Commit Graph

1034 Commits

Author SHA1 Message Date
4f5c46a84f ggml-quants : fix compiler warnings (shadow variable) (llama/5472)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-19 15:53:22 +02:00
462ffc58db ggml-sycl: Replace 3d ops with macro (llama/5458)
* use macro

* use macro

* fix format
2024-02-19 15:53:21 +02:00
65faae0b6a build : update CBLAS flags + fix unused var warning (#0) 2024-02-19 14:44:46 +02:00
dda4b0ed06 main : check if input files exist before proceeding (#1872)
Until the most recent commit (3d42463), the main.cpp sample file does
not check whether the input files exist or not. Consequently, the
model is loaded first before reporting whether there was a failure or
not when processing a file. In environments with HDD, this can take
about 50 seconds or more, depending on the loaded model.

This commit addresses this issue by checking in advance whether the
input files exist or not.
2024-02-19 10:51:26 +02:00
07d04280be examples : clean up common code (#1871)
move some utility functions into common.h
2024-02-19 10:50:15 +02:00
917c56ded4 models : fix openvino setup info (#1874) 2024-02-19 02:19:47 +00:00
3d42463845 models : add update py requirements 2024-02-13 11:51:32 +02:00
3ffc83d90a swift : package no longer use ggml dependency (#1861)
* Revert "swift : update Package.swift to use ggml as package dependency (#1701)"

This reverts commit 993acb5d41.

* spm : add ggml.h
2024-02-12 19:54:11 +02:00
e3c5e2cba8 whisper : fix external encoder (#1860) 2024-02-12 19:53:51 +02:00
b742f13e70 sync : ggml 2024-02-12 19:07:56 +02:00
52c529eeb1 ggml-alloc : allocate all leafs as if they were inputs (ggml/731)
* ggml-alloc : allocate all leafs as if they were inputs

* ensure static leafs are allocated

* gpt-2-backend : remove unnecesary ggml_new_tensor

* update other gpt-2 examples to remove ggml_new_tensor calls in the graph
2024-02-12 19:07:38 +02:00
551529290d talk-llama : sync llama.cpp 2024-02-12 10:39:58 +02:00
25a90ffa38 sync : ggml 2024-02-12 09:32:15 +02:00
866b67ca93 ggml-backend : sync remnant 2024-02-12 09:31:12 +02:00
d7e9f58f7f CUDA: mul_mat_vec_q tiling, refactor mul mat logic (llama/5434)
* CUDA: mul_mat_vec_q tiling, refactor mul mat logic

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-12 09:31:12 +02:00
04839bae22 vulkan: only use M-sized matmul on Apple GPUs (llama/5412)
* vulkan: refactor guess_matmul_pipeline for vendor

Refactor ggml_vk_guess_matmul_pipeline to simplify adding per-vendor
conditionals.

Signed-off-by: Sergio Lopez <slp@redhat.com>

* vulkan: only use M-sized matmul on Apple GPUs

L-sized and S-sized matmuls are broken on Apple GPUs, force using
M-size with this vendor.

Signed-off-by: Sergio Lopez <slp@redhat.com>

---------

Signed-off-by: Sergio Lopez <slp@redhat.com>
2024-02-12 09:31:12 +02:00
3cc6e04a52 ggml : fix compile warnings (unused vars) (llama/4966) 2024-02-12 09:31:11 +02:00
b7ef178b9c ggml : add mmla kernels for quantized GEMM (llama/4966)
* ggml: aarch64: implement smmla kernel for q8_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q8_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_1_q8_1 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: update unit tests for the new vec_dot interface

* llama.cpp: add MATMUL_INT8 capability to system_info
2024-02-12 09:31:11 +02:00
47dfe9d4db metal : use autoreleasepool to avoid memory leaks (llama/5437)
There appears to be a known memory leak when using the
`MLTCommandBuffer`. It is suggested to use `@autoreleasepool` in
[1,2]

[1] https://developer.apple.com/forums/thread/662721
[2] https://forums.developer.apple.com/forums/thread/120931

This change-set wraps the `ggml_metal_graph_compute` in a
`@autoreleasepool`.

This commit addresses https://github.com/ggerganov/llama.cpp/issues/5436
2024-02-12 09:31:11 +02:00
1d3270cc8f ggml-alloc : v3 (ggml/727)
* ggml-alloc v3

ggml-ci

* fix ci

ggml-ci

* whisper : check for backend buffer allocation failures

* whisper : avoid leaks when initialization fails

* cleanup

ggml-ci

* style fixes

ggml-ci
2024-02-12 09:31:11 +02:00
a6fb6ab597 examples : added audio_ctx argument to main and server (#1857)
* added audio_ctx argument to main and server examples

* Better default value

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* better default value (again)

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-12 09:19:07 +02:00
163e74b6c3 metal : option to embed MSL source into compiled binary (#1842)
* ggml : embed Metal library source (ggml-metal.metal) into binary

enable by setting WHISPER_EMBED_METAL_LIBRARY

* rename the build option

* rename the preprocessor directive

* generate Metal library embedding assembly on-fly during build process
2024-02-11 16:41:41 +02:00
f273e66dc6 examples : initialize context params properly (#1852) 2024-02-11 16:39:12 +02:00
02b4c52c12 talk-llama : sync llama.cpp 2024-02-10 10:10:59 +02:00
518199c09e sync : ggml 2024-02-10 09:56:47 +02:00
8b17a2f776 src : relocate new backend sources 2024-02-10 09:55:47 +02:00
b6d2827914 ggml : fix error C2078: too many initializers for MSVC ARM64 (llama/5404) 2024-02-10 09:55:47 +02:00
9711bae0b3 CUDA: more warps for mmvq on NVIDIA (llama/5394) 2024-02-10 09:55:47 +02:00
eec38f63bd CUDA: fixed mmvq kernel for bs 2,3,4 and -sm row (llama/5386) 2024-02-10 09:55:47 +02:00
ef5e6b746f Basic Vulkan Multi-GPU implementation (llama/5321)
* Initial Vulkan multi-gpu implementation

