Compare commits

..

7 Commits

11 changed files with 43 additions and 565 deletions

1
.gitignore vendored
View File

@ -10,6 +10,7 @@ build-em/
build-debug/
build-release/
build-static/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/

View File

@ -1,6 +1,6 @@
cmake_minimum_required (VERSION 3.0)
project(whisper.cpp VERSION 1.2.0)
project(whisper.cpp VERSION 1.2.1)
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")

View File

@ -141,6 +141,8 @@ ifdef WHISPER_GPROF
CXXFLAGS += -pg
endif
ifneq ($(filter aarch64%,$(UNAME_M)),)
CFLAGS += -mcpu=native
CXXFLAGS += -mcpu=native
endif
ifneq ($(filter armv6%,$(UNAME_M)),)
# Raspberry Pi 1, 2, 3

View File

@ -4,7 +4,7 @@
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
Stable: [v1.2.0](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
@ -469,7 +469,9 @@ in [models](models).
- [X] .NET: | [#422](https://github.com/ggerganov/whisper.cpp/discussions/422)
- [sandrohanea/whisper.net](https://github.com/sandrohanea/whisper.net)
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
- [ ] Python: soon | [WIP](https://github.com/ggerganov/whisper.cpp/issues/9)
- [X] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
## Examples

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.2.0",
"version": "1.2.1",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

View File

@ -618,8 +618,6 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: failed to process audio\n", argv[0]);
return 10;
}
whisper_full_cluster_segments(ctx);
}
// output stuff

189
ggml.c
View File

@ -8517,195 +8517,6 @@ enum ggml_opt_result ggml_opt(
////////////////////////////////////////////////////////////////////////////////
void ggml_svd_reduce_dims(
int ne0,
int ne1,
float * a,
int nd) {
int n = ne1;
int m = ne0;
float * A = a;
float * A0 = (float *) malloc(n * m * sizeof(float));
// average vector
//float * M = (float *) malloc(m * sizeof(float));
//{
// for (int j = 0; j < m; ++j) {
// M[j] = 0.0f;
// }
// for (int i = 0; i < n; ++i) {
// for (int j = 0; j < m; ++j) {
// M[j] += A[i * m + j];
// }
// }
// for (int j = 0; j < m; ++j) {
// M[j] /= (float) n;
// }
//}
//// subtract average vector
//for (int i = 0; i < n; ++i) {
// for (int j = 0; j < m; ++j) {
// A[i * m + j] -= M[j];
// }
//}
//free(M);
memcpy(A0, A, n * m * sizeof(float));
// print A
//printf("A:\n");
//for (int i = 0; i < n; ++i) {
// printf("col %d : ", i);
// for (int j = 0; j < m; ++j) {
// printf("%9.5f ", A[i * m + j]);
// }
// printf("\n");
//}
//printf("\n");
// SVD
// A = U * S * V^T
float * U = (float *) malloc(n * m * sizeof(float));
float * S = (float *) malloc(n * sizeof(float));
float * V = (float *) malloc(n * n * sizeof(float));
int lda = m;
int ldu = m;
int ldvt = n;
float work_size;
int lwork = -1;
int info = 0;
sgesvd_("S", "S", &m, &n, A, &lda, S, U, &ldu, V, &ldvt, &work_size, &lwork, &info);
lwork = (int) work_size;
//printf("work_size = %f, info = %d, lwork = %d\n", work_size, info, lwork);
float * work = (float *) malloc(lwork * sizeof(float));
sgesvd_("S", "S", &m, &n, A, &lda, S, U, &ldu, V, &ldvt, work, &lwork, &info);
free(work);
// print U
//printf("U:\n");
//for (int i = 0; i < n; ++i) {
// printf("col %d : ", i);
// for (int j = 0; j < m; ++j) {
// printf("%9.5f ", U[i * m + j]);
// }
// printf("\n");
//}
//printf("\n");
// normalize S
{
double sum = 0.0;
for (int i = 0; i < n; ++i) {
sum += S[i];
}
sum *= sqrt((double) m);
for (int i = 0; i < n; ++i) {
S[i] /= sum;
}
}
// print S
printf("S:\n");
for (int i = 0; i < n; ++i) {
printf("- %d = %9.5f\n", i, S[i]);
}
printf("\n");
// print V
//printf("V:\n");
//for (int i = 0; i < n; ++i) {
// printf("col %d : ", i);
// for (int j = 0; j < n; ++j) {
// printf("%9.5f ", V[i * n + j]);
// }
// printf("\n");
//}
//printf("\n");
// print A
//printf("A:\n");
//for (int i = 0; i < n; ++i) {
// printf("col %d : ", i);
// for (int j = 0; j < m; ++j) {
// printf("%9.5f ", A[i * m + j]);
// }
// printf("\n");
//}
//printf("\n");
// compute singular vectors in U
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
U[i * m + j] *= S[i];
}
}
// normalize U
for (int i = 0; i < n; ++i) {
double sum = 0.0;
for (int j = 0; j < m; ++j) {
sum += U[i * m + j] * U[i * m + j];
}
sum = sqrt(sum);
for (int j = 0; j < m; ++j) {
U[i * m + j] /= sum*sqrt((double) m);
}
}
// print U
//printf("U:\n");
//for (int i = 0; i < n; ++i) {
// printf("col %d : ", i);
// for (int j = 0; j < m; ++j) {
// printf("%9.5f ", U[i * m + j]);
// }
// printf("\n");
//}
//printf("\n");
// project A0 onto U
for (int i = 0; i < n; ++i) {
for (int j = 0; j < nd; ++j) {
A[i * nd + j] = 0.0f;
//if (j == 0) continue;
for (int k = 0; k < m; ++k) {
A[i * nd + j] += A0[i * m + k] * U[j * m + k];
}
}
}
// print A
//printf("A:\n");
//for (int i = 0; i < n; ++i) {
// printf("col %d : ", i);
// for (int j = 0; j < n; ++j) {
// printf("%9.5f ", A[i * n + j]);
// }
// printf("\n");
//}
//printf("\n");
free(U);
free(S);
free(V);
free(A0);
}
////////////////////////////////////////////////////////////////////////////////
int ggml_cpu_has_avx(void) {
#if defined(__AVX__)
return 1;

