
" Must be sunchronized
|
||||
let s:c_lowerkeys = "1234567890-=qwertyuiop[]\\asdfghjkl;'zxcvbnm,./\""
|
||||
let s:c_upperkeys = "!@#$%^&*()_+QWERTYUIOP{}|ASDFGHJKL:\"ZXCVBNM<>?'"
|
||||
let s:c_count = split("1234567890\"",'\zs')
|
||||
let s:c_command = split("ryuogpdxcv.iam", '\zs')
|
||||
let s:c_motion = split("wetf'hjklnb$^)",'\zs')
|
||||
" object words: Word, Sentence, Paragraph, [, (, <, Tag, {. ", '
|
||||
let s:c_area = split("wsp])>t}\"'",'\zs')
|
||||
"Special commands.
|
||||
let s:c_special_always = ["exit", "upper"]
|
||||
let s:c_special_normal = ["save", "run", "space"]
|
||||
|
||||
" If not in dict, key is spoken word,
|
||||
" If key resolves to string, value is used for normal/motion, but key for chars
|
||||
" If key resolves to dict, {0: "normal",1: "motion",2:"single char",3: "area"}
|
||||
" Missing entries fall back as follows {0: "required", 1: 0, 2: "key", 3: 0}
|
||||
let s:spoken_dict = {"w": "word", "e": "end", "r": "replace", "t": {0: "till", 3: "tag"}, "y": "yank", "u": "undo", "i": {0: "insert", 1: "inside"}, "o": "open", "p": {0: "paste", 3: "paragraph"}, "a": {0: "append", 1: "around"}, "s": {0: "substitute", 3: "sentence"}, "d": "delete", "f": "from", "g": "go", "h": "left", "j": "down", "k": "up", "l": "right", "c": "change", "v": "visual", "b": "back", "n": "next", "m": "mark", ".": {0: "repeat", 2: "period"}, "]": {0: "bracket", 2: "bracket"}, "'": {0: "jump", 2: "apostrophe", 3: "apostrophe"}, '"': {0: 'register', 2: "quotation", 3: "quotation"}, "-": {0: "minus", 2: "minus"}, "$": {0: "dollar", 2: "dollar"}, "^": {0: "carrot", 2: "carrot"}, ")": {0: "sentence", 2: "parenthesis", 3: "parenthesis"}, "}": {0: "paragraph", 2: "brace", 3: "brace"}, ">": {0: "indent", 2: "angle", 3: "angle"}}
|
||||
|
||||
" Give this another pass. This seems overly hacky even if it's functional
|
||||
let s:sub_tran_msg = ""
|
||||
func s:subTranProg(msg)
|
||||
if s:sub_tran_msg != ""
|
||||
let s:sub_tran_msg = s:sub_tran_msg .. a:msg
|
||||
if mode() !=? 'v'
|
||||
exe "normal" "u" .. s:sub_tran_msg
|
||||
endif
|
||||
else
|
||||
if s:command_backlog == ""
|
||||
" this should not occur
|
||||
call s:logCallback(0, "Warning: Encountered sub transcription without prior command")
|
||||
let s:command_backlog = "a"
|
||||
endif
|
||||
if a:msg[0] == ' '
|
||||
let s:sub_tran_msg = s:command_backlog .. a:msg[1:-1]
|
||||
else
|
||||
let s:sub_tran_msg = s:command_backlog .. a:msg
|
||||
endif
|
||||
if mode() !=? 'v'
|
||||
exe "normal" s:sub_tran_msg
|
||||
endif
|
||||
endif
|
||||
call appendbufline(s:output_buffer, "$", s:sub_tran_msg .. ":" .. string(a:msg ))
|
||||
endfunction
|
||||
|
||||
func s:subTranFinish(params, timestamp)
|
||||
let s:repeat_command = s:sub_tran_msg
|
||||
" Visual selection is lot if used with streaming, so streaming of partial
|
||||
" transcriptions is disabled in visual mode
|
||||
if mode() ==? 'v'
|
||||
exe "normal" s:sub_tran_msg
|
||||
endif
|
||||
let s:sub_tran_msg = ""
|
||||
let s:command_backlog = ""
|
||||
exe "normal a\<C-G>u"
|
||||
let l:params = a:params
|
||||
let l:params.timestamp = a:timestamp
|
||||
if exists("l:params.commandset_index")
|
||||
unlet l:params.commandset_index
|
||||
endif
|
||||
call whisper#requestCommands(a:params)
|
||||
endfunction
|
||||
|
||||
func s:logCallback(channel, msg)
|
||||
call appendbufline(s:output_buffer,"$",a:msg)
|
||||
endfunction
|
||||
|
||||
|
||||
func s:transcriptionCallback(progressCallback, finishedCallback, channel, msg)
|
||||
let l:tr = a:msg.result.transcription
|
||||
|
||||
let l:ex_ind = match(tolower(l:tr),"exit", len(l:tr)-6)
|
||||
" The worst case I've observed so far is " Exit.", which is 6 characters
|
||||
if l:ex_ind != -1
|
||||
call a:progressCallback(strpart(l:tr,0,l:ex_ind-1))
|
||||
call a:finishedCallback(a:msg.result.timestamp)
|
||||
else
|
||||
call a:progressCallback(l:tr)
|
||||
let req = {"method": "unguided", "params": {"timestamp": a:msg.result.timestamp, "no_context": v:true}}
|
||||
let resp = ch_sendexpr(g:lsp_job, req, {"callback": function("s:transcriptionCallback", [a:progressCallback, a:finishedCallback])})
|
||||
endif
|
||||
endfunc
|
||||
func s:insertText(msg)
|
||||
exe "normal a" .. a:msg
|
||||
endfunction
|
||||
func s:endTranscription(timestamp)
|
||||
call appendbufline(s:output_buffer, "$", "Ending unguided transcription")
|
||||
endfunction
|
||||
|
||||
|
||||
|
||||
" If a command does not include a whole actionable step, attempting to execute
|
||||
" it discards the remainder of things. There is likely a simpler solution,
|
||||
" but it can be made functional now by storing a backbuffer until actionable
|
||||
let s:command_backlog = ""
|
||||
let s:repeat_command = ""
|
||||
let s:preceeding_upper = v:false
|
||||
func s:commandCallback(params, commandset_index, channel, msg)
|
||||
let l:command_index = a:msg.result.command_index
|
||||
let l:do_execute = v:false
|
||||
let l:next_mode = a:commandset_index
|
||||
let l:command = s:commandset_list[a:commandset_index][l:command_index]
|
||||
call s:logCallback(0, string(a:msg) .. " " .. a:commandset_index .. " " .. l:command)
|
||||
if l:command_index == 0
|
||||
"exit
|
||||
"if s:command_backlog == ""
|
||||
call s:logCallback(0,"Stopping command mode")
|
||||
echo "No longer listening"
|
||||
let s:command_backlog = ""
|
||||
return
|
||||
"else
|
||||
" Legacy code to clear an existing buffer with exit.
|
||||
" Was found to be rarely desired and is better introduced as a
|
||||
" standalone command (clear?)
|
||||
" call s:logCallback(0,"Clearing command_backlog" .. s:command_backlog)
|
||||
" let s:command_backlog = ""
|
||||
" let s:preceeding_upper = v:false
|
||||
" endif
|
||||
elseif l:command_index == 1
|
||||
" upper
|
||||
let s:preceeding_upper = !s:preceeding_upper
|
||||
elseif l:command == "save"
|
||||
" save and run can only happen in commandset 0,
|
||||
exe "w"
|
||||
elseif l:command == "run"
|
||||
exe "make run"
|
||||
elseif l:command == "space"
|
||||
exe "normal i \<ESC>l"
|
||||
elseif has_key(s:c_user, l:command)
|
||||
let Userfunc = s:c_user[l:command]
|
||||
if type(Userfunc) == v:t_string
|
||||
let Userfunc = function(Userfunc)
|
||||
endif
|
||||
call Userfunc()
|
||||
else
|
||||
if s:preceeding_upper
|
||||
" Upper should keep commandset
|
||||
let s:preceeding_upper = v:false
|
||||
let l:visual_command = tr(l:command, s:c_lowerkeys, s:c_upperkeys)
|
||||
else
|
||||
let l:visual_command = l:command
|
||||
endif
|
||||
echo s:command_backlog .. " - " .. l:visual_command
|
||||
let s:command_backlog = s:command_backlog .. l:visual_command
|
||||
if a:commandset_index == 2 || a:commandset_index == 3
|
||||
" single key, either completes motion, replace, or register
|
||||
" Should move to execute unless part of a register
|
||||
" Change will be caught at execute
|
||||
if s:command_backlog[-2:-2] !=# '"'
|
||||
call s:logCallback(0,"not register")
|
||||
let l:do_execute = v:true
|
||||
end
|
||||
let l:next_mode = 0
|
||||
" commandset index only matters for a/i
|
||||
elseif (l:command == "a" || l:command == "i") && a:commandset_index == 1
|
||||
" inside/around. Is commandset 3
|
||||
let l:next_mode = 3
|
||||
elseif l:command ==# '"'
|
||||
let l:next_mode = 2
|
||||
elseif index(s:c_count, l:command) != -1
|
||||
let l:next_mode = a:commandset_index
|
||||
elseif index(s:c_motion, l:command) != -1
|
||||
if l:command == 't' || l:command == 'f' || l:command == "'"
|
||||
" prompt single key
|
||||
let l:next_mode = 2
|
||||
else
|
||||
let l:do_execute = v:true
|
||||
let l:next_mode = 0
|
||||
endif
|
||||
elseif index(s:c_command, l:command) != -1
|
||||
if index(["y","g","d","c"], s:command_backlog[-1:-1]) != -1 && s:command_backlog[-1:-1] != s:command_backlog[-2:-2] && mode() !=? 'v'
|
||||
" need motion or repeated command
|
||||
" Potential for bad state here if disparaging command keys are
|
||||
" entered (i.e. yd), but vim can handle checks for this at exe
|
||||
" And checking for cases like y123d would complicate things
|
||||
let l:next_mode = 1
|
||||
elseif index(["i","a","c", "o", "s"], l:command) != -1 || s:command_backlog[-1:-1] ==# 'R'
|
||||
"'Insert' mode, do general transcription
|
||||
let l:req = {"method": "unguided", "params": a:params}
|
||||
let l:req.params.timestamp = a:msg.result.timestamp
|
||||
let l:req.params.no_context = v:true
|
||||
let resp = ch_sendexpr(g:lsp_job, req, {"callback": function("s:transcriptionCallback", [function("s:subTranProg"), function("s:subTranFinish", [a:params])])})
|
||||
return
|
||||
elseif l:command == 'r' || l:command == 'm'
|
||||
let l:next_mode = 2
|
||||
elseif l:command == '.'
|
||||
let l:next_mode = 0
|
||||
let l:do_execute = v:true
|
||||
let s:command_backlog = s:command_backlog[0:-2] .. s:repeat_command
|
||||
else
|
||||
if l:command ==? 'v'
|
||||
let l:next_mode = 1
|
||||
else
|
||||
let l:next_mode = 0
|
||||
endif
|
||||
let l:do_execute = v:true
|
||||
endif
|
||||
else
|
||||
throw "Invalid command state: " .. l:command .. " " .. a:commandset_index .. " " .. s:command_backlog
|
||||
endif
|
||||
endif
|
||||
if l:do_execute
|
||||
if mode() ==?'v' && l:next_mode == 0
|
||||
let l:next_mode = 1
|
||||
elseif match(s:command_backlog, 'c') != -1
|
||||
let l:req = {"method": "unguided", "params": a:params}
|
||||
let l:req.params.timestamp = a:msg.result.timestamp
|
||||
let l:req.params.no_context = v:true
|
||||
let resp = ch_sendexpr(g:lsp_job, req, {"callback": function("s:transcriptionCallback", [function("s:subTranProg"), function("s:subTranFinish", [a:params])])})
|
||||
return
|
||||
endif
|
||||
exe "normal" s:command_backlog
|
||||
if index(s:c_motion + ["u"],l:command) == -1
|
||||
exe "normal a\<C-G>u"
|
||||
let s:repeat_command = s:command_backlog
|
||||
call s:logCallback(0, s:command_backlog)
|
||||
endif
|
||||
let s:command_backlog = ""
|
||||
endif
|
||||
let l:req = {"method": "guided", "params": a:params}
|
||||
let l:req.params.timestamp = a:msg.result.timestamp
|
||||
let l:req.params.commandset_index = l:next_mode
|
||||
let resp = ch_sendexpr(g:lsp_job, l:req, {"callback": function("s:commandCallback",[a:params, l:next_mode])})
|
||||
endfunction
|
||||
|
||||
func s:loadedCallback(channel, msg)
|
||||
echo "Loading complete"
|
||||
call s:logCallback(a:channel, a:msg)
|
||||
endfunction
|
||||
|
||||
func s:registerCommandset(commandlist, is_final)
|
||||
let req = {"method": "registerCommandset"}
|
||||
let req.params = a:commandlist
|
||||
call s:logCallback(0, join(a:commandlist))
|
||||
call add(g:whisper_commandlist_spoken, a:commandlist)
|
||||
if a:is_final
|
||||
let resp = ch_sendexpr(g:lsp_job, req, {"callback": "s:loadedCallback"})
|
||||
else
|
||||
let resp = ch_sendexpr(g:lsp_job, req, {"callback": "s:logCallback"})
|
||||
endif
|
||||
endfunction
|
||||
|
||||
func s:registerAllCommands()
|
||||
let l:normal = s:c_special_always + s:c_special_normal + s:c_count + s:c_command + s:c_motion + keys(s:c_user)
|
||||
let l:visual = s:c_special_always + s:c_count + s:c_command + s:c_motion
|
||||
" Currently the same as visual.
