metal : refactor mat-vec code (llama/12569)

* metal : refactor mat-vec code

ggml-ci

* metal : rename all_sum -> sum_all

ggml-ci

* metal : fix comments [no ci]

* metal : fix nr constant [no ci]

* metal : mv q6_K support nr0 > 1

ggml-ci

* metal : reduce register pressure

ggml-ci

* metal : fix typo [no ci]

* metal : reduce register pressure

ggml-ci
This commit is contained in:
Georgi Gerganov 2025-03-26 21:38:38 +02:00
parent 3c4d363872
commit f4f619ea8e
3 changed files with 521 additions and 498 deletions

View File

@ -1,6 +1,70 @@
#ifndef GGML_METAL_IMPL
#define GGML_METAL_IMPL
// kernel parameters for mat-vec threadgroups
//
// N_R0: number of src0 rows to process per simdgroup
// N_SG: number of simdgroups per threadgroup
//
// TODO: for optimal performance, become function of the device and work size
#define N_R0_Q4_0 4
#define N_SG_Q4_0 2
#define N_R0_Q4_1 4
#define N_SG_Q4_1 2
#define N_R0_Q5_0 4
#define N_SG_Q5_0 2
#define N_R0_Q5_1 4
#define N_SG_Q5_1 2
#define N_R0_Q8_0 4
#define N_SG_Q8_0 2
#define N_R0_Q2_K 4
#define N_SG_Q2_K 2
#define N_R0_Q3_K 2
#define N_SG_Q3_K 2
#define N_R0_Q4_K 4
#define N_SG_Q4_K 2
#define N_R0_Q5_K 2
#define N_SG_Q5_K 2
#define N_R0_Q6_K 1
#define N_SG_Q6_K 2
#define N_R0_IQ1_S 4
#define N_SG_IQ1_S 2
#define N_R0_IQ1_M 4
#define N_SG_IQ1_M 2
#define N_R0_IQ2_XXS 4
#define N_SG_IQ2_XXS 2
#define N_R0_IQ2_XS 4
#define N_SG_IQ2_XS 2
#define N_R0_IQ2_S 4
#define N_SG_IQ2_S 2
#define N_R0_IQ3_XXS 4
#define N_SG_IQ3_XXS 2
#define N_R0_IQ3_S 4
#define N_SG_IQ3_S 2
#define N_R0_IQ4_NL 2
#define N_SG_IQ4_NL 2
#define N_R0_IQ4_XS 2
#define N_SG_IQ4_XS 2
// kernel argument structs
//
// - element counters (e.g. ne00) typically use int32_t to reduce register usage