10
ggml.h
View File

@ -726,16 +726,6 @@ enum ggml_opt_result ggml_opt(
struct ggml_opt_params params,
struct ggml_tensor * f);
//
// Temp stuff
//
void ggml_svd_reduce_dims(
int ne0,
int ne1,
float * a,
int nd);
//
// system info
//

View File

@ -268,14 +268,6 @@ static const std::map<e_model, size_t> MEM_REQ_KV_SELF = {
{ MODEL_LARGE, 71ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_KV_ENC_SELF = {
{ MODEL_TINY, 23ull*MB },
{ MODEL_BASE, 26ull*MB },
{ MODEL_SMALL, 216ull*MB },
{ MODEL_MEDIUM, 243ull*MB },
{ MODEL_LARGE, 271ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_KV_CROSS = {
{ MODEL_TINY, 9ull*MB },
{ MODEL_BASE, 18ull*MB },
@ -579,7 +571,6 @@ struct whisper_context {
// cross-attention KV cache for the decoders
// shared between all decoders
whisper_kv_cache kv_cross;
whisper_kv_cache kv_enc_self;
whisper_decoder decoders[WHISPER_MAX_DECODERS] = {};
@ -601,18 +592,16 @@ struct whisper_context {
mutable std::mt19937 rng; // used for sampling at t > 0.0
int lang_id;
int lang_id = 0; // english by default
// [EXPERIMENTAL] token-level timestamps data
int64_t t_beg;
int64_t t_last;
int64_t t_beg = 0;
int64_t t_last = 0;
whisper_token tid_last;
std::vector<float> energy; // PCM signal energy
// [EXPERIMENTAL] speed-up techniques
int32_t exp_n_audio_ctx; // 0 - use default
std::vector<float> audio_embd;
int32_t exp_n_audio_ctx = 0; // 0 - use default
void use_buf(struct ggml_context * ctx, int i) {
#if defined(WHISPER_USE_SCRATCH)
@ -847,11 +836,6 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
return false;
}
if (!kv_cache_init(model.hparams, scale*MEM_REQ_KV_ENC_SELF.at(model.type), wctx.kv_enc_self, wctx.wtype, model.hparams.n_audio_ctx)) {
fprintf(stderr, "%s: kv_cache_init() failed for cross-attention cache\n", __func__);
return false;
}
{
const size_t memory_size = ggml_nbytes(wctx.kv_cross.k) + ggml_nbytes(wctx.kv_cross.v);
fprintf(stderr, "%s: kv cross size = %7.2f MB\n", __func__, memory_size/1024.0/1024.0);
@ -1374,8 +1358,7 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
static bool whisper_encode(
whisper_context & wctx,
const int mel_offset,
const int n_threads,
bool repeat = false) {
const int n_threads) {
const int64_t t_start_us = ggml_time_us();
const auto & model = wctx.model;
@ -1407,31 +1390,13 @@ static bool whisper_encode(
const int i0 = std::min(mel_offset, mel_inp.n_len);
const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
if (repeat == false) {
for (int j = 0; j < mel_inp.n_mel; ++j) {
for (int i = i0; i < i1; ++i) {
dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
}
}
} else {
for (int j = 0; j < mel_inp.n_mel; ++j) {
int k = 0;
while (k < 2*n_ctx) {
for (int i = i0; i < i1; ++i) {
dst[j*2*n_ctx + k] = mel_inp.data[j*mel_inp.n_len + i];
k++;
if (k >= 2*n_ctx) {
break;
}
}
}
for (int j = 0; j < mel_inp.n_mel; ++j) {
for (int i = i0; i < i1; ++i) {
dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
}
}
}
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
struct ggml_tensor * cur;
// convolution + gelu
@ -1459,18 +1424,6 @@ static bool whisper_encode(
cur = ggml_gelu(ctx0, cur);
}
//{
// //printf("cur: %d %d %d %d, size element = %d\n", cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_element_size(cur));
// wctx.use_buf(ctx0, -1);
// struct ggml_tensor * k = ggml_view_1d(ctx0, wctx.kv_enc_self.k, n_state*n_ctx, (ggml_element_size(wctx.kv_enc_self.k)*n_state)*(0*n_ctx));
// //struct ggml_tensor * v = ggml_view_1d(ctx0, wctx.kv_enc_self.v, n_state*n_ctx, (ggml_element_size(wctx.kv_enc_self.v)*n_state)*(il*n_ctx));
// ggml_build_forward_expand(&gf, ggml_cpy(ctx0, cur, k));