|
||||
" let l:post_command = s:c_special_always + s:c_count + s:c_command + s:c_motion
|
||||
let l:single_key = s:c_special_always + split(s:c_lowerkeys, '\zs')
|
||||
let l:area = s:c_special_always + s:c_area
|
||||
|
||||
" Used only for compatibility with the testing script
|
||||
let g:whisper_commandlist_spoken = []
|
||||
|
||||
let s:commandset_list = [l:normal, l:visual, l:single_key, l:area]
|
||||
call s:registerCommandset(s:commandsetToSpoken(l:normal, 0), v:false)
|
||||
call s:registerCommandset(s:commandsetToSpoken(l:visual, 1), v:false)
|
||||
call s:registerCommandset(s:commandsetToSpoken(l:single_key, 2), v:false)
|
||||
call s:registerCommandset(s:commandsetToSpoken(l:area, 3), v:true)
|
||||
endfunction
|
||||
|
||||
func s:commandsetToSpoken(commandset, spoken_index)
|
||||
let l:spoken_list = []
|
||||
for l:command in a:commandset
|
||||
if has_key(s:spoken_dict, l:command)
|
||||
let l:spoken_value = s:spoken_dict[l:command]
|
||||
if type(l:spoken_value) == v:t_dict
|
||||
if has_key(l:spoken_value, a:spoken_index)
|
||||
let l:spoken_value = l:spoken_value[a:spoken_index]
|
||||
else
|
||||
if a:spoken_index == 2
|
||||
let l:spoken_value = l:command
|
||||
else
|
||||
let l:spoken_value = l:spoken_value[0]
|
||||
endif
|
||||
endif
|
||||
else
|
||||
if a:spoken_index == 2
|
||||
let l:spoken_value = l:command
|
||||
endif
|
||||
endif
|
||||
else
|
||||
let l:spoken_value = l:command
|
||||
endif
|
||||
call add(l:spoken_list, l:spoken_value)
|
||||
endfor
|
||||
return l:spoken_list
|
||||
endfunction
|
||||
|
||||
" TODO: Check lifetime. If the script is resourced, is the existing
|
||||
" s:lsp_job dropped and therefore killed?
|
||||
" This seems to not be the case and I've had to deal with zombie processes
|
||||
" that survive exiting vim, even though said behavior conflicts with my
|
||||
" understanding of the provided documentation
|
||||
let s:lsp_opts = {"in_mode": "lsp", "out_mode": "lsp", "err_mode": "nl", "err_io": "buffer", "err_buf": s:output_buffer}
|
||||
if !exists("g:lsp_job")
|
||||
if exists("g:whisper_user_commands")
|
||||
let s:c_user = g:whisper_user_commands
|
||||
else
|
||||
let s:c_user = {}
|
||||
endif
|
||||
let g:lsp_job = job_start(s:lsp_command, s:lsp_opts)
|
||||
if job_status(g:lsp_job) == "fail"
|
||||
echoerr "Failed to start whisper job"
|
||||
endif
|
||||
call s:registerAllCommands()
|
||||
endif
|
@ -10,10 +10,6 @@
|
||||
#include <vector>
|
||||
#include <cstring>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
|
||||
// Lowest is red, middle is yellow, highest is green.
|
||||
const std::vector<std::string> k_colors = {
|
||||
@ -59,7 +55,6 @@ struct whisper_params {
|
||||
int32_t offset_t_ms = 0;
|
||||
int32_t offset_n = 0;
|
||||
int32_t duration_ms = 0;
|
||||
int32_t progress_step = 5;
|
||||
int32_t max_context = -1;
|
||||
int32_t max_len = 0;
|
||||
int32_t best_of = 2;
|
||||
@ -69,36 +64,28 @@ struct whisper_params {
|
||||
float entropy_thold = 2.40f;
|
||||
float logprob_thold = -1.00f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool debug_mode = false;
|
||||
bool translate = false;
|
||||
bool detect_language = false;
|
||||
bool diarize = false;
|
||||
bool tinydiarize = false;
|
||||
bool split_on_word = false;
|
||||
bool no_fallback = false;
|
||||
bool output_txt = false;
|
||||
bool output_vtt = false;
|
||||
bool output_srt = false;
|
||||
bool output_wts = false;
|
||||
bool output_csv = false;
|
||||
bool output_jsn = false;
|
||||
bool output_lrc = false;
|
||||
bool print_special = false;
|
||||
bool print_colors = false;
|
||||
bool print_progress = false;
|
||||
bool no_timestamps = false;
|
||||
bool log_score = false;
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool detect_language= false;
|
||||
bool diarize = false;
|
||||
bool split_on_word = false;
|
||||
bool no_fallback = false;
|
||||
bool output_txt = false;
|
||||
bool output_vtt = false;
|
||||
bool output_srt = false;
|
||||
bool output_wts = false;
|
||||
bool output_csv = false;
|
||||
bool output_jsn = false;
|
||||
bool output_lrc = false;
|
||||
bool print_special = false;
|
||||
bool print_colors = false;
|
||||
bool print_progress = false;
|
||||
bool no_timestamps = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string language = "en";
|
||||
std::string prompt;
|
||||
std::string font_path = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
|
||||
// [TDRZ] speaker turn string
|
||||
std::string tdrz_speaker_turn = " [SPEAKER_TURN]"; // TODO: set from command line
|
||||
|
||||
std::string openvino_encode_device = "CPU";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
|
||||
std::vector<std::string> fname_inp = {};
|
||||
std::vector<std::string> fname_out = {};
|
||||
@ -124,45 +111,41 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(argv[++i]); }
|
||||
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(argv[++i]); }
|
||||
else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(argv[++i]); }
|
||||
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(argv[++i]); }
|
||||
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); }
|
||||
// else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-debug"|| arg == "--debug-mode") { params.debug_mode = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
|
||||
else if (arg == "-tdrz" || arg == "--tinydiarize") { params.tinydiarize = true; }
|
||||
else if (arg == "-sow" || arg == "--split-on-word") { params.split_on_word = true; }
|
||||
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
|
||||
else if (arg == "-otxt" || arg == "--output-txt") { params.output_txt = true; }
|
||||
else if (arg == "-ovtt" || arg == "--output-vtt") { params.output_vtt = true; }
|
||||
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
|
||||
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
|
||||
else if (arg == "-olrc" || arg == "--output-lrc") { params.output_lrc = true; }
|
||||
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
|
||||
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
|
||||
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
|
||||
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(argv[++i]); }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
|
||||
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
|
||||
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-dl" || arg == "--detect-language") { params.detect_language = true; }
|
||||
else if ( arg == "--prompt") { params.prompt = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(argv[++i]); }
|
||||
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = argv[++i]; }
|
||||
else if (arg == "-ls" || arg == "--log-score") { params.log_score = true; }
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(argv[++i]); }
|
||||
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(argv[++i]); }
|
||||
else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(argv[++i]); }
|
||||
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(argv[++i]); }
|
||||
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
|
||||
else if (arg == "-sow" || arg == "--split-on-word") { params.split_on_word = true; }
|
||||
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
|
||||
else if (arg == "-otxt" || arg == "--output-txt") { params.output_txt = true; }
|
||||
else if (arg == "-ovtt" || arg == "--output-vtt") { params.output_vtt = true; }
|
||||
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
|
||||
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
|
||||
else if (arg == "-olrc" || arg == "--output-lrc") { params.output_lrc = true; }
|
||||
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
|
||||
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
|
||||
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
|
||||
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(argv[++i]); }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
|
||||
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
|
||||
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-dl" || arg == "--detect-language"){ params.detect_language= true; }
|
||||
else if ( arg == "--prompt") { params.prompt = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(argv[++i]); }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -192,11 +175,9 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
|
||||
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
|
||||
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
|
||||
// fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -debug, --debug-mode [%-7s] enable debug mode (eg. dump log_mel)\n", params.debug_mode ? "true" : "false");
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -di, --diarize [%-7s] stereo audio diarization\n", params.diarize ? "true" : "false");
|
||||
fprintf(stderr, " -tdrz, --tinydiarize [%-7s] enable tinydiarize (requires a tdrz model)\n", params.tinydiarize ? "true" : "false");
|
||||
fprintf(stderr, " -nf, --no-fallback [%-7s] do not use temperature fallback while decoding\n", params.no_fallback ? "true" : "false");
|
||||
fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");
|
||||
fprintf(stderr, " -ovtt, --output-vtt [%-7s] output result in a vtt file\n", params.output_vtt ? "true" : "false");
|
||||
@ -210,14 +191,12 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
|
||||
fprintf(stderr, " -pp, --print-progress [%-7s] print progress\n", params.print_progress ? "true" : "false");
|
||||
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "true" : "false");
|
||||
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "false" : "true");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language ('auto' for auto-detect)\n", params.language.c_str());
|
||||
fprintf(stderr, " -dl, --detect-language [%-7s] exit after automatically detecting language\n", params.detect_language ? "true" : "false");
|
||||
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt\n", params.prompt.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
|
||||
fprintf(stderr, " -oved D, --ov-e-device DNAME [%-7s] the OpenVINO device used for encode inference\n", params.openvino_encode_device.c_str());
|
||||
fprintf(stderr, " -ls, --log-score [%-7s] log best decoder scores of tokens\n", params.log_score?"true":"false");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
@ -225,50 +204,8 @@ struct whisper_print_user_data {
|
||||
const whisper_params * params;
|
||||
|
||||
const std::vector<std::vector<float>> * pcmf32s;
|
||||
int progress_prev;
|
||||
};
|
||||
|
||||
std::string estimate_diarization_speaker(std::vector<std::vector<float>> pcmf32s, int64_t t0, int64_t t1, bool id_only = false) {
|
||||
std::string speaker = "";
|
||||
const int64_t n_samples = pcmf32s[0].size();
|
||||
|
||||
const int64_t is0 = timestamp_to_sample(t0, n_samples);
|
||||
const int64_t is1 = timestamp_to_sample(t1, n_samples);
|
||||
|
||||
double energy0 = 0.0f;
|
||||
double energy1 = 0.0f;
|
||||
|
||||
for (int64_t j = is0; j < is1; j++) {
|
||||
energy0 += fabs(pcmf32s[0][j]);
|
||||
energy1 += fabs(pcmf32s[1][j]);
|
||||
}
|
||||
|
||||
if (energy0 > 1.1*energy1) {
|
||||
speaker = "0";
|
||||
} else if (energy1 > 1.1*energy0) {
|
||||
speaker = "1";
|
||||
} else {
|
||||
speaker = "?";
|
||||
}
|
||||
|
||||
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, speaker = %s\n", is0, is1, energy0, energy1, speaker.c_str());
|
||||
|
||||
if (!id_only) {
|
||||
speaker.insert(0, "(speaker ");
|
||||
speaker.append(")");
|
||||
}
|
||||
|
||||
return speaker;
|
||||
}
|
||||
void whisper_print_progress_callback(struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, int progress, void * user_data) {
|
||||
int progress_step = ((whisper_print_user_data *) user_data)->params->progress_step;
|
||||
int * progress_prev = &(((whisper_print_user_data *) user_data)->progress_prev);
|
||||
if (progress >= *progress_prev + progress_step) {
|
||||
*progress_prev += progress_step;
|
||||
fprintf(stderr, "%s: progress = %3d%%\n", __func__, progress);
|
||||
}
|
||||
}
|
||||
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * /*state*/, int n_new, void * user_data) {
|
||||
const auto & params = *((whisper_print_user_data *) user_data)->params;
|
||||
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
|
||||
@ -298,7 +235,28 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
|
||||
}
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2) {
|
||||
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
|
||||
const int64_t n_samples = pcmf32s[0].size();
|
||||
|
||||
const int64_t is0 = timestamp_to_sample(t0, n_samples);
|
||||
const int64_t is1 = timestamp_to_sample(t1, n_samples);
|
||||
|
||||
double energy0 = 0.0f;
|
||||
double energy1 = 0.0f;
|
||||
|
||||
for (int64_t j = is0; j < is1; j++) {
|
||||
energy0 += fabs(pcmf32s[0][j]);
|
||||
energy1 += fabs(pcmf32s[1][j]);
|
||||
}
|
||||
|
||||
if (energy0 > 1.1*energy1) {
|
||||
speaker = "(speaker 0)";
|
||||
} else if (energy1 > 1.1*energy0) {
|
||||
speaker = "(speaker 1)";
|
||||
} else {
|
||||
speaker = "(speaker ?)";
|
||||
}
|
||||
|
||||
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, %s\n", is0, is1, energy0, energy1, speaker.c_str());
|
||||
}
|
||||
|
||||
if (params.print_colors) {
|
||||
@ -323,12 +281,6 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
|
||||
printf("%s%s", speaker.c_str(), text);
|
||||
}
|
||||
|
||||
if (params.tinydiarize) {
|
||||
if (whisper_full_get_segment_speaker_turn_next(ctx, i)) {
|
||||
printf("%s", params.tdrz_speaker_turn.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
// with timestamps or speakers: each segment on new line
|
||||
if (!params.no_timestamps || params.diarize) {
|
||||
printf("\n");
|
||||
@ -338,7 +290,7 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
|
||||
}
|
||||
}
|
||||
|
||||
bool output_txt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
|
||||
bool output_txt(struct whisper_context * ctx, const char * fname) {
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
@ -350,22 +302,13 @@ bool output_txt(struct whisper_context * ctx, const char * fname, const whisper_
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
std::string speaker = "";
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2)
|
||||
{
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
|
||||
}
|
||||
|
||||
fout << speaker << text << "\n";
|
||||
fout << text << "\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_vtt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
|
||||
bool output_vtt(struct whisper_context * ctx, const char * fname) {
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
@ -381,23 +324,15 @@ bool output_vtt(struct whisper_context * ctx, const char * fname, const whisper_
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
std::string speaker = "";
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2)
|
||||
{
|
||||
speaker = estimate_diarization_speaker(pcmf32s, t0, t1, true);
|
||||
speaker.insert(0, "<v Speaker");
|
||||
speaker.append(">");
|
||||
}
|
||||
|
||||
fout << to_timestamp(t0) << " --> " << to_timestamp(t1) << "\n";
|
||||
fout << speaker << text << "\n\n";
|
||||
fout << text << "\n\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
|
||||
bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params) {
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
@ -411,16 +346,10 @@ bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
std::string speaker = "";
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2)
|
||||
{
|
||||
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
|
||||
}
|
||||
|
||||
fout << i + 1 + params.offset_n << "\n";
|
||||
fout << to_timestamp(t0, true) << " --> " << to_timestamp(t1, true) << "\n";
|
||||
fout << speaker << text << "\n\n";
|
||||
fout << text << "\n\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
@ -457,7 +386,7 @@ char *escape_double_quotes_and_backslashes(const char *str) {
|
||||
return escaped;
|
||||
}
|
||||
|
||||
bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
|
||||
bool output_csv(struct whisper_context * ctx, const char * fname) {
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
@ -467,13 +396,7 @@ bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
fout << "start,end,";
|
||||
if (params.diarize && pcmf32s.size() == 2)
|
||||
{
|
||||
fout << "speaker,";
|
||||
}
|
||||
fout << "text\n";
|
||||
|
||||
fout << "start,end,text\n";
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
@ -481,37 +404,13 @@ bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_
|
||||
char * text_escaped = escape_double_quotes_and_backslashes(text);
|
||||
|
||||
//need to multiply times returned from whisper_full_get_segment_t{0,1}() by 10 to get milliseconds.
