Commit Graph

1263 Commits

Author SHA1 Message Date
Georgi Gerganov
2c81e6fd51 whisper : remove old flash attn code (#0) 2024-05-13 11:02:26 +03:00
Georgi Gerganov
9506267ce5 ggml : try fix ppc64 (#0) 2024-05-13 11:02:26 +03:00
Georgi Gerganov
fbeb80b5f0 ggml : remove oboslete alibi code (skipme) (#0) 2024-05-13 11:02:26 +03:00
Georgi Gerganov
3fa7d29876 talk-llama : sync llama.cpp 2024-05-13 11:02:26 +03:00
Georgi Gerganov
fe179ae0cc sync : ggml 2024-05-13 11:02:26 +03:00
Hong Bo PENG
40aeeeecc4 ggml : optimize for ppc64le using VSX intrinsics (ggml/784)
* optimize for ppc64le using VSX intrinsics

* 1. code clean up by removing comments about overflow concern.

2. fix typo in suffix of scaling.

* Continue to fix typo in suffix of scaling for QK_K <> 256

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-13 11:02:26 +03:00
Georgi Gerganov
5a863fbe18 metal : fix indent (ggml/0) 2024-05-13 11:02:26 +03:00
Georgi Gerganov
91c646c61d ggml : restore sigmoid decl order (ggml/0) 2024-05-13 11:02:26 +03:00
Georgi Gerganov
accada542a ggml : resolve merge (ggml/0)
ggml-ci
2024-05-13 11:02:26 +03:00
Georgi Gerganov
e54329da7b ggml : full ALiBi support (llama/7192)
* ggml : full ALiBi support

* ggml : update ggml_soft_max_ext() CUDA, SYCL

* ggml : ggml_flash_attn_ext() support ALiBi (CPU)

* ggml : ggml_flash_attn_ext() support ALiBi (Metal)

* ggml : fix warning

* ggml : ggml_flash_attn_ext() support ALiBi (CUDA)

ggml-ci

* ggml : fix assert message

* vulkan : add dev notes

* ggml : require mask when using ALiBi

ggml-ci

* convert : fix convert for refact models
2024-05-13 11:02:26 +03:00
Georgi Gerganov
284fac39fb metal : fix flash attention kernel requirements (llama/7169)
* metal : fix flash attention kernel requirements

ggml-ci

* metal : fix ggml_metal_supports_op

ggml-ci
2024-05-13 11:02:26 +03:00
Ouadie EL FAROUKI
fe454b8d9e Minor arithmetic improvement to mmvq wrapper kernel (llama/7172) 2024-05-13 11:02:26 +03:00
0cc4m
c114b75aee Vulkan Bugfixes and Improvements (llama/7084)
* Modify mat mat mul shader for mul_mat_id, modify mat vec mul shaders for single call batch operation

* Further work towards MoE, disabled for now

* Disable MoE code (not ready yet), fix a number of bugs in shaders and Vulkan code

* Add softmax with f16 mask and pos buffer support

* Disable mul_mat_id shaders for now

* Fix flake8

* Fix validation errors caused by empty buffers on larger batch sizes
2024-05-13 11:02:26 +03:00
Johannes Gäßler
4be936b88b CUDA: generalize FP16 fattn vec kernel (llama/7061)
* CUDA: generalize FP16 fattn vec kernel

* disable unsupported head sizes for AMD in test

* try AMD fix

* fix batch size 2-8

* partially revert changes
2024-05-13 11:02:26 +03:00
Albert Jin
26c550f772 opencl : alignment size converted from bits to bytes (llama/7090)
* opencl alignment size should be converted from bits to bytes

Reference: https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_API.html#CL_DEVICE_MEM_BASE_ADDR_ALIGN

> Alignment requirement (in bits) for sub-buffer offsets.

* Update ggml-opencl.cpp for readability using division instead of shift

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2024-05-13 11:02:26 +03:00
agray3
24f0aa460b Introduction of CUDA Graphs to LLama.cpp (llama/6766)
* DRAFT: Introduction of CUDA Graphs to LLama.cpp

* FIx issues raised in comments

* Tidied to now only use CUDA runtime (not mixed with driver calls)

* disable for multi-gpu and batch size > 1

* Disable CUDA graphs for old GPU arch and with env var

* added missing CUDA_CHECKs

* Addressed comments

* further addressed comments

* limit to GGML_ALLOW_CUDA_GRAPHS defined in llama.cpp cmake

* Added more comprehensive graph node checking

* With mechanism to fall back if graph capture fails

* Revert "With mechanism to fall back if graph capture fails"

This reverts commit eb9f15fb6fcb81384f732c4601a5b25c016a5143.