// //ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
//}
wctx.use_buf(ctx0, 3);
// ===================================================================
@ -1551,18 +1504,6 @@ static bool whisper_encode(
Vcur),
Vcur);
//{
// //printf("Kcur: %d %d %d %d, size element = %d\n", Kcur->ne[0], Kcur->ne[1], Kcur->ne[2], Kcur->ne[3], ggml_element_size(Kcur));
// wctx.use_buf(ctx0, -1);
// struct ggml_tensor * k = ggml_view_1d(ctx0, wctx.kv_enc_self.k, n_state*n_ctx, (ggml_element_size(wctx.kv_enc_self.k)*n_state)*(il*n_ctx));
// struct ggml_tensor * v = ggml_view_1d(ctx0, wctx.kv_enc_self.v, n_state*n_ctx, (ggml_element_size(wctx.kv_enc_self.v)*n_state)*(il*n_ctx));
// ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
// ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
//}
// ------
wctx.use_buf(ctx0, 0);
@ -1647,18 +1588,6 @@ static bool whisper_encode(
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx));
{
//printf("cur: %d %d %d %d, size element = %d\n", cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_element_size(cur));
wctx.use_buf(ctx0, -1);
struct ggml_tensor * k = ggml_view_1d(ctx0, wctx.kv_enc_self.k, n_state*n_ctx, (ggml_element_size(wctx.kv_enc_self.k)*n_state)*(il*n_ctx));
//struct ggml_tensor * v = ggml_view_1d(ctx0, wctx.kv_enc_self.v, n_state*n_ctx, (ggml_element_size(wctx.kv_enc_self.v)*n_state)*(il*n_ctx));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, cur, k));
//ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
}
// projection
@ -1768,6 +1697,8 @@ static bool whisper_encode(
// run the computation
{
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
ggml_build_forward_expand(&gf, cur);
ggml_graph_compute (ctx0, &gf);
@ -1789,24 +1720,6 @@ static bool whisper_encode(
// printf("\n");
//}
{
//const int i0 = std::min(mel_offset, mel_inp.n_len);
//const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
const int i0 = 0;
const int i1 = cur->ne[1];
//printf("i0 = %d, i1 = %d, (i1 - i0) = %d, embd size = %d\n", i0, i1, i1 - i0, cur->ne[0]);
wctx.audio_embd.clear();
wctx.audio_embd.resize(cur->ne[0], 0.0f);
for (int j = 0; j < cur->ne[0]; ++j) {
for (int i = i0; i < i1; ++i) {
wctx.audio_embd[j] += ((float *)(cur->data))[(i - i0)*cur->ne[0] + j];
}
wctx.audio_embd[j] /= (i1 - i0);
}
}
// pre-compute cross-attention memory
{
struct ggml_cgraph gf = {};
@ -3049,6 +2962,9 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
/*.encoder_begin_callback =*/ nullptr,
/*.encoder_begin_callback_user_data =*/ nullptr,
/*.logits_filter_callback =*/ nullptr,
/*.logits_filter_callback_user_data =*/ nullptr,
};
switch (strategy) {
@ -3176,7 +3092,7 @@ static const std::vector<std::string> non_speech_tokens = {
// - applies logit filters
// - computes logprobs and probs
static void whisper_process_logits(
const struct whisper_context & ctx,
struct whisper_context & ctx,
const struct whisper_full_params params,
struct whisper_decoder & decoder,
float temperature) {
@ -3232,6 +3148,9 @@ static void whisper_process_logits(
logits[vocab.token_translate] = -INFINITY;
logits[vocab.token_transcribe] = -INFINITY;
if (params.logits_filter_callback) {
params.logits_filter_callback(&ctx, tokens_cur.data(), tokens_cur.size(), logits.data(), params.logits_filter_callback_user_data);
}
// suppress non-speech tokens
// ref: https://github.com/openai/whisper/blob/7858aa9c08d98f75575035ecd6481f462d66ca27/whisper/tokenizer.py#L224-L253
@ -3935,7 +3854,7 @@ int whisper_full(
return a.sequence.sum_logprobs_all > b.sequence.sum_logprobs_all;
});
unsigned int cur_c = 0;
uint32_t cur_c = 0;
for (int j = 0; j < n_decoders_cur; ++j) {