|
||||
fout << 10 * t0 << "," << 10 * t1 << ",";
|
||||
if (params.diarize && pcmf32s.size() == 2)
|
||||
{
|
||||
fout << estimate_diarization_speaker(pcmf32s, t0, t1, true) << ",";
|
||||
}
|
||||
fout << "\"" << text_escaped << "\"\n";
|
||||
fout << 10 * t0 << "," << 10 * t1 << ",\"" << text_escaped << "\"\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_score(struct whisper_context * ctx, const char * fname, const whisper_params & /*params*/, std::vector<std::vector<float>> /*pcmf32s*/) {
|
||||
std::ofstream fout(fname);
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
// fprintf(stderr,"segments: %d\n",n_segments);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const int n_tokens = whisper_full_n_tokens(ctx, i);
|
||||
// fprintf(stderr,"tokens: %d\n",n_tokens);
|
||||
for (int j = 0; j < n_tokens; j++) {
|
||||
auto token = whisper_full_get_token_text(ctx, i, j);
|
||||
auto probability = whisper_full_get_token_p(ctx, i, j);
|
||||
fout << token << '\t' << probability << std::endl;
|
||||
// fprintf(stderr,"token: %s %f\n",token,probability);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_json(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
|
||||
bool output_json(struct whisper_context * ctx, const char * fname, const whisper_params & params) {
|
||||
std::ofstream fout(fname);
|
||||
int indent = 0;
|
||||
|
||||
@ -525,13 +424,13 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
indent++;
|
||||
};
|
||||
|
||||
auto end_arr = [&](bool end) {
|
||||
auto end_arr = [&](bool end = false) {
|
||||
indent--;
|
||||
doindent();
|
||||
fout << (end ? "]\n" : "},\n");
|
||||
};
|
||||
|
||||
auto start_obj = [&](const char *name) {
|
||||
auto start_obj = [&](const char *name = nullptr) {
|
||||
doindent();
|
||||
if (name) {
|
||||
fout << "\"" << name << "\": {\n";
|
||||
@ -541,7 +440,7 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
indent++;
|
||||
};
|
||||
|
||||
auto end_obj = [&](bool end) {
|
||||
auto end_obj = [&](bool end = false) {
|
||||
indent--;
|
||||
doindent();
|
||||
fout << (end ? "}\n" : "},\n");
|
||||
@ -552,24 +451,24 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
fout << "\"" << name << "\": ";
|
||||
};
|
||||
|
||||
auto value_s = [&](const char *name, const char *val, bool end) {
|
||||
auto value_s = [&](const char *name, const char *val, bool end = false) {
|
||||
start_value(name);
|
||||
char * val_escaped = escape_double_quotes_and_backslashes(val);
|
||||
fout << "\"" << val_escaped << (end ? "\"\n" : "\",\n");
|
||||
free(val_escaped);
|
||||
};
|
||||
|
||||
auto end_value = [&](bool end) {
|
||||
auto end_value = [&](bool end = false) {
|
||||
fout << (end ? "\n" : ",\n");
|
||||
};
|
||||
|
||||
auto value_i = [&](const char *name, const int64_t val, bool end) {
|
||||
auto value_i = [&](const char *name, const int64_t val, bool end = false) {
|
||||
start_value(name);
|
||||
fout << val;
|
||||
end_value(end);
|
||||
};
|
||||
|
||||
auto value_b = [&](const char *name, const bool val, bool end) {
|
||||
auto value_b = [&](const char *name, const bool val, bool end = false) {
|
||||
start_value(name);
|
||||
fout << (val ? "true" : "false");
|
||||
end_value(end);
|
||||
@ -581,62 +480,53 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
start_obj(nullptr);
|
||||
value_s("systeminfo", whisper_print_system_info(), false);
|
||||
start_obj();
|
||||
value_s("systeminfo", whisper_print_system_info());
|
||||
start_obj("model");
|
||||
value_s("type", whisper_model_type_readable(ctx), false);
|
||||
value_b("multilingual", whisper_is_multilingual(ctx), false);
|
||||
value_i("vocab", whisper_model_n_vocab(ctx), false);
|
||||
value_s("type", whisper_model_type_readable(ctx));
|
||||
value_b("multilingual", whisper_is_multilingual(ctx));
|
||||
value_i("vocab", whisper_model_n_vocab(ctx));
|
||||
start_obj("audio");
|
||||
value_i("ctx", whisper_model_n_audio_ctx(ctx), false);
|
||||
value_i("state", whisper_model_n_audio_state(ctx), false);
|
||||
value_i("head", whisper_model_n_audio_head(ctx), false);
|
||||
value_i("ctx", whisper_model_n_audio_ctx(ctx));
|
||||
value_i("state", whisper_model_n_audio_state(ctx));
|
||||
value_i("head", whisper_model_n_audio_head(ctx));
|
||||
value_i("layer", whisper_model_n_audio_layer(ctx), true);
|
||||
end_obj(false);
|
||||
end_obj();
|
||||
start_obj("text");
|
||||
value_i("ctx", whisper_model_n_text_ctx(ctx), false);
|
||||
value_i("state", whisper_model_n_text_state(ctx), false);
|
||||
value_i("head", whisper_model_n_text_head(ctx), false);
|
||||
value_i("ctx", whisper_model_n_text_ctx(ctx));
|
||||
value_i("state", whisper_model_n_text_state(ctx));
|
||||
value_i("head", whisper_model_n_text_head(ctx));
|
||||
value_i("layer", whisper_model_n_text_layer(ctx), true);
|
||||
end_obj(false);
|
||||
value_i("mels", whisper_model_n_mels(ctx), false);
|
||||
end_obj();
|
||||
value_i("mels", whisper_model_n_mels(ctx));
|
||||
value_i("ftype", whisper_model_ftype(ctx), true);
|
||||
end_obj(false);
|
||||
end_obj();
|
||||
start_obj("params");
|
||||
value_s("model", params.model.c_str(), false);
|
||||
value_s("language", params.language.c_str(), false);
|
||||
value_s("model", params.model.c_str());
|
||||
value_s("language", params.language.c_str());
|
||||
value_b("translate", params.translate, true);
|
||||
end_obj(false);
|
||||
end_obj();
|
||||
start_obj("result");
|
||||
value_s("language", whisper_lang_str(whisper_full_lang_id(ctx)), true);
|
||||
end_obj(false);
|
||||
end_obj();
|
||||
start_arr("transcription");
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
start_obj(nullptr);
|
||||
start_obj();
|
||||
start_obj("timestamps");
|
||||
value_s("from", to_timestamp(t0, true).c_str(), false);
|
||||
value_s("from", to_timestamp(t0, true).c_str());
|
||||
value_s("to", to_timestamp(t1, true).c_str(), true);
|
||||
end_obj(false);
|
||||
end_obj();
|
||||
start_obj("offsets");
|
||||
value_i("from", t0 * 10, false);
|
||||
value_i("from", t0 * 10);
|
||||
value_i("to", t1 * 10, true);
|
||||
end_obj(false);
|
||||
value_s("text", text, !params.diarize && !params.tinydiarize);
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2) {
|
||||
value_s("speaker", estimate_diarization_speaker(pcmf32s, t0, t1, true).c_str(), true);
|
||||
}
|
||||
|
||||
if (params.tinydiarize) {
|
||||
value_b("speaker_turn_next", whisper_full_get_segment_speaker_turn_next(ctx, i), true);
|
||||
}
|
||||
end_obj();
|
||||
value_s("text", text, true);
|
||||
end_obj(i == (n_segments - 1));
|
||||
}
|
||||
|
||||
@ -648,7 +538,7 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
// karaoke video generation
|
||||
// outputs a bash script that uses ffmpeg to generate a video with the subtitles
|
||||
// TODO: font parameter adjustments
|
||||
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec, std::vector<std::vector<float>> pcmf32s) {
|
||||
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec) {
|
||||
std::ofstream fout(fname);
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
@ -685,11 +575,6 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
|
||||
fout << "drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='':enable='between(t," << t0/100.0 << "," << t0/100.0 << ")'";
|
||||
|
||||
bool is_first = true;
|
||||
std::string speaker = "";
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2) {
|
||||
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
|
||||
}
|
||||
|
||||
for (int j = 0; j < n; ++j) {
|
||||
const auto & token = tokens[j];
|
||||
@ -698,19 +583,13 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
|
||||
continue;
|
||||
}
|
||||
|
||||
std::string txt_bg = "";
|
||||
std::string txt_fg = ""; // highlight token
|
||||
std::string txt_ul = ""; // underline
|
||||
std::string txt_bg;
|
||||
std::string txt_fg; // highlight token
|
||||
std::string txt_ul; // underline
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2) {
|
||||
txt_bg = speaker;
|
||||
txt_fg = speaker;
|
||||
txt_ul = "\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ ";
|
||||
}
|
||||
|
||||
txt_bg.append("> ");
|
||||
txt_fg.append("> ");
|
||||
txt_ul.append("\\ \\ ");
|
||||
txt_bg = "> ";
|
||||
txt_fg = "> ";
|
||||
txt_ul = "\\ \\ ";
|
||||
|
||||
{
|
||||
for (int k = 0; k < n; ++k) {
|
||||
@ -773,7 +652,8 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_lrc(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
|
||||
bool output_lrc(struct whisper_context * ctx, const char * fname) {
|
||||
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
@ -798,16 +678,8 @@ bool output_lrc(struct whisper_context * ctx, const char * fname, const whisper_
|
||||
char buf[16];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d.%02d", (int) min, (int) sec, (int) ( msec / 10));
|
||||
std::string timestamp_lrc = std::string(buf);
|
||||
std::string speaker = "";
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2)
|
||||
{
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
|
||||
}
|
||||
|
||||
fout << '[' << timestamp_lrc << ']' << speaker << text << "\n";
|
||||
fout << '[' << timestamp_lrc << ']' << text << "\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
@ -817,7 +689,6 @@ int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -833,12 +704,6 @@ int main(int argc, char ** argv) {
|
||||
exit(0);
|
||||
}
|
||||
|
||||
if (params.diarize && params.tinydiarize) {
|
||||
fprintf(stderr, "error: cannot use both --diarize and --tinydiarize\n");
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
||||
@ -848,9 +713,6 @@ int main(int argc, char ** argv) {
|
||||
return 3;
|
||||
}
|
||||
|
||||
// initialize openvino encoder. this has no effect on whisper.cpp builds that don't have OpenVINO configured
|
||||
whisper_ctx_init_openvino_encoder(ctx, nullptr, params.openvino_encode_device.c_str(), nullptr);
|
||||
|
||||
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
|
||||
const auto fname_inp = params.fname_inp[f];
|
||||
const auto fname_out = f < (int) params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
|
||||
@ -883,12 +745,11 @@ int main(int argc, char ** argv) {
|
||||
if (params.detect_language) {
|
||||
params.language = "auto";
|
||||
}
|
||||
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, %stimestamps = %d ...\n",
|
||||
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
