Commit Graph

1025 Commits

Author SHA1 Message Date
Georgi Gerganov
6ebba525f1
talk-llama : sync llama.cpp 2024-01-14 18:08:20 +02:00
Georgi Gerganov
2a5874441d
talk-llama : llama.cpp 2024-01-14 11:06:28 +02:00
Georgi Gerganov
d08445c9ad
sync : ggml 2024-01-14 10:55:18 +02:00
Alex Azarov
4a945696cb
metal : correctly set SIMD support flags on iOS (llama/4923)
* Correctly set support_simdgroup_reduction and support_simdgroup_mm on iPhone/iPad

* log a little bit more info on iOS
2024-01-14 10:54:09 +02:00
Kawrakow
dabc964d83
2-bit quantizations (llama/4897)
* imatrix: load

* imatrix: WIP

* imatrix: Add Q2_K quantization

* imatrix: also guard against Q2_K_S quantization without importance matrix

* imatrix: guard even more against low-bit quantization misuse

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 10:54:09 +02:00
Georgi Gerganov
654baf693d
scripts : sync-ggml-am.sh add option to skip commits 2024-01-14 10:53:19 +02:00
Georgi Gerganov
f001a3b7b6
talk-llama : sync llama.cpp 2024-01-14 00:13:17 +02:00
Georgi Gerganov
c615f2c335
sync : ggml 2024-01-14 00:12:17 +02:00
Georgi Gerganov
d839dd0242
examples : adapt to metal API 2024-01-14 00:11:45 +02:00
Johannes Gäßler
435847891c
ggml: cache sin/cos for RoPE (llama/4908) 2024-01-14 00:11:45 +02:00
Georgi Gerganov
182f290808
metal : remove old API (llama/4919)
ggml-ci
2024-01-14 00:11:45 +02:00
Georgi Gerganov
447dfc11fc
metal : disable log for loaded kernels (llama/4794) 2024-01-14 00:11:45 +02:00
texmex76
9aa9f3b84e
gguf : fix potential infinite for-loop (llama/4600)
Co-authored-by: Bernhard Gstrein <gstrein@informatik.uni-freiburg.de>
2024-01-14 00:11:44 +02:00
Georgi Gerganov
396ebd1e80
metal : refactor kernel loading code (llama/4794)
* metal : detect more GPU families

* metal : refactor kernel loading

* metal : set kernel family requirements

* metal : fix kernel init + fix compile options

* metal : take into account simdgroup reduction support

* metal : print only skipped kernels

* metal : fix check for simdgroup reduction support

* metal : check for Metal 3

* metal : free allocations

* metal : normalize encoder:setComputePipelineStatus calls

ggml-ci

* metal : fix Metal3 family check

ggml-ci

* metal : check for simdgroup matrix mul. feature

ggml-ci
2024-01-14 00:11:44 +02:00
Johannes Gäßler
12490f4398
CUDA: faster q8_0 -> f16 dequantization (llama/4895) 2024-01-14 00:11:44 +02:00
RhinoDevel
db078a9ba8
talk-llama : add optional CLI arg to set the bot name (#1764) 2024-01-13 20:51:35 +02:00
james wolf
a13a7da5ad
examples : add python example for transcription (#1744)
* rebase and add simple python interface

* moved python files to examples/python
2024-01-13 19:37:18 +02:00
Georgi Gerganov
519f8e8684
whisper : load the model into multiple buffers of max size 1GB (#1763) 2024-01-13 17:47:40 +02:00
Georgi Gerganov
40ae0962f4
talk-llama : sync llama.cpp 2024-01-12 22:04:51 +02:00
Georgi Gerganov
1560288048
sync : ggml 2024-01-12 21:56:50 +02:00
slaren
1ad6fafd91
backend_sched : fix assignments
ggml-ci
2024-01-12 21:55:42 +02:00
slaren
70840aed5f
llama : ggml-backend integration (llama/4766)
* llama : ggml-backend integration

* ggml-backend : add names to buffers

* fix unmap after loading

* batched-bench : add tensor_split param

* llama : check for null tensor_split

* ggml-backend : increase GGML_MAX_BACKENDS

* improve graph splitting, partial fix for --no-kv-offload

* cuda : add ggml-backend split buffer support

* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)