Move most global variables into backend context

* Add names to backend device functions

* Add further missing cleanup code

* Reduce code duplication in tensor split layer assignment

* generalize LLAMA_SPLIT_LAYER for all backends, do not expose device count and memory in llama.h

* Only do device info print in the beginning and initialize one backend for cpu assist

Add missing cleanup code

* Rework backend memory management to make sure devices and buffers get properly allocated and freed

* Rename cpu assist free function

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-10 09:55:47 +02:00
77bf6b5f56 CUDA: mul_mat_vec_q max. batch size 8 -> 4 (llama/5370) 2024-02-10 09:55:47 +02:00
b562fff9d0 Slight quantization improvement for Q4_K and Q5_K (llama/5361)
* Q4_K: slightly better quantization

* Q5_K: slightly better quantization

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-10 09:55:47 +02:00
b5dec374f4 CUDA: mul_mat_vec_q for batch sizes > 1 (llama/5351) 2024-02-10 09:55:47 +02:00
fa0dc6167c ggml : make use of ggml-quants.h possible in C++ code (llama/5338)
* Make use of ggml-quants.h possible in C++ code

* One cannot possibly be defining static_assert in a C++ compilation

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-10 09:55:47 +02:00
55bcd62a4b ggml : avoid duplicating function calls using MIN/MAX macros (llama/5325)
* Avoid duplicating function calls when using MIN/MAX macros.

Since these copy "a" and "b" they ask the compiler to evaluate one of them twice. The compiler doesn't have a problem with removing the duplication in something like MAX(0, x + 2), but in some cases we're calling functions, and those calls just happen twice.
By explicitly evaluating at the expression we get smaller and faster code without duplicate calls. See ggml_rope_yarn_corr_dims in Compiler Explorer:

https://godbolt.org/z/Ee4KMrvKh

Code behaves exactly the same.

* Update ggml.c

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-10 09:55:46 +02:00
0ed762d691 iq2_xxs: tune quantization (llama/5320)
We get slightly better PPL, and we cut quantization time in
nearly half.

The trick is to 1st quantize without forcing points onto the E8-lattice.
We can then use a narrower search range around the block scale that we
got that way.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-10 09:55:46 +02:00
1b5bb7792e cuda : fix LLAMA_CUDA_F16 (llama/5262) 2024-02-10 09:55:46 +02:00
9b735cea77 metal : add im2col F32 dst support (llama/5132) 2024-02-10 09:55:46 +02:00
12c462d656 llava : add MobileVLM support (llama/5132)
* New Feature:
    1. Sum_Rows:
        fix cuda kernel overflow
        fix block shape error when nrows too big
    2. Im2Col:
        Support Batch in cuda
        Support f32 to f32 both in cpu && cuda
    3. DepthWiseConv:
        Support by Im2Col && MulMat
    4. Pool_2d:
        Supoort avg pooling in cuda
    5. HardSigmoid:
        Imp in cuda
    6. HardSwish:
        Imp in cuda

* fix tabs instead of spaces

* code clean

* CUDA POOL2D

* ADD POOL2D test case in test-backend-ops.cpp

* code clean

* fix pool2d_kernel

nits

* fix bug in pool2d kernel

* fix avg pooling, count_include_pad

nits

* test-backend-ops : add more pool_2d tests

* cuda : fix warnings and formatting

* ggml : check types in release builds too in pool_2d

* test-backend-ops : remove f16 pool_2d tests

* cuda : more style fixes

* Add assert in ggml_cuda_op_pool2d

* pool2d float padding fallback

* test-backend-ops : add dst_type to im2col

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-10 09:55:46 +02:00
fc7b0e2c28 ggml : limit n_threads to the max n_tasks (llama/5238) 2024-02-10 09:55:46 +02:00
f850a067ed kompute : llama-bench support and ggml_cpu_has_kompute() (llama/5226) 2024-02-10 09:55:46 +02:00
f75e1197f1 ggml : add abort_callback for cpu backend (ggml/725)
* a way to use abort_callback with the cpu backend

* whisper update
2024-02-10 09:55:46 +02:00
aa8a75e287 extra : update sync scripts 2024-02-10 09:55:19 +02:00
80e8a2ea39 server : allow CORS request with authorization headers (#1850)
Whisper plugin in Obsidian requires an API key which is
then sent as an authorization header.
However, the presence of an authorization header requires
a CORS Preflight, so both the OPTIONS method and
the Access-Control-Allow-Headers: authorization must be
handled.
2024-02-09 17:42:41 +02:00
19f8048139 whisper.android : how to build with CLBlast (#1809)
* FetchContent

* OpenCL

* Documentation and make optional

* Specify GGML build options in build.gradle

* Use gradle properties

* @ggerganov

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* @gpokat

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-09 17:39:05 +02:00
0f80e5a80a whisper : expose CUDA device setting in public API (#1840)
* Makefile : allow to override CUDA_ARCH_FLAG

* whisper : allow to select GPU (CUDA) device from public API
2024-02-09 17:27:47 +02:00
b6559333ff make : add macOS deployment target option (#1839) 2024-02-09 17:26:29 +02:00
434b8f3b96 talk-llama : stream response (#1121) 2024-02-06 19:56:12 +02:00
7a74e929c8 sync : ggml (#0) 2024-01-30 21:30:26 +02:00
361ecebe90 ggml : fix IQ3_XXS on Metal (llama/5219)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-30 21:28:00 +02:00