|
||||
params.n_threads, params.n_processors,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.tinydiarize ? "tdrz = 1, " : "",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
@ -918,9 +779,6 @@ int main(int argc, char ** argv) {
|
||||
wparams.split_on_word = params.split_on_word;
|
||||
|
||||
wparams.speed_up = params.speed_up;
|
||||
wparams.debug_mode = params.debug_mode;
|
||||
|
||||
wparams.tdrz_enable = params.tinydiarize; // [TDRZ]
|
||||
|
||||
wparams.initial_prompt = params.prompt.c_str();
|
||||
|
||||
@ -931,7 +789,7 @@ int main(int argc, char ** argv) {
|
||||
wparams.entropy_thold = params.entropy_thold;
|
||||
wparams.logprob_thold = params.logprob_thold;
|
||||
|
||||
whisper_print_user_data user_data = { ¶ms, &pcmf32s, 0 };
|
||||
whisper_print_user_data user_data = { ¶ms, &pcmf32s };
|
||||
|
||||
// this callback is called on each new segment
|
||||
if (!wparams.print_realtime) {
|
||||
@ -939,11 +797,6 @@ int main(int argc, char ** argv) {
|
||||
wparams.new_segment_callback_user_data = &user_data;
|
||||
}
|
||||
|
||||
if (wparams.print_progress) {
|
||||
wparams.progress_callback = whisper_print_progress_callback;
|
||||
wparams.progress_callback_user_data = &user_data;
|
||||
}
|
||||
|
||||
// example for abort mechanism
|
||||
// in this example, we do not abort the processing, but we could if the flag is set to true
|
||||
// the callback is called before every encoder run - if it returns false, the processing is aborted
|
||||
@ -970,49 +823,43 @@ int main(int argc, char ** argv) {
|
||||
// output to text file
|
||||
if (params.output_txt) {
|
||||
const auto fname_txt = fname_out + ".txt";
|
||||
output_txt(ctx, fname_txt.c_str(), params, pcmf32s);
|
||||
output_txt(ctx, fname_txt.c_str());
|
||||
}
|
||||
|
||||
// output to VTT file
|
||||
if (params.output_vtt) {
|
||||
const auto fname_vtt = fname_out + ".vtt";
|
||||
output_vtt(ctx, fname_vtt.c_str(), params, pcmf32s);
|
||||
output_vtt(ctx, fname_vtt.c_str());
|
||||
}
|
||||
|
||||
// output to SRT file
|
||||
if (params.output_srt) {
|
||||
const auto fname_srt = fname_out + ".srt";
|
||||
output_srt(ctx, fname_srt.c_str(), params, pcmf32s);
|
||||
output_srt(ctx, fname_srt.c_str(), params);
|
||||
}
|
||||
|
||||
// output to WTS file
|
||||
if (params.output_wts) {
|
||||
const auto fname_wts = fname_out + ".wts";
|
||||
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE, pcmf32s);
|
||||
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE);
|
||||
}
|
||||
|
||||
// output to CSV file
|
||||
if (params.output_csv) {
|
||||
const auto fname_csv = fname_out + ".csv";
|
||||
output_csv(ctx, fname_csv.c_str(), params, pcmf32s);
|
||||
output_csv(ctx, fname_csv.c_str());
|
||||
}
|
||||
|
||||
// output to JSON file
|
||||
if (params.output_jsn) {
|
||||
const auto fname_jsn = fname_out + ".json";
|
||||
output_json(ctx, fname_jsn.c_str(), params, pcmf32s);
|
||||
output_json(ctx, fname_jsn.c_str(), params);
|
||||
}
|
||||
|
||||
// output to LRC file
|
||||
if (params.output_lrc) {
|
||||
const auto fname_lrc = fname_out + ".lrc";
|
||||
output_lrc(ctx, fname_lrc.c_str(), params, pcmf32s);
|
||||
}
|
||||
|
||||
// output to score file
|
||||
if (params.log_score) {
|
||||
const auto fname_score = fname_out + ".score.txt";
|
||||
output_score(ctx, fname_score.c_str(), params, pcmf32s);
|
||||
output_lrc(ctx, fname_lrc.c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -25,7 +25,7 @@ struct whisper_hparams {
|
||||
int32_t n_text_head = 6;
|
||||
int32_t n_text_layer = 4;
|
||||
int32_t n_mels = 80;
|
||||
int32_t ftype = 1;
|
||||
int32_t f16 = 1;
|
||||
};
|
||||
|
||||
struct whisper_filters {
|
||||
@ -57,7 +57,7 @@ bool whisper_model_quantize(const std::string & fname_inp, const std::string & f
|
||||
{
|
||||
uint32_t magic;
|
||||
finp.read((char *) &magic, sizeof(magic));
|
||||
if (magic != GGML_FILE_MAGIC) {
|
||||
if (magic != 0x67676d6c) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
|
||||
return false;
|
||||
}
|
||||
@ -79,10 +79,7 @@ bool whisper_model_quantize(const std::string & fname_inp, const std::string & f
|
||||
finp.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
|
||||
finp.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
|
||||
finp.read((char *) &hparams.n_mels, sizeof(hparams.n_mels));
|
||||
finp.read((char *) &hparams.ftype, sizeof(hparams.ftype));
|
||||
|
||||
const int32_t qntvr_src = hparams.ftype / GGML_QNT_VERSION_FACTOR;
|
||||
const int32_t ftype_dst = GGML_QNT_VERSION * GGML_QNT_VERSION_FACTOR + ftype;
|
||||
finp.read((char *) &hparams.f16, sizeof(hparams.f16));
|
||||
|
||||
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||
fprintf(stderr, "%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx);
|
||||
@ -94,22 +91,19 @@ bool whisper_model_quantize(const std::string & fname_inp, const std::string & f
|
||||
fprintf(stderr, "%s: n_text_head = %d\n", __func__, hparams.n_text_head);
|
||||
fprintf(stderr, "%s: n_text_layer = %d\n", __func__, hparams.n_text_layer);
|
||||
fprintf(stderr, "%s: n_mels = %d\n", __func__, hparams.n_mels);
|
||||
fprintf(stderr, "%s: ftype (src) = %d\n", __func__, hparams.ftype);
|
||||
fprintf(stderr, "%s: qntvr (src) = %d\n", __func__, qntvr_src);
|
||||
fprintf(stderr, "%s: ftype (dst) = %d\n", __func__, ftype_dst);
|
||||
fprintf(stderr, "%s: qntvr (dst) = %d\n", __func__, GGML_QNT_VERSION);
|
||||
fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
|
||||
|
||||
fout.write((const char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||
fout.write((const char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
|
||||
fout.write((const char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
|
||||
fout.write((const char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
|
||||
fout.write((const char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
|
||||
fout.write((const char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
|
||||
fout.write((const char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
|
||||
fout.write((const char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
|
||||
fout.write((const char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
|
||||
fout.write((const char *) &hparams.n_mels, sizeof(hparams.n_mels));
|
||||
fout.write((const char *) &ftype_dst, sizeof(hparams.ftype));
|
||||
fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||
fout.write((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
|
||||
fout.write((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
|
||||
fout.write((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
|
||||
fout.write((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
|
||||
fout.write((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
|
||||
fout.write((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
|
||||
fout.write((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
|
||||
fout.write((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
|
||||
fout.write((char *) &hparams.n_mels, sizeof(hparams.n_mels));
|
||||
fout.write((char *) &ftype, sizeof(hparams.f16));
|
||||
}
|
||||
|
||||
// load mel filters
|
||||
@ -138,17 +132,15 @@ bool whisper_model_quantize(const std::string & fname_inp, const std::string & f
|
||||
// return false;
|
||||
//}
|
||||
|
||||
char word[129];
|
||||
|
||||
std::string word;
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
finp.read ((char *) &len, sizeof(len));
|
||||
fout.write((char *) &len, sizeof(len));
|
||||
|
||||
word[len] = '\0';
|
||||
|
||||
finp.read ((char *) word, len);
|
||||
fout.write((char *) word, len);
|
||||
word.resize(len);
|
||||
finp.read ((char *) word.data(), len);
|
||||
fout.write((char *) word.data(), len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
|
@ -3,8 +3,8 @@
|
||||
// A very quick-n-dirty implementation serving mainly as a proof of concept.
|
||||
//
|
||||
|
||||
#include "common-sdl.h"
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <cassert>
|
||||
@ -47,7 +47,6 @@ struct whisper_params {
|
||||
bool print_special = false;
|
||||
bool no_context = true;
|
||||
bool no_timestamps = false;
|
||||
bool tinydiarize = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
@ -81,8 +80,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
else if (arg == "-tdrz" || arg == "--tinydiarize") { params.tinydiarize = true; }
|
||||
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -116,7 +113,6 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, " -tdrz, --tinydiarize [%-7s] enable tinydiarize (requires a tdrz model)\n", params.tinydiarize ? "true" : "false");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
@ -303,8 +299,6 @@ int main(int argc, char ** argv) {
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
wparams.tdrz_enable = params.tinydiarize; // [TDRZ]
|
||||
|
||||
// disable temperature fallback
|
||||
//wparams.temperature_inc = -1.0f;
|
||||
wparams.temperature_inc = params.no_fallback ? 0.0f : wparams.temperature_inc;
|
||||
@ -350,19 +344,10 @@ int main(int argc, char ** argv) {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
std::string output = "[" + to_timestamp(t0) + " --> " + to_timestamp(t1) + "] " + text;
|
||||
|
||||
if (whisper_full_get_segment_speaker_turn_next(ctx, i)) {
|
||||
output += " [SPEAKER_TURN]";
|
||||
}
|
||||
|
||||
output += "\n";
|
||||
|
||||
printf("%s", output.c_str());
|
||||
fflush(stdout);
|
||||
printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
|
||||
|
||||
if (params.fname_out.length() > 0) {
|
||||
fout << output;
|
||||
fout << "[" << to_timestamp(t0) << " --> " << to_timestamp(t1) << "] " << text << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -42,8 +42,8 @@ Example usage:
|
||||
## TTS
|
||||
|
||||
For best experience, this example needs a TTS tool to convert the generated text responses to voice.
|
||||
You can use any TTS engine that you would like - simply edit the [speak](speak) script to your needs.
|
||||
By default, it is configured to use MacOS's `say` or Windows SpeechSynthesizer, but you can use whatever you wish.
|
||||
You can use any TTS engine that you would like - simply edit the [speak.sh](speak.sh) script to your needs.
|
||||
By default, it is configured to use MacOS's `say`, but you can use whatever you wish.
