* tune matmul for gcn
* this one is more power efficient
* Update ggml/src/ggml-vulkan/ggml-vulkan.cpp
Co-authored-by: 0cc4m <picard12@live.de>
* disable this tune for the proprietary driver
---------
Co-authored-by: 0cc4m <picard12@live.de>
* graph : make mla compatible with FA
* metal : add exp FA kernels for DeepSeek models
ggml-ci
* llama : minor naming updates
ggml-ci
* ggml : disable FA for DS head sizes
* tests : add FA tests for MLA shapes
ggml-ci
The grouped query attention optmization doesn't require a power of two ratio,
the only thing relying on it was the modulo operation written as bitwise &.
split_k need not depend on gqa_ratio - enable it any time there's only one
workgroup in the X dimension. The shader gets the split index from the x coord,
and multiple workgroups in the X dimension (pre-split) indicates a larger
FA operation that wouldn't need splitting.
q4_k and q5_k had a lot of redundant global loads where the same 16B of
scale information is repeatedly loaded and decoded during each loop iteration.
This change restructures the loops to more explicitly iterate over whole
blocks in the outer loop (with unrolled inner loop) and to copy/decode the
scale data into shared memory once at the start of each outer loop. The copy
is pipelined so the scale load from global memory is relatively cheap.
This improves q4_k/q5_k model prompt processing performance by around 5-7%.
I briefly tried applying this to q6_k and q4_0, and it didn't help for q6_k
and hurt for q4_0.
The big "else" path in mul_mm_cm2.comp that had all the clamped/unclamped
variants isn't used as often as it originally was (e.g. due to the padded_N
change), so I trimmed it down to offset some of the new complexity of the
semi-manual loop unrolling.
nem1 must be a multiple of GGML_KQ_MASK_PAD, and GGML_KQ_MASK_PAD is a multiple
of the number of rows in the matrix. The KV dim is a multiple of the number of
columns for the aligned shader.
There seems to be a bubble waking up from waitForFences, which costs a few
percent performance and also increased variance in performance. This change
inserts an "almost_ready" fence when the graph is about 80% complete and we
waitForFences for the almost_ready fence and then spin (with _mm_pauses) waiting
for the final fence to be signaled.
When using group query attention, we have one workgroup per KV batch and this
can be very few workgroups (e.g. just 8 in some models). Enable split_k to
spread the work across SMs. This helps a lot when the KV cache is large.
When adjacent batches of Q share the same batches of K/V, batch them into
the same workgroup. For example, when:
dst(128,32,1,1) = FA(q(128,1,32,1), k(128,16640,8,1), v(128,16640,8,1))
previously we would run 32 workgroups computing 1 result each, now we will
run 8 workgroups computing 4 results each.
This doesn't directly translate to better performance (at least when you have
>=32 SMs), but in a subsequent change I'll enable split_k which will scale much
better with 4x fewer workgroups.
* ggml : FA with different K, V head sizes (CPU)
ggml-ci
* metal : add FA with HS=192
* metal : extend FA to support different K and V head sizes
ggml-ci
* metal : add FA vector kernels for heads K 192 and V 128
ggml-ci
* ggml : restrict op on other backends to equal head sizes
ggml-ci
* metal : optimize FA-vec kernel
ggml-ci
* metal : FA remove mq registers
* metal : improve MoE mul_mat_id condition
ggml-ci
* metal : fix comments + remove unnecessary addition
ggml-ci
* metal : avoid too much shared memory usage with mul_mat_id
ggml-ci
* tests: add mul_mat perf/functional tests for p021/nc vulkan shaders
* vulkan: Optimize mul_mat_vec p021 and nc shaders.
These shaders are used in attention calculations, and when the KV cache grows
large they start to dominate the run time. For the nc shader (which is called
with large 'k' dimension), use unrolling and vector loads. For the p021 shader
(which is called with large 'm' and small 'k' dimensions), take advantage of
grouped query attention to reuse loads from the A matrix for the whole group,
and reduce the number of workgroups (too much overhead from tiny dispatches).
Using subgroupAdd in the p021 shader also helps, use that conditionally.
I've been seeing significantly worse performance for tg with flash attention
enabled vs disabled, and it seems to be related to the submit heuristic.
Change the heuristic to check how many bytes worth of weight matrix are
used and flush every 100MB, and ramp up after the first few submits.
This seems to resolve the issue, and also increases perf for non-FA a bit.
* Upgrade init_tensor API to return a ggml_status
To prepare for an 'abort-free' ggml
(ggml not to abort on OOMs but return a OOM status),
as agreeed with Diego in the ggml repo,
upgrade the init_tensor() and view_init() APIs
to return a ggml_status.
* misc fixes
---------
Co-authored-by: slaren <slarengh@gmail.com>
* vulkan: implement specialized MMV kernels for IQ2 quantizations
* vulkan: add MMV kernels for IQ3 quants
* vulkan: Increase MMV batch size and unroll IQ LUT setup
* vulkan: fix init_iq_shmem for WG sizes larger than tables
* vulkan: common batch size for all I-quants
* cuda: restrict SILU_BACK to fp32, since fp16 exceeds the desired test threshold
* vulkan: specify fp32-only support for certain ops (that are now tested for fp16 as well)
* f32 sigmoid in vulkan supports op
* Revert "f32 sigmoid in vulkan supports op"
This reverts commit c6f04b3c19bf4504c2776149c6d8cd84e0b48acb.
* vulkan: initial support for IQ1_S and IQ1_M quantizations
* vulkan: define MMV kernels for IQ1 quantizations
* devops: increase timeout of Vulkan tests again
* vulkan: simplify ifdef for init_iq_shmem
* vulkan: initial support for IQ3_S
* vulkan: initial support for IQ3_XXS
* vulkan: initial support for IQ2_XXS
* vulkan: initial support for IQ2_XS
* vulkan: optimize Q3_K by removing branches
* vulkan: implement dequantize variants for coopmat2
* vulkan: initial support for IQ2_S
* vulkan: vertically realign code
* port failing dequant callbacks from mul_mm
* Fix array length mismatches
* vulkan: avoid using workgroup size before it is referenced
* tests: increase timeout for Vulkan llvmpipe backend
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
With robustbufferaccess disabled, this shader was showing OOB stores. There
is a bounds check in the code, but the workgrouop dimensions were reversed vs
CUDA and it was running the wrong number of threads. So fix the workgroup
dimensions and disable robustness for this pipeline.
mul mat and flash attention shaders were loading f32 types directly into
A/B matrices, which happens to work but is technically invalid usage.
For FA, we can load it as an Accumulator matrix and convert and this
is not in the inner loop and is cheap enough. For mul mat, it's more
efficient to do this conversion in a separate pass and have the input(s)
be f16.
coopmat2 requires SPIR-V 1.6 (related using to LocalSizeId). LocalSizeId
requires maintenance4 be enabled, and SPIR-V 1.6 requires Vulkan 1.3.
Add code similar to mul_mm_cm2 to force alignment of strides, to avoid
a performance regression.
Add noncontiguous FA tests in test-backend-ops.
Fixes#11268.
* vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl
Shaders are based on cpy.cu.
* vulkan: support copy from q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl to f32
* ggml: copy q->f32 assumes some contiguity in the destination