* ggml : fix null backend dereference (llama/4807)

* ggml : fix null backend dereference

* ggml : also check ggml_backend_is_cpu

* test-backend-ops : check buffer allocation failures

* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)

* ggml : fix mul_mat_id work size

* llama : rewrite session kv load/set without graphs

* minor

* llama : only initialize used backends, free backends on context free

* llama : abort ctx if cuda backend init fails

* llama : rewrite lora with ggml-backend and compute on CPU

ggml-ci

* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer

* opencl : add ggml-backend buffer type

* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)

* llama : on Metal, by default offload the full model

ggml-ci

* metal : page align the data ptr (llama/4854)

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* cuda : fix split buffer free

* address review comments

* llama-bench : add split-mode parameter

* fix whitespace

* opencl : fix double initialization

* server : add --split-mode parameter

* use async copy and compute to improve multi-gpu performance

ggml-ci

* use async memcpys to copy the graph outputs to the CPU

* fix opencl

* use a host buffer for the cpu compute buffer for faster copies to the gpu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 21:55:42 +02:00
Johannes Gäßler
b24d18feb9
CUDA: fix softmax compile for old CUDA versions (llama/4862) 2024-01-12 21:55:41 +02:00
Kawrakow
3fa98f4395
Importance Matrix calculation (llama/4861)
* imatrix: 1st version

* imatrix: WIP

* Cleanup

* Update examples/imatrix/imatrix.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-12 21:55:41 +02:00
Sơn Phan Trung
d05b7ee90e
models : make all scripts to be POSIX Compliant (#1725)
* download-coreml-model: make it POSIX-compliant

* download-ggml-model: posix compliant (2nd)

* minor edit

* forgot to add newline

* generate-coreml-interface: far more straightforward

* generate-coreml-model: done with the posix thingy

* typo

* Update download-ggml-model.sh

* fix

* fix typo

* another fix

* Update download-coreml-model.sh

* Update download-ggml-model.sh

* Update download-coreml-model.sh
2024-01-12 14:11:04 +02:00
Georgi Gerganov
6dcee35129
ggml : fix 32-bit ARM compat for IQ2_XS (#1758)
* ggml : fix 32-bit ARM compat

* ggml : fix fix

* ggml : fix fix fix
2024-01-12 14:02:30 +02:00
Boris Bliznioukov
5cb345f5e9
go : add SetInitialPrompt method to bindings (#1753) 2024-01-12 13:44:50 +02:00
George Hindle
fbcb52d3cd
server : add more parameters to server api (#1754)
* feat(server): add more parameters to server api

* fix(server): reset params to original parsed values for each request
2024-01-12 13:42:52 +02:00
Georgi Gerganov
6b01e3fedd
whisper : fix segment length with params.no_timestamps == true 2024-01-12 13:37:38 +02:00
George Hindle
f7908f9bb8
params : don't compute timestamps when not printing them (#1755) 2024-01-12 13:24:38 +02:00
Georgi Gerganov
00b7a4be02
talk-llama : sync llama.cpp 2024-01-11 22:10:10 +02:00
Georgi Gerganov
04b0a768b8
swift : remove local ggml.h reference 2024-01-11 22:00:12 +02:00
Georgi Gerganov
87670425f2
swift : track ggml release branch 2024-01-11 21:57:40 +02:00
Georgi Gerganov
32e71a1861
sync : ggml 2024-01-11 21:54:17 +02:00
Georgi Gerganov
9c857cf280
sync : llama.cpp 2024-01-11 21:50:01 +02:00
Kawrakow
97b12212dd
ggml : SOTA 2-bit quants (add IQ2_XS) (llama/4856)
* iq2_xs: basics

* iq2_xs: this should have been in the basics

* iq2_xs: CUDA and scalar CPU works

* iq2_xs: WIP Metal

* iq2_xs: Metal now works

* iq2_xs: working, but dog slow, ARM_NEON dot product

* iq2_xs: better ARM_NEON dot product

We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.

* iq2_xs: AVX2 dot product - 19.5 t/s

* iq2_xs: faster AVX2 dit product

21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.