|
||||
|
||||
## Discussion
|
||||
|
||||
|
@ -1,20 +1,23 @@
|
||||
import sys
|
||||
import importlib.util
|
||||
|
||||
api_key = "" #Write your https://beta.elevenlabs.io api key here
|
||||
if not api_key:
|
||||
print("To use elevenlabs you have to register to https://beta.elevenlabs.io and add your elevenlabs api key to examples/talk-llama/eleven-labs.py")
|
||||
sys.exit()
|
||||
|
||||
if importlib.util.find_spec("elevenlabs") is None:
|
||||
print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'")
|
||||
sys.exit()
|
||||
|
||||
from elevenlabs import generate, play, save
|
||||
from elevenlabs import ElevenLabs
|
||||
eleven = ElevenLabs(api_key)
|
||||
|
||||
# Get a Voice object, by name or UUID
|
||||
voice = "Arnold" #Possible Voices: Adam Antoni Arnold Bella Domi Elli Josh
|
||||
voice = eleven.voices["Arnold"] #Possible Voices: Adam Antoni Arnold Bella Domi Elli Josh
|
||||
|
||||
# Generate the TTS
|
||||
audio = generate(
|
||||
text=str(sys.argv[2:]),
|
||||
voice=voice
|
||||
)
|
||||
audio = voice.generate(str(sys.argv[2:]))
|
||||
|
||||
# Save the TTS to a file
|
||||
save(audio, "audio.mp3")
|
||||
audio.save("audio")
|
||||
|
@ -14,7 +14,6 @@
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <stdexcept>
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<unistd.h>)
|
||||
@ -75,7 +74,7 @@ struct llama_file {
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
|
||||
throw format("failed to open %s: %s", fname, std::strerror(errno));
|
||||
}
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
@ -101,17 +100,17 @@ struct llama_file {
|
||||
LLAMA_ASSERT(ret == 0); // same
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t len) const {
|
||||
if (len == 0) {
|
||||
void read_raw(void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, len, 1, fp);
|
||||
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||
throw format("read error: %s", strerror(errno));
|
||||
}
|
||||
if (ret != 1) {
|
||||
throw std::runtime_error(std::string("unexpectedly reached end of file"));
|
||||
throw std::string("unexpectedly reached end of file");
|
||||
}
|
||||
}
|
||||
|
||||
@ -127,14 +126,14 @@ struct llama_file {
|
||||
return std::string(chars.data(), len);
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t len) const {
|
||||
if (len == 0) {
|
||||
void write_raw(const void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
size_t ret = std::fwrite(ptr, len, 1, fp);
|
||||
size_t ret = std::fwrite(ptr, size, 1, fp);
|
||||
if (ret != 1) {
|
||||
throw std::runtime_error(format("write error: %s", strerror(errno)));
|
||||
throw format("write error: %s", strerror(errno));
|
||||
}
|
||||
}
|
||||
|
||||
@ -172,7 +171,7 @@ struct llama_mmap {
|
||||
#ifdef _POSIX_MAPPED_FILES
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */) {
|
||||
llama_mmap(struct llama_file * file, bool prefetch = true) {
|
||||
size = file->size;
|
||||
int fd = fileno(file->fp);
|
||||
int flags = MAP_SHARED;
|
||||
@ -181,13 +180,13 @@ struct llama_mmap {
|
||||
#endif
|
||||
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
|
||||
if (addr == MAP_FAILED) {
|
||||
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
|
||||
throw format("mmap failed: %s", strerror(errno));
|
||||
}
|
||||
|
||||
if (prefetch > 0) {
|
||||
if (prefetch) {
|
||||
// Advise the kernel to preload the mapped memory
|
||||
if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
|
||||
fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
|
||||
if (madvise(addr, file->size, MADV_WILLNEED)) {
|
||||
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
|
||||
strerror(errno));
|
||||
}
|
||||
}
|
||||
@ -208,7 +207,7 @@ struct llama_mmap {
|
||||
DWORD error = GetLastError();
|
||||
|
||||
if (hMapping == NULL) {
|
||||
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
|
||||
throw format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str());
|
||||
}
|
||||
|
||||
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
||||
@ -216,7 +215,7 @@ struct llama_mmap {
|
||||
CloseHandle(hMapping);
|
||||
|
||||
if (addr == NULL) {
|
||||
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
|
||||
throw format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str());
|
||||
}
|
||||
|
||||
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||
@ -244,9 +243,8 @@ struct llama_mmap {
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
llama_mmap(struct llama_file *, bool prefetch = true) {
|
||||
(void)prefetch;
|
||||
throw std::runtime_error(std::string("mmap not supported"));
|
||||
llama_mmap(struct llama_file *) {
|
||||
throw std::string("mmap not supported");
|
||||
}
|
||||
#endif
|
||||
};
|
||||
@ -267,9 +265,9 @@ struct llama_mlock {
|
||||
}
|
||||
}
|
||||
|
||||
void init(void * ptr) {
|
||||
LLAMA_ASSERT(addr == NULL && size == 0);
|
||||
addr = ptr;
|
||||
void init(void * addr) {
|
||||
LLAMA_ASSERT(this->addr == NULL && this->size == 0);
|
||||
this->addr = addr;
|
||||
}
|
||||
|
||||
void grow_to(size_t target_size) {
|
||||
@ -340,14 +338,14 @@ struct llama_mlock {
|
||||
return (size_t) si.dwPageSize;
|
||||
}
|
||||
|
||||
bool raw_lock(void * ptr, size_t len) {
|
||||
bool raw_lock(void * addr, size_t size) {
|
||||
for (int tries = 1; ; tries++) {
|
||||
if (VirtualLock(ptr, len)) {
|
||||
if (VirtualLock(addr, size)) {
|
||||
return true;
|
||||
}
|
||||
if (tries == 2) {
|
||||
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
|
||||
len, size, llama_format_win_err(GetLastError()).c_str());
|
||||
size, this->size, llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -363,7 +361,7 @@ struct llama_mlock {
|
||||
// is equal to the number of pages in its minimum working set minus
|
||||
// a small overhead."
|
||||
// Hopefully a megabyte is enough overhead:
|
||||
size_t increment = len + 1048576;
|
||||
size_t increment = size + 1048576;
|
||||
// The minimum must be <= the maximum, so we need to increase both:
|
||||
min_ws_size += increment;
|
||||
max_ws_size += increment;
|
||||
@ -375,8 +373,8 @@ struct llama_mlock {
|
||||
}
|
||||
}
|
||||
|
||||
void raw_unlock(void * ptr, size_t len) {
|
||||
if (!VirtualUnlock(ptr, len)) {
|
||||
void raw_unlock(void * addr, size_t size) {
|
||||
if (!VirtualUnlock(addr, size)) {
|
||||
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
@ -384,16 +382,11 @@ struct llama_mlock {
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
size_t lock_granularity() {
|
||||
return (size_t) 65536;
|
||||
}
|
||||
|
||||
bool raw_lock(const void * addr, size_t len) {
|
||||
void raw_lock(const void * addr, size_t size) {
|
||||
fprintf(stderr, "warning: mlock not supported on this system\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
void raw_unlock(const void * addr, size_t len) {}
|
||||
void raw_unlock(const void * addr, size_t size) {}
|
||||
#endif
|
||||
};
|
||||
|
||||
@ -402,70 +395,36 @@ struct llama_buffer {
|
||||
uint8_t * addr = NULL;
|
||||
size_t size = 0;
|
||||
|
||||
llama_buffer() = default;
|
||||
|
||||
void resize(size_t len) {
|
||||
void resize(size_t size) {
|
||||
delete[] addr;
|
||||
addr = new uint8_t[len];
|
||||
size = len;
|
||||
addr = new uint8_t[size];
|
||||
this->size = size;
|
||||
}
|
||||
|
||||
~llama_buffer() {
|
||||
delete[] addr;
|
||||
}
|
||||
|
||||
// disable copy and move
|
||||
llama_buffer(const llama_buffer&) = delete;
|
||||
llama_buffer(llama_buffer&&) = delete;
|
||||
llama_buffer& operator=(const llama_buffer&) = delete;
|
||||
llama_buffer& operator=(llama_buffer&&) = delete;
|
||||
};
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#include "ggml-cuda.h"
|
||||
struct llama_ctx_buffer {
|
||||
uint8_t * addr = NULL;
|
||||
bool is_cuda;
|
||||
size_t size = 0;
|
||||
|
||||
llama_ctx_buffer() = default;
|
||||
|
||||
void resize(size_t size) {
|
||||
free();
|
||||
|
||||
addr = (uint8_t *) ggml_cuda_host_malloc(size);
|
||||
if (addr) {
|
||||
is_cuda = true;
|
||||
}
|
||||
else {
|
||||
// fall back to pageable memory
|
||||
addr = new uint8_t[size];
|
||||
is_cuda = false;
|
||||
ggml_cuda_host_free(addr);
|
||||
}
|
||||
addr = (uint8_t *) ggml_cuda_host_malloc(size);
|
||||
this->size = size;
|
||||
}
|
||||
|
||||
void free() {
|
||||
if (addr) {
|
||||
if (is_cuda) {
|
||||
ggml_cuda_host_free(addr);
|
||||
}
|
||||
else {
|
||||
delete[] addr;
|
||||
}
|
||||
}
|
||||
addr = NULL;
|
||||
}
|
||||
|
||||
~llama_ctx_buffer() {
|
||||
free();
|
||||
if (addr) {
|
||||
ggml_cuda_host_free(addr);
|
||||
}
|
||||
}
|
||||
|
||||
// disable copy and move
|
||||
llama_ctx_buffer(const llama_ctx_buffer&) = delete;
|
||||
llama_ctx_buffer(llama_ctx_buffer&&) = delete;
|
||||
llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete;
|
||||
llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete;
|
||||
};
|
||||
#else
|
||||
typedef llama_buffer llama_ctx_buffer;
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -19,17 +19,11 @@
|
||||
# define LLAMA_API
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
||||
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
||||
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
|
||||
#define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
|
||||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||
|
||||
#define LLAMA_FILE_VERSION 3
|
||||
#define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
|
||||
#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
|
||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||
#define LLAMA_SESSION_VERSION 1
|
||||
#define LLAMA_FILE_VERSION 1
|
||||
#define LLAMA_FILE_MAGIC 'ggjt'
|
||||
#define LLAMA_FILE_MAGIC_UNVERSIONED 'ggml'
|
||||
#define LLAMA_SESSION_MAGIC 'ggsn'
|
||||
#define LLAMA_SESSION_VERSION 0
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
@ -46,9 +40,9 @@ extern "C" {
|
||||
typedef int llama_token;
|
||||
|
||||
typedef struct llama_token_data {
|
||||
llama_token id; // token id
|
||||
float logit; // log-odds of the token
|
||||
float p; // probability of the token
|
||||
llama_token id; // token id
|
||||
float logit; // log-odds of the token
|
||||
float p; // probability of the token
|
||||
} llama_token_data;
|
||||
|
||||
typedef struct llama_token_data_array {
|
||||
@ -60,9 +54,9 @@ extern "C" {
|
||||
typedef void (*llama_progress_callback)(float progress, void *ctx);
|
||||
|
||||
struct llama_context_params {
|
||||
int n_ctx; // text context
|
||||
int n_gpu_layers; // number of layers to store in VRAM
|
||||
int seed; // RNG seed, -1 for random
|
||||
int n_ctx; // text context
|
||||
int n_parts; // -1 for default
|
||||
int seed; // RNG seed, 0 for random
|
||||
|
||||
bool f16_kv; // use fp16 for KV cache
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
@ -79,16 +73,16 @@ extern "C" {
|
||||
|
||||
// model file types
|
||||
enum llama_ftype {
|
||||
LLAMA_FTYPE_ALL_F32 = 0,
|
||||
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||
LLAMA_FTYPE_ALL_F32 = 0,
|
||||
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
||||
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // except 1d tensors
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_3 (6) support has been removed
|
||||
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||||
};
|
||||
|
||||
LLAMA_API struct llama_context_params llama_context_default_params();
|
||||
@ -96,13 +90,6 @@ extern "C" {
|
||||
LLAMA_API bool llama_mmap_supported();
|
||||
LLAMA_API bool llama_mlock_supported();
|
||||
|
||||
// TODO: not great API - very likely to change
|
||||
// Initialize the llama + ggml backend
|
||||
// Call once at the start of the program
|
||||
LLAMA_API void llama_init_backend();
|
||||
|
||||
LLAMA_API int64_t llama_time_us();
|
||||
|
||||
// Various functions for loading a ggml llama model.
|
||||
// Allocate (almost) all memory needed for the model.
|
||||
// Return NULL on failure
|
||||
@ -135,28 +122,26 @@ extern "C" {
|
||||
int n_threads);
|
||||
|
||||
// Returns the number of tokens in the KV cache
|
||||
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
|
||||
LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx);
|
||||
|
||||
// Sets the current rng seed.
|
||||
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed);
|
||||
|
||||
// Returns the maximum size in bytes of the state (rng, logits, embedding
|
||||
// and kv_cache) - will often be smaller after compacting tokens
|
||||
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
|
||||
// Returns the size in bytes of the state (rng, logits, embedding and kv_cache)
|
||||
LLAMA_API size_t llama_get_state_size(struct llama_context * ctx);
|
||||
|
||||
// Copies the state to the specified destination address.