auto & decoder = ctx->decoders[j];
@ -4420,7 +4339,7 @@ int whisper_full_n_segments(struct whisper_context * ctx) {
}
int whisper_full_lang_id(struct whisper_context * ctx) {
return ctx->lang_id;
return ctx->lang_id;
}
int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment) {
@ -4893,258 +4812,3 @@ static void whisper_exp_compute_token_level_timestamps(
// }
//}
}
//
// diarization stuff
//
void whisper_full_cluster_segments(struct whisper_context * ctx) {
const int n_segments = ctx->result_all.size();
printf("%s: clustering %d segments\n", __func__, n_segments);
const auto mel_len_save = ctx->mel.n_len;
printf("%s: mel_len_save = %d\n", __func__, mel_len_save);
const int n_ctx = ctx->model.hparams.n_audio_ctx;
const int n_state = ctx->model.hparams.n_audio_state;
const int n_layer = ctx->model.hparams.n_audio_layer;
#if 0
// use the last layer of the encoder
{
std::vector<float> embd(n_segments*n_state);
for (int i = 0; i < n_segments; ++i) {
const auto & segment_i = ctx->result_all[i];
printf("%s: segment %3d: t0 = %7d, t1 = %7d, text = %s\n", __func__, i, (int) segment_i.t0, (int) segment_i.t1, segment_i.text.c_str());
ctx->mel.n_len = segment_i.t1;
whisper_encode(*ctx, segment_i.t0, 7, true);
for (int j = 0; j < n_state; ++j) {
embd[i*n_state + j] = ctx->audio_embd[j];
}
}
const int n_features = std::min(4, n_segments);
ggml_svd_reduce_dims(n_state, n_segments, embd.data(), n_features);
#elif 0
// use cross kv cache of various layers
for (int il = 0; il < n_layer; ++il) {
std::vector<float> embd(n_segments*n_ctx*n_state);
for (int i = 0; i < n_segments; ++i) {
const auto & segment_i = ctx->result_all[i];
printf("%s: layer %2d, segment %3d: t0 = %7d, t1 = %7d, text = %s\n", __func__, il, i, (int) segment_i.t0, (int) segment_i.t1, segment_i.text.c_str());
ctx->mel.n_len = segment_i.t1;
whisper_encode(*ctx, segment_i.t0, 7, true);
const size_t offs = ggml_element_size(ctx->kv_cross.k)*(il*n_ctx*n_state);
const ggml_fp16_t * f = (const ggml_fp16_t * )((const char *) ctx->kv_cross.k->data + offs);
for (int j = 0; j < n_ctx*n_state; ++j) {
embd[i*n_ctx*n_state + j] = ggml_fp16_to_fp32(f[j]);
}
}
const int n_features = std::min(4, n_segments);
ggml_svd_reduce_dims(n_ctx*n_state, n_segments, embd.data(), n_features);
#elif 0
// use conv embedding
for (int il = 0; il < 1; ++il) {
std::vector<float> embd(n_segments*n_ctx*n_state);
for (int i = 0; i < n_segments; ++i) {
const auto & segment_i = ctx->result_all[i];
printf("%s: layer %2d, segment %3d: t0 = %7d, t1 = %7d, text = %s\n", __func__, il, i, (int) segment_i.t0, (int) segment_i.t1, segment_i.text.c_str());
ctx->mel.n_len = segment_i.t1;
whisper_encode(*ctx, segment_i.t0, 7, true);
const size_t offs = ggml_element_size(ctx->kv_enc_self.k)*(il*n_ctx*n_state);
const ggml_fp16_t * f = (const ggml_fp16_t * )((const char *) ctx->kv_enc_self.k->data + offs);
for (int j = 0; j < n_ctx*n_state; ++j) {
embd[i*n_ctx*n_state + j] = ggml_fp16_to_fp32(f[j]);
}
}
const int n_features = std::min(3, n_segments);
ggml_svd_reduce_dims(n_ctx*n_state, n_segments, embd.data(), n_features);
#else
// use enc self kv cache of various layers
for (int il = 0; il < n_layer; ++il) {
std::vector<float> embd(n_segments*n_ctx*n_state);
for (int i = 0; i < n_segments; ++i) {
const auto & segment_i = ctx->result_all[i];
printf("%s: layer %2d, segment %3d: t0 = %7d, t1 = %7d, text = %s\n", __func__, il, i, (int) segment_i.t0, (int) segment_i.t1, segment_i.text.c_str());
ctx->mel.n_len = segment_i.t1;
whisper_encode(*ctx, segment_i.t0, 7, true);
const size_t offs = ggml_element_size(ctx->kv_enc_self.k)*(il*n_ctx*n_state);