* iq2_xs: had forgotten to delete iq2-data.h

* Add llama enum for IQ2_XS

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-11 21:50:01 +02:00
Paul Tsochantaris
9fa34d79ec
metal : put encoder debug group behind a define (llama/4873) 2024-01-11 21:50:01 +02:00
Georgi Gerganov
a0a64a19dd
metal : improve dequantize precision to match CPU (llama/4836)
ggml-ci
2024-01-11 21:50:01 +02:00
Georgi Gerganov
bbc23611fa
ggml : fix vld1q_s8_x4 32-bit compat (llama/4828)
* ggml : fix vld1q_s8_x4 32-bit compat

ggml-ci

* ggml : fix 32-bit ARM compat (cont)

ggml-ci
2024-01-11 21:50:01 +02:00
Johannes Gäßler
e9783a1fb4
CUDA: faster softmax via shared memory + fp16 math (llama/4742) 2024-01-11 21:50:01 +02:00
Georgi Gerganov
9e0cc28792
metal : fix deprecation warning (ggml/690) 2024-01-11 21:50:00 +02:00
Timothy Cronin
73072a7c73
ggml : remove ggml_cpy_inplace and ggml_cont_inplace (ggml/693) 2024-01-11 21:50:00 +02:00
Jack Mousseau
a8ba1262ff
metal : wrap each operation in debug group (ggml/690) 2024-01-11 21:50:00 +02:00
leejet
e66a9a7806
ggml : change GGML_MAX_NAME at compile time (ggml/682)
* change GGML_MAX_NAME to 128

* allow controlling the value of GGML_MAX_NAME through external macro definitions
2024-01-11 21:50:00 +02:00
Halalaluyafail3
338442d773
Fix execlp call (ggml/689)
NULL can be an integer constant expression with the value zero, in this case the behavior would be undefined because of an incorrect type being passed to the variable arguments.
2024-01-11 21:50:00 +02:00
Kawrakow
10651bddf6
SOTA 2-bit quants (llama/4773)
* iq2_xxs: basics

* iq2_xxs: scalar and AVX2 dot products

Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.

* iq2_xxs: ARM_NEON dot product

Somehow strangely slow (112 ms/token).

* iq2_xxs: WIP Metal

Dequantize works, something is still wrong with the
dot product.

* iq2_xxs: Metal dot product now works

We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s

Not the greatest performance, but not complete garbage either.

* iq2_xxs: slighty faster dot product

TG-128 is now 48.4 t/s

* iq2_xxs: slighty faster dot product

TG-128 is now 50.9 t/s

* iq2_xxs: even faster Metal dot product

TG-128 is now 54.1 t/s.

Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.

* iq2_xxs: dequantize CUDA kernel - fix conflict with master

* iq2_xxs: quantized CUDA dot product (MMVQ)

We get TG-128 = 153.1 t/s

* iq2_xxs: slightly faster CUDA dot product

TG-128 is now at 155.1 t/s.

* iq2_xxs: add to llama ftype enum

* iq2_xxs: fix MoE on Metal

* Fix missing MMQ ops when on hipBLAS

I had put the ggml_supports_mmq call at the wrong place.

* Fix bug in qequantize_row_iq2_xxs

The 0.25f factor was missing.
Great detective work by @ggerganov!

* Fixing tests

* PR suggestion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-11 21:50:00 +02:00
Johannes Gäßler
53d4d0b30d
CUDA: fixed redundant value dequantization (llama/4809) 2024-01-11 21:50:00 +02:00
Konstantin Zhuravlyov
2865e4710b
ggml : use __builtin_amdgcn_sudot4 in __dp4a for gfx11 (llama/4787) 2024-01-11 21:50:00 +02:00
Georgi Gerganov
c46a74a19d
ggml : do not sched_yield when calling BLAS (llama/4761)
* ggml : do not sched_yield when calling BLAS

ggml-ci

* ggml : fix do_yield logic

ggml-ci

* ggml : simplify do_yield logic

ggml-ci
2024-01-11 21:50:00 +02:00
Georgi Gerganov
46dc49a6a1
ggml : include stdlib.h before intrin.h (llama/4736) 2024-01-11 21:49:59 +02:00