updated the n_task calculation to use max number of
threads possible. This has improved the prompt eval
performance by around 5% for DOT kernels and by
around 10% for MMLA kernels on AWS Graviton3.
* make GGML_TASK_INIT phase can be run in multithread
* multithreaded dequantize in mul_mat when using blas library
* minor fixes
* update outdated comment
* fix coding style
* simplify code
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* MobileVLM native implementation
* delete depthwise_conv_2d and permute_cpy relative code, replace the two by the existed functions, and opt ldp definition, support LLAMA_PERF option for CMake
* move android script to example/llava directory
* Fix the editor config checks
---------
Co-authored-by: Chenxiaotao03 <chenxiaotao03@meituan.com>
Benchmarks are failing because JNI expects a jstring and the benchmarks
are missing a return statement (i.e., returning null). The functions
actually build a jstring but don't return it, so this seems to have been
an oversight.
This patch returns the jstring and now the benchmarks run successfully.
Fixes#1783.
* examples/server: implement "verbose_json" format with token details.
This is intended to mirror the format of openai's Python
whisper.transcribe() return values.
* server: don't write WAV to a temporary file if not converting
* server: use std::lock_guard instead of manual lock/unlock
* ggml : add IQ2 to test-backend-ops + refactoring
ggml-ci
* cuda : update supports_op for IQ2
ggml-ci
* ci : enable LLAMA_CUBLAS=1 for CUDA nodes
ggml-ci
* cuda : fix out-of-bounds-access in `mul_mat_vec_q`
ggml-ci
* tests : avoid creating RNGs for each Q tensor
ggml-ci
* tests : avoid creating RNGs for each tensor
ggml-ci
* backend : add eval callback
ggml-ci
* backend : group nodes in a single compute when user don't need them
* backend : clean-up the implementation
ggml-ci
* simple : do not perform tensor data copy if not needed
* simple : fix
* imatrix : offload to GPU support
* imatrix : fix ggml_mul_mat_id hanlding
ggml-ci
* ci : add imatrix test
ggml-ci
* ci : rearrange output
ggml-ci
* backend : add eval callback
ggml-ci
* backend : group nodes in a single compute when user don't need them
* backend : clean-up the implementation
ggml-ci
* simple : do not perform tensor data copy if not needed
* simple : fix
* simple : no need for ggml_is_contiguous + fix bool parse
* llama : fix callback placement in llama_context_params
* backend : avoid double-ask callback calls
* simple : restore examples, imatrix will serve as a demo
* metal: Log `recommendedMaxWorkingSetSize` on iOS 16+
* Only log on iOS and macOS, ignoring tvOS and other platforms
* Check for Xcode version before using recommendedMaxWorkingSetSize
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This change makes it possible to build ggml-cuda.cu and ggml-metal.m as
independent dynamic shared objects, that may be conditionally linked at
runtime in a multiplatform binary. It introduces a GGML_CALL annotation
that documents which functions have a cyclic call relationship, between
the application code and GPU modules.
This change does nothing, unless the build defines -DGGML_MULTIPLATFORM
which causes back-references and function pointers to conform to MS ABI
which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms
* make : fix server example building on MSYS2 environments (Windows)
It was not working since commit eff3570f78742dfd56024328ed93d4f442434280
when server was introduced.
* cmake : simplify server example lib deps on Windows
server uses httplib::Server, not httplib::SSLServer, so there is no need
to mention cryptographic libraries in target_link_libraries.
Winsock (ws2_32) suffices here.
Also use plain library names like we use in other places.