const ggml_fp16_t * f = (const ggml_fp16_t * )((const char *) ctx->kv_enc_self.k->data + offs);
for (int j = 0; j < n_ctx*n_state; ++j) {
embd[i*n_ctx*n_state + j] = ggml_fp16_to_fp32(f[j]);
}
}
const int n_features = std::min(4, n_segments);
ggml_svd_reduce_dims(n_ctx*n_state, n_segments, embd.data(), n_features);
#endif
std::vector<std::vector<double>> features(n_segments);
for (int i = 0; i < n_segments; ++i) {
features[i].resize(n_features);
for (int j = 0; j < n_features; ++j) {
features[i][j] = embd[i*n_features + j];
}
}
// fuzzy c-means clustering
const int n_clusters = 2;
std::vector<std::vector<double>> centroids(n_clusters, std::vector<double>(n_features, 0.0));
std::vector<std::vector<double>> membership(n_segments, std::vector<double>(n_clusters, 0.0));
// initialize the centroids
for (int i = 0; i < n_clusters; ++i) {
for (int j = 0; j < n_features; ++j) {
centroids[i][j] = features[i][j];
}
}
// initialize the membership
for (int i = 0; i < n_segments; ++i) {
//membership[i][i % n_clusters] = 1.0;
//for (int j = 0; j < n_clusters; ++j) {
// membership[i][j] = rand() / (float) RAND_MAX;
//}
for (int j = 0; j < n_clusters; ++j) {
membership[i][j] = 1.0 / n_clusters;
}
}
const int niter = 10000;
// iterate
for (int i = 0; i < niter; ++i) {
// print the membership
if (i == niter - 1) {
//{
for (int i = 0; i < n_segments; ++i) {
#if 1
printf("%s: membership %3d: ", __func__, i);
for (int j = 0; j < n_clusters; ++j) {
printf("%.1f ", membership[i][j]);
}
printf(" '%s'\n", ctx->result_all[i].text.c_str());
#else
printf("%s: features : ", __func__);
for (int j = 0; j < n_features; ++j) {
printf("%8.3f ", features[i][j]);
}
printf(" '%s'\n", ctx->result_all[i].text.c_str());
#endif
}
printf("----------------\n");
// print the centroids
for (int i = 0; i < n_clusters; ++i) {
printf("%s: centroid %d: ", __func__, i);
for (int j = 0; j < n_features; ++j) {
printf("%f ", centroids[i][j]);
}
printf("\n");
}
}
// update the membership
for (int j = 0; j < n_segments; ++j) {
for (int k = 0; k < n_clusters; ++k) {
double sum = 0.0;
for (int l = 0; l < n_clusters; ++l) {
//sum += std::pow(whisper_distance(features[j], centroids[k])/whisper_distance(features[j], centroids[l]), 2.0/(2.0 - 1.0));
double d0 = 0.0;
double d1 = 0.0;
#if 1
// use the euclidean distance
{
for (int m = 0; m < n_features; ++m) {
d0 += std::pow(features[j][m] - centroids[k][m], 2.0);
}
d0 = std::sqrt(d0);
for (int m = 0; m < n_features; ++m) {
d1 += std::pow(features[j][m] - centroids[l][m], 2.0);
}
d1 = std::sqrt(d1);
}
#else
// use the cosine distance
{
double dot = 0.0;
double norm0 = 0.0;
double norm1 = 0.0;
for (int m = 0; m < n_features; ++m) {
dot += features[j][m]*centroids[k][m];
norm0 += std::pow(features[j][m], 2.0);
norm1 += std::pow(centroids[k][m], 2.0);
}
d0 = 1.0 - dot/(std::sqrt(norm0)*std::sqrt(norm1));
dot = 0.0;
norm0 = 0.0;
norm1 = 0.0;
for (int m = 0; m < n_features; ++m) {
dot += features[j][m]*centroids[l][m];
norm0 += std::pow(features[j][m], 2.0);
norm1 += std::pow(centroids[l][m], 2.0);
}
d1 = 1.0 - dot/(std::sqrt(norm0)*std::sqrt(norm1));
}
#endif
if (d1 > 0.0) {
sum += std::pow(d0/d1, 2.0/(1.20 - 1.0));
} else {
sum += 1.0;
}
}
membership[j][k] = sum == 0.0 ? 1.0 : 1.0/sum;
}
}
// update the centroids
for (int j = 0; j < n_clusters; ++j) {
for (int k = 0; k < n_features; ++k) {
double sum = 0.0;
double sum2 = 0.0;
for (int l = 0; l < n_segments; ++l) {
sum += membership[l][j]*features[l][k];
sum2 += membership[l][j];
}
centroids[j][k] = sum2 == 0.0 ? 0.0 : sum/sum2;
}
}
}
}
// restore the mel length
ctx->mel.n_len = mel_len_save;
}