* Fall back if graph capture fails and address other comments

* - renamed GGML_ALLOW_CUDA_GRAPHS to GGML_CUDA_USE_GRAPHS

- rename env variable to disable CUDA graphs to GGML_CUDA_DISABLE_GRAPHS

- updated Makefile build to enable CUDA graphs

- removed graph capture failure checking in ggml_cuda_error
  using a global variable to track this is not thread safe, but I am also not safistied with checking an error by string
  if this is necessary to workaround some issues with graph capture with eg. cuBLAS, we can pass the ggml_backend_cuda_context to the error checking macro and store the result in the context

- fixed several resource leaks

- fixed issue with zero node graphs

- changed fixed size arrays to vectors

- removed the count of number of evaluations before start capturing, and instead changed the capture mode to relaxed

- removed the check for multiple devices so that it is still possible to use a single device, instead checks for split buffers to disable cuda graphs with -sm row

- changed the op for checking batch size to GGML_OP_ADD, should be more reliable than GGML_OP_SOFT_MAX

- code style fixes

- things to look into
  - VRAM usage of the cudaGraphExec_t, if it is significant we may need to make it optional
  - possibility of using cudaStreamBeginCaptureToGraph to keep track of which ggml graph nodes correspond to which cuda graph nodes

* fix build without cuda graphs

* remove outdated comment

* replace minimum cc value with a constant

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-05-13 11:02:26 +03:00
Gilad S
69efc39d5c metal : use vm_allocate instead of posix_memalign on macOS (llama/7078)
* fix: use `malloc` instead of `posix_memalign` in `ggml-metal.m` to make it not crash Electron proccesses

* fix: typo

* fix: use `vm_allocate` instead of `posix_memalign`

* fix: don't call `newBufferWithBytesNoCopy` with `NULL` when `ggml_metal_host_malloc` returns `NULL`

* fix: use `vm_allocate` only on macOS
2024-05-13 11:02:26 +03:00
Justine Tunney
a2ad810118 ggml : introduce bfloat16 support (llama/6412)
* Introduce bfloat16 support

Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───┐
    0b0000000000000000 brain16

This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───────────────────┐
    0b00000000000000000000000000000000 IEEE binary32

The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others

      ┌sign
      │
      │  ┌exponent
      │  │
      │  │    ┌mantissa
      │  │    │
      │┌─┴─┐┌─┴──────┐
    0b0000000000000000 IEEE binary16

This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16

* Remove GGML code that's not needed

* Minimize the GGML API surface area for BF16

* Remove bf16 luts

* Make the GGML header look nicer

* Fix documentation

* Apply ggerganov's fixes for test-backend-ops

* Add BF16 code for new ggml_validate_row_data() function
2024-05-13 11:02:26 +03:00
Georgi Gerganov
1ae1a9cd56 metal : fix unused warning 2024-05-13 11:02:26 +03:00
William Tambellini
b5521fea19 Add an option to build without CUDA VMM (llama/7067)
Add an option to build ggml cuda without CUDA VMM
resolves
https://github.com/ggerganov/llama.cpp/issues/6889
https://forums.developer.nvidia.com/t/potential-nvshmem-allocated-memory-performance-issue/275416/4
2024-05-13 11:02:26 +03:00
Xuan Son Nguyen
9b84195225 gguf-split: add --no-tensor-first-split (llama/7072) 2024-05-13 11:02:26 +03:00
Johannes Gäßler
11c1df0436 CUDA: CUDART < 11.7 workaround for __hmax, __hmax2 (llama/7019) 2024-05-13 11:02:26 +03:00
Kevin Gibbons
c754494fdd switch to using localizedDescription (llama/7010) 2024-05-13 11:02:26 +03:00
Georgi Gerganov
1bce67999d metal : remove deprecated error code (llama/7008) 2024-05-13 11:02:26 +03:00
Kevin Gibbons
6c39ea46b6 metal : log more info on error (llama/6987) 2024-05-13 11:02:26 +03:00
Georgi Gerganov
156a33a990 ggml : add Flash Attention (llama/5021)
* ggml : add ggml_flash_attn_ext API