|
||||
// Destination needs to have allocated enough memory.
|
||||
// Returns the number of bytes copied
|
||||
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
|
||||
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dest);
|
||||
|
||||
// Set the state reading from the specified address
|
||||
// Returns the number of bytes read
|
||||
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
|
||||
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src);
|
||||
|
||||
// Save/load session file
|
||||
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
|
||||
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
|
||||
|
||||
// Run the llama inference to obtain the logits and probabilities for the next token.
|
||||
// tokens + n_tokens is the provided batch of new tokens to process
|
||||
// n_past is the number of tokens to use from previous eval calls
|
||||
@ -180,9 +165,9 @@ extern "C" {
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
|
||||
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_vocab(struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_ctx (struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_embd (struct llama_context * ctx);
|
||||
|
||||
// Token logits obtained from the last call to llama_eval()
|
||||
// The logits for the last token are stored in the last row
|
||||
@ -196,7 +181,7 @@ extern "C" {
|
||||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||
|
||||
// Token Id -> String. Uses the vocabulary in the provided context
|
||||
LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
|
||||
LLAMA_API const char * llama_token_to_str(struct llama_context * ctx, llama_token token);
|
||||
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos();
|
||||
@ -206,25 +191,25 @@ extern "C" {
|
||||
// Sampling functions
|
||||
|
||||
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
|
||||
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float penalty);
|
||||
|
||||
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||||
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
|
||||
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
|
||||
|
||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
|
||||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
|
||||
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep = 1);
|
||||
|
||||
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1);
|
||||
|
||||
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||||
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
|
||||
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep = 1);
|
||||
|
||||
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||||
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1);
|
||||
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
|
||||
|
||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
|
@ -1 +0,0 @@
|
||||
@powershell -ExecutionPolicy Bypass -F examples\talk\speak.ps1 %1 %2
|
@ -1,12 +0,0 @@
|
||||
# Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope CurrentUser
|
||||
param(
|
||||
# voice options are David or Zira
|
||||
[Parameter(Mandatory=$true)][string]$voice,
|
||||
[Parameter(Mandatory=$true)][string]$text
|
||||
)
|
||||
|
||||
Add-Type -AssemblyName System.Speech;
|
||||
$speak = New-Object System.Speech.Synthesis.SpeechSynthesizer;
|
||||
$speak.SelectVoice("Microsoft $voice Desktop");
|
||||
$speak.Rate="0";
|
||||
$speak.Speak($text);
|
5
examples/talk-llama/speak → examples/talk-llama/speak.sh
Normal file → Executable file
5
examples/talk-llama/speak → examples/talk-llama/speak.sh
Normal file → Executable file
@ -13,11 +13,8 @@
|
||||
say "$2"
|
||||
|
||||
# Eleven Labs
|
||||
# To use it, install the elevenlabs module from pip (pip install elevenlabs)
|
||||
# It's possible to use the API for free with limited number of characters. To increase this limit register to https://beta.elevenlabs.io to get an api key and paste it after 'ELEVEN_API_KEY='
|
||||
#Keep the line commented to use the free version whitout api key
|
||||
# To use it, install the elevenlabs module from pip (pip install elevenlabs), register to https://beta.elevenlabs.io to get an api key and paste it in /examples/talk-llama/eleven-labs.py
|
||||
#
|
||||
#export ELEVEN_API_KEY=your_api_key
|
||||
#wd=$(dirname $0)
|
||||
#script=$wd/eleven-labs.py
|
||||
#python3 $script $1 "$2" >/dev/null 2>&1
|
@ -1,8 +1,8 @@
|
||||
// Talk with AI
|
||||
//
|
||||
|
||||
#include "common-sdl.h"
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "whisper.h"
|
||||
#include "llama.h"
|
||||
|
||||
@ -33,6 +33,8 @@ struct whisper_params {
|
||||
int32_t max_tokens = 32;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
int32_t n_parts_llama = -1;
|
||||
|
||||
float vad_thold = 0.6f;
|
||||
float freq_thold = 100.0f;
|
||||
|
||||
@ -47,7 +49,7 @@ struct whisper_params {
|
||||
std::string language = "en";
|
||||
std::string model_wsp = "models/ggml-base.en.bin";
|
||||
std::string model_llama = "models/ggml-llama-7B.bin";
|
||||
std::string speak = "./examples/talk-llama/speak";
|
||||
std::string speak = "./examples/talk-llama/speak.sh";
|
||||
std::string prompt = "";
|
||||
std::string fname_out;
|
||||
std::string path_session = ""; // path to file for saving/loading model eval state
|
||||
@ -70,6 +72,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "--n-parts-llama") { params.n_parts_llama = std::stoi(argv[++i]); }
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
@ -120,6 +123,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
|
||||
fprintf(stderr, " -ml FILE, --model-llama [%-7s] llama model file\n", params.model_llama.c_str());
|
||||
fprintf(stderr, " --n-parts-llama N [%-7d] num parts in llama model file\n", params.n_parts_llama);
|
||||
fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str());
|
||||
fprintf(stderr, " --prompt-file FNAME [%-7s] file with custom prompt to start dialog\n", "");
|
||||
fprintf(stderr, " --session FNAME file to cache model state in (may be large!) (default: none)\n");
|
||||
@ -235,14 +239,13 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// llama init
|
||||
|
||||
llama_init_backend();
|
||||
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
// tune these to your liking
|
||||
lparams.n_ctx = 2048;
|
||||
lparams.seed = 1;
|
||||
lparams.f16_kv = true;
|
||||
lparams.n_parts = params.n_parts_llama;
|
||||
|
||||
struct llama_context * ctx_llama = llama_init_from_file(params.model_llama.c_str(), lparams);
|
||||
|
||||
@ -557,7 +560,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
embd_inp.insert(embd_inp.end(), embd.begin(), embd.end());
|
||||
n_past += embd.size();
|
||||
|
||||
|
||||
embd.clear();
|
||||
|
||||
if (done) break;
|
||||
@ -574,7 +577,7 @@ int main(int argc, char ** argv) {
|
||||
if (!path_session.empty() && need_to_save_session) {
|
||||
need_to_save_session = false;
|
||||
llama_save_session_file(ctx_llama, path_session.c_str(), session_tokens.data(), session_tokens.size());
|
||||
}
|
||||
}
|
||||
|
||||
llama_token id = 0;
|
||||
|
||||
@ -606,8 +609,8 @@ int main(int argc, char ** argv) {
|
||||
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
|
||||
llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
|
||||
llama_sample_top_k(ctx_llama, &candidates_p, top_k);
|
||||
llama_sample_top_p(ctx_llama, &candidates_p, top_p);
|
||||
llama_sample_temperature(ctx_llama, &candidates_p, temp);
|
||||
id = llama_sample_token(ctx_llama, &candidates_p);
|
||||
}
|
||||
@ -649,10 +652,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
text_to_speak = ::replace(text_to_speak, "\"", "");
|
||||
int ret = system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
if (ret != 0) {
|
||||
fprintf(stderr, "%s: failed to speak\n", __func__);
|
||||
}
|
||||
system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
|
||||
audio.clear();
|
||||
|
||||
|
@ -191,9 +191,9 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false,
|
||||
.mem_size = ctx_size,
|
||||
.mem_buffer = NULL,
|
||||
.no_alloc = false,
|
||||
};
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
@ -420,6 +420,7 @@ bool gpt2_eval(
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph gf = {};
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
||||
@ -441,7 +442,7 @@ bool gpt2_eval(
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
cur = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
|
||||
// cur = ln_1_g*cur + ln_1_b
|
||||
// [ 768, N]
|
||||
@ -588,7 +589,7 @@ bool gpt2_eval(
|
||||
{
|
||||
// norm
|
||||
{
|
||||
cur = ggml_norm(ctx0, inpFF, 1e-5f);
|
||||
cur = ggml_norm(ctx0, inpFF);
|
||||
|
||||
// cur = ln_2_g*cur + ln_2_b
|
||||
// [ 768, N]
|
||||
@ -643,7 +644,7 @@ bool gpt2_eval(
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
inpL = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
inpL = ggml_norm(ctx0, inpL);
|
||||
|
||||
// inpL = ln_f_g*inpL + ln_f_b
|
||||
// [ 768, N]
|
||||
@ -663,8 +664,8 @@ bool gpt2_eval(
|
||||
//inpL = ggml_soft_max(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand (&gf, inpL);
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
ggml_graph_compute (ctx0, &gf);
|
||||
|
||||
//if (n_past%100 == 0) {
|
||||
// ggml_graph_print (&gf);
|
||||
|
@ -37,5 +37,5 @@ wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://huggingface.c
|
||||
## TTS
|
||||
|
||||
For best experience, this example needs a TTS tool to convert the generated text responses to voice.
|
||||
You can use any TTS engine that you would like - simply edit the [speak](speak) script to your needs.
|
||||
By default, it is configured to use MacOS's `say` or `espeak` or Windows SpeechSynthesizer, but you can use whatever you wish.
|
||||
You can use any TTS engine that you would like - simply edit the [speak.sh](speak.sh) script to your needs.
|
||||
By default, it is configured to use `espeak`, but you can use whatever you wish.