View File

@ -243,6 +243,16 @@ extern "C" {
// If it returns false, the computation is aborted
typedef bool (*whisper_encoder_begin_callback)(struct whisper_context * ctx, void * user_data);
// Logits filter callback
// Can be used to modify the logits before sampling
// If not NULL, called after applying temperature to logits
typedef void (*whisper_logits_filter_callback)(
struct whisper_context * ctx,
const whisper_token_data * tokens,
int n_tokens,
float * logits,
void * user_data);
// Parameters for the whisper_full() function
// If you chnage the order or add new parameters, make sure to update the default values in whisper.cpp:
// whisper_full_default_params()
@ -315,6 +325,10 @@ extern "C" {
// called each time before the encoder starts
whisper_encoder_begin_callback encoder_begin_callback;
void * encoder_begin_callback_user_data;
// called by each decoder to filter obtained logits
whisper_logits_filter_callback logits_filter_callback;
void * logits_filter_callback_user_data;
};
WHISPER_API struct whisper_full_params whisper_full_default_params(enum whisper_sampling_strategy strategy);
@ -372,10 +386,6 @@ extern "C" {
WHISPER_API int whisper_bench_memcpy(int n_threads);
WHISPER_API int whisper_bench_ggml_mul_mat(int n_threads);
// Temporary experimental API
WHISPER_API void whisper_full_cluster_segments(struct whisper_context * ctx);
#ifdef __cplusplus
}
#endif