* ggml : fix GQA support in ggml_flash_attn_ext

* ggml : online attention (CPU)

* metal : initial implementation

* metal : f16 precision

* metal : reduce branches

* metal : specialize for head size

* wip : 8 rows per simd group

* wip : 4 rows per simd group

* wip : template for rows per warp

* metal : parallelize across KV size

* metal : parallel reduce across heads

* metal : efficient flash_attn_f16 implementation

* metal : avoid redundant loads of the attention

* metal : scale and mask in matrix form

* metal : fix comment

* llama : avoid ggml_cast, use F32 query

* metal : add parallel reduce version (disabled)

* metal : move output into local memory + optimize

- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments

* metal : add tests, fix scaling, support C > 32

* metal : improve precision

* ggml : fix f16 mad

* metal : minor

* metal : support Q > 8

* tests : add ATTN tests

* metal : disable buffer allocation logs

* tests : more

* metal : faster inner loop for C == 32

* metal : fix array initialization

* tests : ifdef

* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext

* ggml : fix ggml_soft_max mask requirement

* cuda : fix soft_max to use correct mask size

* cuda : add flash_attn kernel (wip)

* metal : optimize softmax for C > 32

* metal : optimize softmax

* tests : minor fix

* cuda : avoid zeroing fragments

* tests : update dims

* cuda : fix __hisinf() result check

* cuda : avoid warp_reduce for smax

* cuda : use int instead of int64_t

Noticeably improves performance (thanks to Johannes)

* cuda : make loops use the same loop values

Thanks Johannes again for the tip

* cuda : unroll some of the loops

* cuda : avoid __hisinf branches

* cuda : use half2 in softmax

* cuda : switch to 1 warp for bs > 16

* cuda : speed-up reduce part of the kernel

* cuda : unroll Q*K^T loop

* cuda : fix -INF block check

* cuda : simplify softmax

* cuda : fix matrix names

* cuda : minor

* llama : adapt to F16 KQ_pos

* llama : adapt new models to F16 KQ_mask

* ggml : fix F16 store (ARM NEON)

* llama : fix type of KQ_mask and KQ_pos

* ggml : fix CPU soft_max

* tests : add hs=256

* cuda : fix build

* metal : improve perf via smaller int registers

* cuda : adapt soft_max to F16 mask and pos

* CUDA: faster FlashAttention, kernel for bs == 1

* 16 cols for Phi-2

* no vec for hs, no hs==256 ncols==32 for Volta

* adjust kernel selection logic

* 4 warps, 256 stride for all D

* no ncols == 64

* Multiple parallel blocks for batch size 1

* fix compile warnings

* fix excessive KQ_b loads

* fix cmake build

* fix KV cache padding, NaN from INFINITY (llama/6438)

* llama : flash_attn cparam + fix defrag

* server: support flash_attn param

* server: bench: enable flash_attn param

* CUDA: refactor host code, dyn. par. blocks

* fix flash_attn_vec_f16 race condition

* flush softmax exp below threshold to 0

* store temp KQ in registers

* Calculate KQ as FP32 if KQV has GGML_PREC_F32

* Add __hgt2_mask implementation for CUDA 11

* fix KQ FP32 precision fpr parallel_blocks > 1

* llama-bench : add -fa,--flash-attn arg

* metal : add BS=1 kernel for flash attention (llama/6508)

* metal : add BS=1 kernel for flash attention (wip)

* metal : support more than 1 warps

* metal : opts

* metal : opt

* metal : switch to parallel reduce

* metal : reduce registers

* metal : simplify

* metal : initial FA vec kernel

* metal : use F32 attention accumulators

* batched-bench : add fattn arg

* llama : simplify llama_build_kv_store

ggml-ci

* llama : adapt build_olmo to changes

* ggml : fix arm fp16 store on windows

* metal : clean-up

* metal : clean-up kernel code

* metal : minor

* tests : remove benchmarks

ggml-ci

* ggml : fix avx512 const correctness

ggml-ci

* ggml : fix soft_max with bias on CPU

ggml-ci

* common : print --flash-attn in help

* ggml : fix num dimensions in ggml_flash_attn_ext

* llama : force disable flash attention for incompatible models

* ggml : ggml_soft_max support F16/F32 mask/pos

ggml-ci

* cuda : uint -> uint32_t

* cuda : "constexpr dim3" -> "const dim3"