|
||||
|
@ -1,20 +1,23 @@
|
||||
import sys
|
||||
import importlib.util
|
||||
|
||||
api_key = "" #Write your https://beta.elevenlabs.io api key here
|
||||
if not api_key:
|
||||
print("To use elevenlabs you have to register to https://beta.elevenlabs.io and add your elevenlabs api key to examples/talk/eleven-labs.py")
|
||||
sys.exit()
|
||||
|
||||
if importlib.util.find_spec("elevenlabs") is None:
|
||||
print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'")
|
||||
sys.exit()
|
||||
|
||||
from elevenlabs import generate, play, save
|
||||
from elevenlabs import ElevenLabs
|
||||
eleven = ElevenLabs(api_key)
|
||||
|
||||
# Get a Voice object, by name or UUID
|
||||
voice = "Arnold" #Possible Voices: Adam Antoni Arnold Bella Domi Elli Josh
|
||||
voice = eleven.voices["Arnold"] #Possible Voices: Adam Antoni Arnold Bella Domi Elli Josh
|
||||
|
||||
# Generate the TTS
|
||||
audio = generate(
|
||||
text=str(sys.argv[2:]),
|
||||
voice=voice
|
||||
)
|
||||
audio = voice.generate(str(sys.argv[2:]))
|
||||
|
||||
# Save the TTS to a file
|
||||
save(audio, "audio.mp3")
|
||||
audio.save("audio")
|
||||
|
@ -191,9 +191,9 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false,
|
||||
.mem_size = ctx_size,
|
||||
.mem_buffer = NULL,
|
||||
.no_alloc = false,
|
||||
};
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
@ -379,7 +379,6 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
// - embd_inp: the embeddings of the tokens in the context
|
||||
// - embd_w: the predicted logits for the next token
|
||||
//
|
||||
// TODO: sync latest version from ggml repo
|
||||
bool gpt2_eval(
|
||||
const gpt2_model & model,
|
||||
const int n_threads,
|
||||
@ -421,6 +420,7 @@ bool gpt2_eval(
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph gf = {};
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
||||
@ -442,7 +442,7 @@ bool gpt2_eval(
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
cur = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
|
||||
// cur = ln_1_g*cur + ln_1_b
|
||||
// [ 768, N]
|
||||
@ -589,7 +589,7 @@ bool gpt2_eval(
|
||||
{
|
||||
// norm
|
||||
{
|
||||
cur = ggml_norm(ctx0, inpFF, 1e-5f);
|
||||
cur = ggml_norm(ctx0, inpFF);
|
||||
|
||||
// cur = ln_2_g*cur + ln_2_b
|
||||
// [ 768, N]
|
||||
@ -644,7 +644,7 @@ bool gpt2_eval(
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
inpL = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
inpL = ggml_norm(ctx0, inpL);
|
||||
|
||||
// inpL = ln_f_g*inpL + ln_f_b
|
||||
// [ 768, N]
|
||||
@ -664,8 +664,8 @@ bool gpt2_eval(
|
||||
//inpL = ggml_soft_max(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand (&gf, inpL);
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
ggml_graph_compute (ctx0, &gf);
|
||||
|
||||
//if (n_past%100 == 0) {
|
||||
// ggml_graph_print (&gf);
|
||||
|
@ -1 +0,0 @@
|
||||
@powershell -ExecutionPolicy Bypass -F examples\talk\speak.ps1 %1 %2
|
@ -1,12 +0,0 @@
|
||||
# Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope CurrentUser
|
||||
param(
|
||||
# voice options are David or Zira
|
||||
[Parameter(Mandatory=$true)][string]$voice,
|
||||
[Parameter(Mandatory=$true)][string]$text
|
||||
)
|
||||
|
||||
Add-Type -AssemblyName System.Speech;
|
||||
$speak = New-Object System.Speech.Synthesis.SpeechSynthesizer;
|
||||
$speak.SelectVoice("Microsoft $voice Desktop");
|
||||
$speak.Rate="0";
|
||||
$speak.Speak($text);
|
5
examples/talk/speak → examples/talk/speak.sh
Normal file → Executable file
5
examples/talk/speak → examples/talk/speak.sh
Normal file → Executable file
@ -13,11 +13,8 @@
|
||||
say "$2"
|
||||
|
||||
# Eleven Labs
|
||||
# To use it, install the elevenlabs module from pip (pip install elevenlabs)
|
||||
# It's possible to use the API for free with limited number of characters. To increase this limit register to https://beta.elevenlabs.io to get an api key and paste it after 'ELEVEN_API_KEY='
|
||||
#Keep the line commented to use the free version without api key
|
||||
# To use it, install the elevenlabs module from pip (pip install elevenlabs), register to https://beta.elevenlabs.io to get an api key and paste it in /examples/talk/eleven-labs.py
|
||||
#
|
||||
#export ELEVEN_API_KEY=your_api_key
|
||||
#wd=$(dirname $0)
|
||||
#script=$wd/eleven-labs.py
|
||||
#python3 $script $1 "$2"
|
@ -1,8 +1,8 @@
|
||||
// Talk with AI
|
||||
//
|
||||
|
||||
#include "common-sdl.h"
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "whisper.h"
|
||||
#include "gpt-2.h"
|
||||
|
||||
@ -36,7 +36,7 @@ struct whisper_params {
|
||||
std::string language = "en";
|
||||
std::string model_wsp = "models/ggml-base.en.bin";
|
||||
std::string model_gpt = "models/ggml-gpt-2-117M.bin";
|
||||
std::string speak = "./examples/talk/speak";
|
||||
std::string speak = "./examples/talk/speak.sh";
|
||||
std::string fname_out;
|
||||
};
|
||||
|
||||
@ -349,10 +349,7 @@ int main(int argc, char ** argv) {
|
||||
gpt2_set_prompt(ctx_gpt, prompt_base.c_str());
|
||||
|
||||
text_to_speak = ::replace(text_to_speak, params.person + ": ", "");
|
||||
int ret = system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
if (ret != 0) {
|
||||
fprintf(stderr, "%s: system() failed!\n", __func__);
|
||||
}
|
||||
system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
|
||||
audio.clear();
|
||||
|
||||
|
2
examples/whisper.android/.idea/compiler.xml
generated
2
examples/whisper.android/.idea/compiler.xml
generated
@ -1,6 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="CompilerConfiguration">
|
||||
<bytecodeTargetLevel target="17" />
|
||||
<bytecodeTargetLevel target="11" />
|
||||
</component>
|
||||
</project>
|
4
examples/whisper.android/.idea/gradle.xml
generated
4
examples/whisper.android/.idea/gradle.xml
generated
@ -4,15 +4,15 @@
|
||||
<component name="GradleSettings">
|
||||
<option name="linkedExternalProjectsSettings">
|
||||
<GradleProjectSettings>
|
||||
<option name="testRunner" value="GRADLE" />
|
||||
<option name="distributionType" value="DEFAULT_WRAPPED" />
|
||||
<option name="externalProjectPath" value="$PROJECT_DIR$" />
|
||||
<option name="gradleJvm" value="#GRADLE_LOCAL_JAVA_HOME" />
|
||||
<option name="modules">
|
||||
<set>
|
||||
<option value="$PROJECT_DIR$" />
|
||||
<option value="$PROJECT_DIR$/app" />
|
||||
</set>
|
||||
</option>
|
||||
<option name="resolveExternalAnnotations" value="false" />
|
||||
</GradleProjectSettings>
|
||||
</option>
|
||||
</component>
|
||||
|
2
examples/whisper.android/.idea/misc.xml
generated
2
examples/whisper.android/.idea/misc.xml
generated
@ -1,7 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ExternalStorageConfigurationManager" enabled="true" />
|
||||
<component name="ProjectRootManager" version="2" languageLevel="JDK_17" default="true" project-jdk-name="jbr-17" project-jdk-type="JavaSDK">
|
||||
<component name="ProjectRootManager" version="2" languageLevel="JDK_11" default="true" project-jdk-name="Android Studio default JDK" project-jdk-type="JavaSDK">
|
||||
<output url="file://$PROJECT_DIR$/build/classes" />
|
||||
</component>
|
||||
<component name="ProjectType">
|
||||
|
@ -5,12 +5,12 @@ plugins {
|
||||
|
||||
android {
|
||||
namespace 'com.whispercppdemo'
|
||||
compileSdk 34
|
||||
compileSdk 33
|
||||
|
||||
defaultConfig {
|
||||
applicationId "com.whispercppdemo"
|
||||
minSdk 26
|
||||
targetSdk 34
|
||||
targetSdk 32
|
||||
versionCode 1
|
||||
versionName "1.0"
|
||||
|
||||
@ -18,9 +18,6 @@ android {
|
||||
vectorDrawables {
|
||||
useSupportLibrary true
|
||||
}
|
||||
ndk {
|
||||
abiFilters 'arm64-v8a', 'armeabi-v7a', 'x86', 'x86_64'
|
||||
}
|
||||
}
|
||||
|
||||
buildTypes {
|
||||
@ -31,22 +28,22 @@ android {
|
||||
}
|
||||
}
|
||||
compileOptions {
|
||||
sourceCompatibility JavaVersion.VERSION_17
|
||||
targetCompatibility JavaVersion.VERSION_17
|
||||
sourceCompatibility JavaVersion.VERSION_1_8
|
||||
targetCompatibility JavaVersion.VERSION_1_8
|
||||
}
|
||||
kotlinOptions {
|
||||
jvmTarget = '17'
|
||||
jvmTarget = '1.8'
|
||||
}
|
||||
buildFeatures {
|
||||
compose true
|
||||
}
|
||||
composeOptions {
|
||||
kotlinCompilerExtensionVersion '1.5.0'
|
||||
kotlinCompilerExtensionVersion '1.3.1'
|
||||
}
|
||||
ndkVersion "25.2.9519653"
|
||||
ndkVersion "25.1.8937393"
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
path = file("src/main/jni/whisper/CMakeLists.txt")
|
||||
ndkBuild {
|
||||
path 'src/main/jni/whisper/Android.mk'
|
||||
}
|
||||
}
|
||||
packagingOptions {
|
||||
@ -57,19 +54,19 @@ android {
|
||||
}
|
||||
|
||||
dependencies {
|
||||
implementation 'androidx.activity:activity-compose:1.7.2'
|
||||
implementation 'androidx.compose.material:material-icons-core:1.5.0'
|
||||
implementation 'androidx.compose.material3:material3:1.1.1'
|
||||
implementation "androidx.compose.ui:ui:1.5.0"
|
||||
implementation "androidx.compose.ui:ui-tooling-preview:1.5.0"
|
||||
implementation 'androidx.lifecycle:lifecycle-viewmodel-compose:2.6.1'
|
||||
implementation 'androidx.activity:activity-compose:1.6.1'
|
||||
implementation 'androidx.compose.material:material-icons-core:1.3.1'
|
||||
implementation 'androidx.compose.material3:material3:1.0.1'
|
||||
implementation "androidx.compose.ui:ui:1.3.2"
|
||||
implementation "androidx.compose.ui:ui-tooling-preview:1.3.2"
|
||||
implementation 'androidx.lifecycle:lifecycle-viewmodel-compose:2.5.1'
|
||||
implementation "com.google.accompanist:accompanist-permissions:0.28.0"
|
||||
implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.2'
|
||||
implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.6.4'
|
||||
|
||||
testImplementation 'junit:junit:4.13.2'
|
||||
androidTestImplementation 'androidx.test.ext:junit:1.1.5'
|
||||
androidTestImplementation 'androidx.test.espresso:espresso-core:3.5.1'
|
||||
androidTestImplementation "androidx.compose.ui:ui-test-junit4:1.5.0"
|
||||
debugImplementation "androidx.compose.ui:ui-tooling:1.5.0"
|
||||
debugImplementation "androidx.compose.ui:ui-test-manifest:1.5.0"
|
||||
androidTestImplementation 'androidx.test.ext:junit:1.1.4'
|
||||
androidTestImplementation 'androidx.test.espresso:espresso-core:3.5.0'
|
||||
androidTestImplementation "androidx.compose.ui:ui-test-junit4:1.3.2"
|
||||
debugImplementation "androidx.compose.ui:ui-tooling:1.3.2"
|
||||
debugImplementation "androidx.compose.ui:ui-test-manifest:1.3.2"
|
||||
}
|
@ -10,16 +10,12 @@ fun decodeWaveFile(file: File): FloatArray {
|
||||
file.inputStream().use { it.copyTo(baos) }
|
||||
val buffer = ByteBuffer.wrap(baos.toByteArray())
|
||||
buffer.order(ByteOrder.LITTLE_ENDIAN)
|
||||
val channel = buffer.getShort(22).toInt()
|
||||
buffer.position(44)
|
||||
val shortBuffer = buffer.asShortBuffer()
|
||||
val shortArray = ShortArray(shortBuffer.limit())
|
||||
shortBuffer.get(shortArray)
|
||||
return FloatArray(shortArray.size / channel) { index ->
|
||||
when (channel) {
|
||||
1 -> (shortArray[index] / 32767.0f).coerceIn(-1f..1f)
|
||||
else -> ((shortArray[2*index] + shortArray[2*index + 1])/ 32767.0f / 2.0f).coerceIn(-1f..1f)
|
||||
}
|
||||
return FloatArray(shortArray.size) { index ->
|
||||
(shortArray[index] / 32767.0f).coerceIn(-1f..1f)
|
||||
}
|
||||
}
|
||||
|
||||
@ -77,4 +73,4 @@ private fun headerBytes(totalLength: Int): ByteArray {
|
||||
it.get(bytes)
|
||||
return bytes
|
||||
}
|
||||
}
|
||||
}
|
@ -66,7 +66,7 @@ private fun MainScreen(
|
||||
|
||||
@Composable
|
||||
private fun MessageLog(log: String) {
|
||||
SelectionContainer {
|
||||
SelectionContainer() {
|
||||
Text(modifier = Modifier.verticalScroll(rememberScrollState()), text = log)
|
||||
}
|
||||
}
|
||||
|
@ -47,7 +47,7 @@ class MainScreenViewModel(private val application: Application) : ViewModel() {
|
||||
}
|
||||
|
||||
private suspend fun printSystemInfo() {
|
||||
printMessage(String.format("System Info: %s\n", WhisperContext.getSystemInfo()))
|
||||
printMessage(String.format("System Info: %s\n", WhisperContext.getSystemInfo()));
|
||||
}
|
||||
|
||||
private suspend fun loadData() {
|
||||
|
@ -13,7 +13,7 @@ import androidx.compose.runtime.SideEffect
|
||||
import androidx.compose.ui.graphics.toArgb
|
||||
import androidx.compose.ui.platform.LocalContext
|
||||
import androidx.compose.ui.platform.LocalView
|
||||
import androidx.core.view.WindowCompat
|
||||
import androidx.core.view.ViewCompat
|
||||
|
||||
private val DarkColorScheme = darkColorScheme(
|
||||
primary = Purple80,
|
||||
@ -55,9 +55,8 @@ fun WhisperCppDemoTheme(
|
||||
val view = LocalView.current
|
||||
if (!view.isInEditMode) {
|
||||
SideEffect {
|
||||
val window = (view.context as Activity).window
|
||||
window.statusBarColor = colorScheme.primary.toArgb()
|
||||
WindowCompat.getInsetsController(window, view).isAppearanceLightStatusBars = darkTheme
|
||||
(view.context as Activity).window.statusBarColor = colorScheme.primary.toArgb()
|
||||
ViewCompat.getWindowInsetsController(view)?.isAppearanceLightStatusBars = darkTheme
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -18,9 +18,7 @@ class WhisperContext private constructor(private var ptr: Long) {
|
||||
|
||||
suspend fun transcribeData(data: FloatArray): String = withContext(scope.coroutineContext) {
|
||||
require(ptr != 0L)
|
||||
val numThreads = WhisperCpuConfig.preferredThreadCount
|
||||
Log.d(LOG_TAG, "Selecting $numThreads threads")
|
||||
WhisperLib.fullTranscribe(ptr, numThreads, data)
|
||||
WhisperLib.fullTranscribe(ptr, data)
|
||||
val textCount = WhisperLib.getTextSegmentCount(ptr)
|
||||
return@withContext buildString {
|
||||
for (i in 0 until textCount) {
|
||||
@ -128,7 +126,7 @@ private class WhisperLib {
|
||||
external fun initContextFromAsset(assetManager: AssetManager, assetPath: String): Long
|
||||
external fun initContext(modelPath: String): Long
|
||||
external fun freeContext(contextPtr: Long)
|
||||
external fun fullTranscribe(contextPtr: Long, numThreads: Int, audioData: FloatArray)
|
||||
external fun fullTranscribe(contextPtr: Long, audioData: FloatArray)
|
||||
external fun getTextSegmentCount(contextPtr: Long): Int
|
||||
external fun getTextSegment(contextPtr: Long, index: Int): String
|
||||
external fun getSystemInfo(): String
|
||||
|
@ -1,73 +0,0 @@
|
||||
package com.whispercppdemo.whisper
|
||||
|
||||
import android.util.Log
|
||||
import java.io.BufferedReader
|
||||
import java.io.FileReader
|
||||
|
||||
object WhisperCpuConfig {
|
||||
val preferredThreadCount: Int
|
||||
// Always use at least 2 threads:
|
||||
get() = CpuInfo.getHighPerfCpuCount().coerceAtLeast(2)
|
||||
}
|
||||
|
||||
private class CpuInfo(private val lines: List<String>) {
|
||||
private fun getHighPerfCpuCount(): Int = try {
|
||||
getHighPerfCpuCountByFrequencies()
|
||||
} catch (e: Exception) {
|
||||
Log.d(LOG_TAG, "Couldn't read CPU frequencies", e)
|
||||
getHighPerfCpuCountByVariant()
|
||||
}
|
||||
|
||||
private fun getHighPerfCpuCountByFrequencies(): Int =
|
||||
getCpuValues(property = "processor") { getMaxCpuFrequency(it.toInt()) }
|
||||
.also { Log.d(LOG_TAG, "Binned cpu frequencies (frequency, count): ${it.binnedValues()}") }
|
||||
.countDroppingMin()
|
||||
|
||||
private fun getHighPerfCpuCountByVariant(): Int =
|
||||
getCpuValues(property = "CPU variant") { it.substringAfter("0x").toInt(radix = 16) }
|
||||
.also { Log.d(LOG_TAG, "Binned cpu variants (variant, count): ${it.binnedValues()}") }
|
||||
.countKeepingMin()
|
||||
|
||||
private fun List<Int>.binnedValues() = groupingBy { it }.eachCount()
|
||||
|
||||
private fun getCpuValues(property: String, mapper: (String) -> Int) = lines
|
||||
.asSequence()
|
||||
.filter { it.startsWith(property) }
|
||||
.map { mapper(it.substringAfter(':').trim()) }
|
||||
.sorted()
|
||||
.toList()
|
||||
|
||||
|
||||
private fun List<Int>.countDroppingMin(): Int {
|
||||
val min = min()
|
||||
return count { it > min }
|
||||
}
|
||||
|
||||
private fun List<Int>.countKeepingMin(): Int {
|
||||
val min = min()
|
||||
return count { it == min }
|
||||
}
|
||||
|
||||
companion object {
|
||||
private const val LOG_TAG = "WhisperCpuConfig"
|
||||
|
||||
fun getHighPerfCpuCount(): Int = try {
|
||||
readCpuInfo().getHighPerfCpuCount()
|
||||
} catch (e: Exception) {
|
||||
Log.d(LOG_TAG, "Couldn't read CPU info", e)
|
||||
// Our best guess -- just return the # of CPUs minus 4.