ggml-ci

* cuda : try to fix __hgt2_mask

ggml-ci

* ggml : add TODO's for F16/F32 mask/pos support in other backends

* llama : replace bool need_kq_pos with use_alibi

* llama : prep ALiBi support for BERT models

ggml-ci

* llama : fix n_batch requirements

ggml-ci

* cont

* server : add help for --flash-attn arg

* llama : disable FA for AMD

* tests : remove TMP_ATTN_BENCH

ggml-ci

* llama : support save/load state with FA enabled

ggml-ci

* ci : add CUDA save-load-state tests

ggml-ci

* llama : llama_kv_cache_clear zeroes data + fix save-load seq

ggml-ci

* llama : fix copy-paste errors, add TODO

* llama : disallow incompatible states

* llama : update llama_state_get_size after v_trans field

* metal : remove tmp log

* llama : add static reminder for llama_state_get_size

* metal : fix max nsg

ggml-ci

* ci : fix arg order

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-05-13 11:02:26 +03:00
Georgi Gerganov
5167ebdfca ggml : fix __MSC_VER -> _MSC_VER (llama/6977)
ggml-ci
2024-05-13 11:02:26 +03:00
DAN™
b574646d75 Fix more int overflow during quant (PPL/CUDA). (llama/6563)
* Fix more int overflow during quant.

* Fix some more int overflow in softmax.

* Revert back to int64_t.
2024-05-13 11:02:26 +03:00
Xuan Son Nguyen
388c3462a6 gguf : enforce that tensor names are unique (llama/6905)
* not allow adding duplicated tensor name

* no duplicated tensor while reading gguf

* typo

* throw exception inside llama_model_loader

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-05-13 11:02:26 +03:00
Neo Zhang
9ad202bee9 add device version in device list (llama/6959)
Co-authored-by: arthw <>
2024-05-13 11:02:26 +03:00
agray3
f0d3fb4a7e Reset schedule earlier to allow overlap with ggml graph computation on device (llama/6933)
* Reset schedule earlier to allow overlap with graph computation on device
2024-05-13 11:02:26 +03:00
slaren
9d4c8b8aa5 add basic tensor data validation function (llama/6884)
* add basic tensor data validation function

* add --check-tensors command line argument

tensor validation is disabled by default and can be enabled by adding
`--check-tensors` to the command line arguments.

quantize always validates tensors.
2024-05-13 11:02:26 +03:00
slaren
ecfac1e240 gguf : fix mismatch between alloc and free functions (llama/6929) 2024-05-13 11:02:26 +03:00
Georgi Gerganov
6f7140f568 Merge pull request from GHSA-p5mv-gjc5-mwqv
* always use calloc

clamp n_kv on failure to read a kv

* ggml : alternative ctx->header.n_kv update

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-05-13 11:02:26 +03:00
Georgi Gerganov
05b17112cf ggml : fix redefinition of vaddvq_f32 for 32-bit ARM (llama/6906) 2024-05-13 11:02:26 +03:00
Georgi Gerganov
a15fb5cd79 ggml : fix MIN / MAX macros (llama/6904)
ggml-ci
2024-05-13 11:02:26 +03:00
Georgi Gerganov
63fd148d8f ggml : move 32-bit arm compat in ggml-impl.h (llama/6865)
ggml-ci
2024-05-13 11:02:26 +03:00
Justine Tunney
6c3971b29b llamafile : improve sgemm.cpp (llama/6796)
* llamafile : improve sgemm.cpp

- Re-enable by default
- Fix issue described in #6716
- Make code more abstract, elegant, and maintainable
- Faster handling of weirdly shaped `m` an `n` edge cases

* Address review comments

* Help clang produce fma instructions

* Address review comments
2024-05-13 11:02:26 +03:00
Dave Airlie
a6d264f331 ggml : fix calloc argument ordering. (llama/6820)
Latest gcc complains here:
/home/airlied/devel/llama.cpp/ggml-alloc.c: In function ‘ggml_gallocr_new_n’:
/home/airlied/devel/llama.cpp/ggml-alloc.c:374:59: warning: ‘calloc’ sizes specified with ‘sizeof’ in the earlier argument and not in the later argument [-Wcalloc-transposed-args]
  374 |     ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1);
      |                                                           ^~~~~~
/home/airlied/devel/llama.cpp/ggml-alloc.c:374:59: note: earlier argument should specify number of elements, later size of each element

and a bunch more.

calloc is specified to take nmemb first then size, so realign the code.

In a couple of places there was a * x, 1 so I fixed those to use calloc properly.
2024-05-13 11:02:26 +03:00
Georgi Gerganov
2959686019 ggml : fix ggml_backend_cpu_supports_op() for CPY (llama/0) 2024-05-13 11:02:26 +03:00
slaren
c96b0a938e ggml : group all experts in a single ggml_mul_mat_id (llama/6505)
* ggml : group all experts in a single ggml_mul_mat_id
cuda : improve mmid row copy

* cuda : fix bin bcast with non-cont src0

* test-backend-ops : only run all mul mat tests for base types

* llama : disable moe offloading with SYCL

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-13 11:02:26 +03:00
Georgi Gerganov
c97796aa0f ggml : fix llamafile sgemm wdata offsets (llama/6710)
ggml-ci
2024-05-13 11:02:26 +03:00
Justine Tunney
7a4f7d825e ggml : add llamafile sgemm (llama/6414)
This change upstreams llamafile's cpu matrix multiplication kernels
which improve image and prompt evaluation speed. For starters, Q4_0
and Q8_0 weights should go ~40% faster on CPU. The biggest benefits
are with data types like f16 / f32, which process prompts 2x faster
thus making them faster than quantized data types for prompt evals.

This change also introduces bona fide AVX512 support since tinyBLAS
is able to exploit the larger register file. For example, on my CPU
llama.cpp llava-cli processes an image prompt at 305 tokens/second,
using the Q4_K and Q4_0 types, which has always been faster than if
we used f16 LLaVA weights, which at HEAD go 188 tokens/second. With
this change, f16 LLaVA performance leap frogs to 464 tokens/second.

On Intel Core i9-14900K this change improves F16 prompt perf by 5x.
For example, using llama.cpp at HEAD with Mistral 7b f16 to process
a 215 token prompt will go 13 tok/sec. This change has fixes making
it go 52 tok/sec. It's mostly thanks to my vectorized outer product
kernels but also because I added support for correctly counting the
number of cores on Alderlake, so the default thread count discounts
Intel's new efficiency cores. Only Linux right now can count cores.

This work was sponsored by Mozilla who's given permission to change
the license of this code from Apache 2.0 to MIT. To read more about
what's improved, and how it works, see: https://justine.lol/matmul/
2024-05-13 11:02:26 +03:00
Shijie
fdb2c87350 llama : add qwen2moe (llama/6074)
* support qwen2moe

* fix-review

* metal : support unary ops for nelements % 4 != 0

* metal : require contiguousness for float4 unary kernels

* metal : require contiguousness for float4 unary kernels (cont)

* fix-review

* names : for brevity "SHARED_EXP" -> "SHEXP"

* llama : reuse build_moe_ffn()

* llama : add model type name

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-13 11:02:26 +03:00
Neo Zhang Jianyu
98c0b77e0c fix mul_mat_id() for new input, make the ut pass (llama/6682) 2024-05-13 11:02:26 +03:00
Dave
9d6d50d933 Added support for GGML_OP_CLAMP in Metal (llama/6662)
* Added support for GGML_OP_CLAMP in Metal

* Corrected size

---------

Co-authored-by: dave-fl <dave@Davids-MacBook-Pro.local>
2024-05-13 11:02:26 +03:00
Neo Zhang Jianyu
c1320c1f0c fix memcpy() crash, add missed cmd in guide, fix softmax (llama/6622)
* disable mmap to fix memcpy crash, add missed cmd in guide, fix softmax

* refactor to disable mmap for SYCL backend

* fix compile error in other os

* refactor the solution, use host buf to fix it, instead of disable mmap

* keep to support mmap()

* use host buff to reduce malloc times

* revert to malloc/free solution, for threaad safe
2024-05-13 11:02:26 +03:00
Johannes Gäßler
66aaf03a7a CUDA: fix matrix multiplication logic for tests (llama/6667) 2024-05-13 11:02:26 +03:00
slaren
00a0947c65 metal : unify mul_mv_id kernels (llama/6556) 2024-05-13 11:02:26 +03:00
jiez
60f3713026 llama : add gguf_remove_key + remove split meta during quantize (llama/6591)
* Remove split metadata when quantize model shards

* Find metadata key by enum

* Correct loop range for gguf_remove_key and code format

* Free kv memory

---------

Co-authored-by: z5269887 <z5269887@unsw.edu.au>
2024-05-13 11:02:26 +03:00