|
||||
(Runtime.getRuntime().availableProcessors() - 4).coerceAtLeast(0)
|
||||
}
|
||||
|
||||
private fun readCpuInfo() = CpuInfo(
|
||||
BufferedReader(FileReader("/proc/cpuinfo"))
|
||||
.useLines { it.toList() }
|
||||
)
|
||||
|
||||
private fun getMaxCpuFrequency(cpuIndex: Int): Int {
|
||||
val path = "/sys/devices/system/cpu/cpu${cpuIndex}/cpufreq/cpuinfo_max_freq"
|
||||
val maxFreq = BufferedReader(FileReader(path)).use { it.readLine() }
|
||||
return maxFreq.toInt()
|
||||
}
|
||||
}
|
||||
}
|
26
examples/whisper.android/app/src/main/jni/whisper/Android.mk
Normal file
26
examples/whisper.android/app/src/main/jni/whisper/Android.mk
Normal file
@ -0,0 +1,26 @@
|
||||
LOCAL_PATH := $(call my-dir)
|
||||
include $(CLEAR_VARS)
|
||||
LOCAL_MODULE := libwhisper
|
||||
include $(LOCAL_PATH)/Whisper.mk
|
||||
include $(BUILD_SHARED_LIBRARY)
|
||||
|
||||
ifeq ($(TARGET_ARCH_ABI),armeabi-v7a)
|
||||
include $(CLEAR_VARS)
|
||||
LOCAL_MODULE := libwhisper_vfpv4
|
||||
include $(LOCAL_PATH)/Whisper.mk
|
||||
# Allow building NEON FMA code.
|
||||
# https://android.googlesource.com/platform/ndk/+/master/sources/android/cpufeatures/cpu-features.h
|
||||
LOCAL_CFLAGS += -mfpu=neon-vfpv4
|
||||
include $(BUILD_SHARED_LIBRARY)
|
||||
endif
|
||||
|
||||
ifeq ($(TARGET_ARCH_ABI),arm64-v8a)
|
||||
include $(CLEAR_VARS)
|
||||
LOCAL_MODULE := libwhisper_v8fp16_va
|
||||
include $(LOCAL_PATH)/Whisper.mk
|
||||
# Allow building NEON FMA code.
|
||||
# https://android.googlesource.com/platform/ndk/+/master/sources/android/cpufeatures/cpu-features.h
|
||||
LOCAL_CFLAGS += -march=armv8.2-a+fp16
|
||||
include $(BUILD_SHARED_LIBRARY)
|
||||
endif
|
||||
|
@ -0,0 +1 @@
|
||||
APP_STL := c++_static
|
@ -1,53 +0,0 @@
|
||||
cmake_minimum_required(VERSION 3.10)
|
||||
|
||||
project(whisper.cpp)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
set(WHISPER_LIB_DIR ${CMAKE_SOURCE_DIR}/../../../../../../../)
|
||||
|
||||
set(
|
||||
SOURCE_FILES
|
||||
${WHISPER_LIB_DIR}/ggml.c
|
||||
${WHISPER_LIB_DIR}/whisper.cpp
|
||||
${CMAKE_SOURCE_DIR}/jni.c
|
||||
)
|
||||
|
||||
find_library(LOG_LIB log)
|
||||
|
||||
function(build_library target_name)
|
||||
add_library(
|
||||
${target_name}
|
||||
SHARED
|
||||
${SOURCE_FILES}
|
||||
)
|
||||
|
||||
target_link_libraries(${target_name} ${LOG_LIB} android)
|
||||
|
||||
if (${target_name} STREQUAL "whisper_v8fp16_va")
|
||||
target_compile_options(${target_name} PRIVATE -march=armv8.2-a+fp16)
|
||||
elseif (${target_name} STREQUAL "whisper_vfpv4")
|
||||
target_compile_options(${target_name} PRIVATE -mfpu=neon-vfpv4)
|
||||
endif ()
|
||||
|
||||
if (NOT ${CMAKE_BUILD_TYPE} STREQUAL "Debug")
|
||||
|
||||
target_compile_options(${target_name} PRIVATE -O3)
|
||||
target_compile_options(${target_name} PRIVATE -fvisibility=hidden -fvisibility-inlines-hidden)
|
||||
target_compile_options(${target_name} PRIVATE -ffunction-sections -fdata-sections)
|
||||
|
||||
target_link_options(${target_name} PRIVATE -Wl,--gc-sections)
|
||||
target_link_options(${target_name} PRIVATE -Wl,--exclude-libs,ALL)
|
||||
target_link_options(${target_name} PRIVATE -flto)
|
||||
|
||||
endif ()
|
||||
endfunction()
|
||||
|
||||
build_library("whisper") # Default target
|
||||
|
||||
if (${ANDROID_ABI} STREQUAL "arm64-v8a")
|
||||
build_library("whisper_v8fp16_va")
|
||||
elseif (${ANDROID_ABI} STREQUAL "armeabi-v7a")
|
||||
build_library("whisper_vfpv4")
|
||||
endif ()
|
||||
|
||||
include_directories(${WHISPER_LIB_DIR})
|
18
examples/whisper.android/app/src/main/jni/whisper/Whisper.mk
Normal file
18
examples/whisper.android/app/src/main/jni/whisper/Whisper.mk
Normal file
@ -0,0 +1,18 @@
|
||||
WHISPER_LIB_DIR := $(LOCAL_PATH)/../../../../../../../
|
||||
LOCAL_LDLIBS := -landroid -llog
|
||||
|
||||
# Make the final output library smaller by only keeping the symbols referenced from the app.
|
||||
ifneq ($(APP_OPTIM),debug)
|
||||
LOCAL_CFLAGS += -O3
|
||||
LOCAL_CFLAGS += -fvisibility=hidden -fvisibility-inlines-hidden
|
||||
LOCAL_CFLAGS += -ffunction-sections -fdata-sections
|
||||
LOCAL_LDFLAGS += -Wl,--gc-sections
|
||||
LOCAL_LDFLAGS += -Wl,--exclude-libs,ALL
|
||||
LOCAL_LDFLAGS += -flto
|
||||
endif
|
||||
|
||||
LOCAL_CFLAGS += -DSTDC_HEADERS -std=c11 -I $(WHISPER_LIB_DIR)
|
||||
LOCAL_CPPFLAGS += -std=c++11
|
||||
LOCAL_SRC_FILES := $(WHISPER_LIB_DIR)/ggml.c \
|
||||
$(WHISPER_LIB_DIR)/whisper.cpp \
|
||||
$(LOCAL_PATH)/jni.c
|
@ -163,12 +163,16 @@ Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_freeContext(
|
||||
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_fullTranscribe(
|
||||
JNIEnv *env, jobject thiz, jlong context_ptr, jint num_threads, jfloatArray audio_data) {
|
||||
JNIEnv *env, jobject thiz, jlong context_ptr, jfloatArray audio_data) {
|
||||
UNUSED(thiz);
|
||||
struct whisper_context *context = (struct whisper_context *) context_ptr;
|
||||
jfloat *audio_data_arr = (*env)->GetFloatArrayElements(env, audio_data, NULL);
|
||||
const jsize audio_data_length = (*env)->GetArrayLength(env, audio_data);
|
||||
|
||||
// Leave 2 processors free (i.e. the high-efficiency cores).
|
||||
int max_threads = max(1, min(8, get_nprocs() - 2));
|
||||
LOGI("Selecting %d threads", max_threads);
|
||||
|
||||
// The below adapted from the Objective-C iOS sample
|
||||
struct whisper_full_params params = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
params.print_realtime = true;
|
||||
@ -177,7 +181,7 @@ Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_fullTranscribe(
|
||||
params.print_special = false;
|
||||
params.translate = false;
|
||||
params.language = "en";
|
||||
params.n_threads = num_threads;
|
||||
params.n_threads = max_threads;
|
||||
params.offset_ms = 0;
|
||||
params.no_context = true;
|
||||
params.single_segment = false;
|
||||
|
10
examples/whisper.android/app/src/main/res/values/colors.xml
Normal file
10
examples/whisper.android/app/src/main/res/values/colors.xml
Normal file
@ -0,0 +1,10 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<resources>
|
||||
<color name="purple_200">#FFBB86FC</color>
|
||||
<color name="purple_500">#FF6200EE</color>
|
||||
<color name="purple_700">#FF3700B3</color>
|
||||
<color name="teal_200">#FF03DAC5</color>
|
||||
<color name="teal_700">#FF018786</color>
|
||||
<color name="black">#FF000000</color>
|
||||
<color name="white">#FFFFFFFF</color>
|
||||
</resources>
|
@ -1,6 +1,6 @@
|
||||
// Top-level build file where you can add configuration options common to all sub-projects/modules.
|
||||
plugins {
|
||||
id 'com.android.application' version '8.1.1' apply false
|
||||
id 'com.android.library' version '8.1.1' apply false
|
||||
id 'org.jetbrains.kotlin.android' version '1.9.0' apply false
|
||||
id 'com.android.application' version '7.3.1' apply false
|
||||
id 'com.android.library' version '7.3.1' apply false
|
||||
id 'org.jetbrains.kotlin.android' version '1.7.10' apply false
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
#Wed Dec 14 10:37:24 EST 2022
|
||||
distributionBase=GRADLE_USER_HOME
|
||||
distributionUrl=https\://services.gradle.org/distributions/gradle-8.2-bin.zip
|
||||
distributionUrl=https\://services.gradle.org/distributions/gradle-7.4-bin.zip
|
||||
distributionPath=wrapper/dists
|
||||
zipStorePath=wrapper/dists
|
||||
zipStoreBase=GRADLE_USER_HOME
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user