View File

@ -2561,171 +2561,180 @@ static void ggml_metal_encode_node(
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else {
int nth0 = 32;
int nth1 = 1;
int nrows = 1;
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
id<MTLComputePipelineState> pipeline = nil;
int nsg = 0; // number of simdgroups
int nr0 = 0; // number of src0 rows per simdgroup
int nr1 = 1; // number of src1 rows per threadgroup
size_t smem = 0; // shared memory
// use custom matrix x vector kernel
switch (src0t) {
case GGML_TYPE_F32:
{
GGML_ASSERT(src1t == GGML_TYPE_F32);
nsg = 1;
nr0 = 1;
nr1 = 4;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32].pipeline;
nrows = 4;
} break;
case GGML_TYPE_F16:
{
nth0 = 32;
nth1 = 1;
nsg = 1;
nr0 = 1;
if (src1t == GGML_TYPE_F32) {
if (ne11 * ne12 < 4) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW].pipeline;
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4].pipeline;
nrows = ne11;
nr1 = ne11;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32].pipeline;
nrows = 4;
nr1 = 4;
}
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16].pipeline;
nrows = 4;
nr1 = 4;
}
} break;
case GGML_TYPE_BF16:
{
nth0 = 32;
nth1 = 1;
nsg = 1;
nr0 = 1;
if (src1t == GGML_TYPE_F32) {
if (ne11 * ne12 < 4) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW].pipeline;
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_L4].pipeline;
nrows = ne11;
nr1 = ne11;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32].pipeline;
nrows = 4;
nr1 = 4;
}
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_BF16].pipeline;
nrows = 4;
nr1 = 4;
}
} break;
case GGML_TYPE_Q4_0:
{
nth0 = 8;
nth1 = 8;
nsg = N_SG_Q4_0;
nr0 = N_R0_Q4_0;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32].pipeline;
} break;
case GGML_TYPE_Q4_1:
{
nth0 = 8;
nth1 = 8;
nsg = N_SG_Q4_1;
nr0 = N_R0_Q4_1;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32].pipeline;
} break;
case GGML_TYPE_Q5_0:
{
nth0 = 8;
nth1 = 8;
nsg = N_SG_Q5_0;
nr0 = N_R0_Q5_0;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32].pipeline;
} break;
case GGML_TYPE_Q5_1:
{
nth0 = 8;
nth1 = 8;
nsg = N_SG_Q5_1;
nr0 = N_R0_Q5_1;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32].pipeline;
} break;
case GGML_TYPE_Q8_0:
{
nth0 = 8;
nth1 = 8;
nsg = N_SG_Q8_0;
nr0 = N_R0_Q8_0;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32].pipeline;
} break;
case GGML_TYPE_Q2_K:
{
nth0 = 2;
nth1 = 32;
nsg = N_SG_Q2_K;
nr0 = N_R0_Q2_K;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32].pipeline;
} break;
case GGML_TYPE_Q3_K:
{
nth0 = 2;
nth1 = 32;
nsg = N_SG_Q3_K;
nr0 = N_R0_Q3_K;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32].pipeline;
} break;
case GGML_TYPE_Q4_K:
{
nth0 = 4; //1;
nth1 = 8; //32;
nsg = N_SG_Q4_K;
nr0 = N_R0_Q4_K;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32].pipeline;
} break;
case GGML_TYPE_Q5_K:
{
nth0 = 2;
nth1 = 32;
nsg = N_SG_Q5_K;
nr0 = N_R0_Q5_K;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32].pipeline;
} break;
case GGML_TYPE_Q6_K:
{
nth0 = 2;
nth1 = 32;
nsg = N_SG_Q6_K;
nr0 = N_R0_Q6_K;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32].pipeline;
} break;
case GGML_TYPE_IQ2_XXS:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ2_XXS;
nr0 = N_R0_IQ2_XXS;
smem = 256*8+128;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32].pipeline;
} break;
case GGML_TYPE_IQ2_XS:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ2_XS;
nr0 = N_R0_IQ2_XS;
smem = 512*8+128;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline;
} break;
case GGML_TYPE_IQ3_XXS:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ3_XXS;
nr0 = N_R0_IQ3_XXS;
smem = 256*4+128;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32].pipeline;
} break;
case GGML_TYPE_IQ3_S:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ3_S;
nr0 = N_R0_IQ3_S;
smem = 512*4;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32].pipeline;
} break;
case GGML_TYPE_IQ2_S:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ2_S;
nr0 = N_R0_IQ2_S;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32].pipeline;
} break;
case GGML_TYPE_IQ1_S:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ1_S;
nr0 = N_R0_IQ1_S;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline;
} break;
case GGML_TYPE_IQ1_M:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ1_M;
nr0 = N_R0_IQ1_M;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32].pipeline;
} break;
case GGML_TYPE_IQ4_NL:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ4_NL;
nr0 = N_R0_IQ4_NL;
smem = 32*sizeof(float);
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32].pipeline;
} break;
case GGML_TYPE_IQ4_XS:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ4_XS;
nr0 = N_R0_IQ4_XS;
smem = 32*sizeof(float);
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32].pipeline;
} break;
default:
@ -2762,41 +2771,10 @@ static void ggml_metal_encode_node(
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 ||
src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K ||
src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) {
const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4;
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) {
const int mem_size = 32*sizeof(float);
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q3_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else {
const int64_t ny = (ne11 + nrows - 1)/nrows;
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
if (smem > 0) {
[encoder setThreadgroupMemoryLength:smem atIndex:0];
}
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nr0*nsg - 1)/(nr0*nsg), (ne11 + nr1 - 1)/nr1, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
}
} break;
case GGML_OP_MUL_MAT_ID:
@ -2902,146 +2880,155 @@ static void ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, n_as) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else {
int nth0 = 32;
int nth1 = 1;
int nrows = 1;
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
id<MTLComputePipelineState> pipeline = nil;
int nsg = 0; // number of simdgroups
int nr0 = 0; // number of src0 rows per simdgroup
int nr1 = 1; // number of src1 rows per threadgroup
size_t smem = 0; // shared memory
// use custom matrix x vector kernel
switch (src0t) {
case GGML_TYPE_F32:
{
GGML_ASSERT(src1t == GGML_TYPE_F32);
nsg = 1;
nr0 = 1;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32].pipeline;
} break;
case GGML_TYPE_F16:
{
GGML_ASSERT(src1t == GGML_TYPE_F32);
nth0 = 32;
nth1 = 1;
nsg = 1;
nr0 = 1;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32].pipeline;
} break;
case GGML_TYPE_BF16:
{
GGML_ASSERT(src1t == GGML_TYPE_F32);
nth0 = 32;
nth1 = 1;
nsg = 1;
nr0 = 1;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_BF16_F32].pipeline;
} break;
case GGML_TYPE_Q4_0:
{
nth0 = 8;
nth1 = 8;
nsg = N_SG_Q4_0;
nr0 = N_R0_Q4_0;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32].pipeline;
} break;
case GGML_TYPE_Q4_1:
{
nth0 = 8;
nth1 = 8;
nsg = N_SG_Q4_1;
nr0 = N_R0_Q4_1;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32].pipeline;
} break;
case GGML_TYPE_Q5_0:
{
nth0 = 8;
nth1 = 8;
nsg = N_SG_Q5_0;
nr0 = N_R0_Q5_0;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32].pipeline;
} break;
case GGML_TYPE_Q5_1:
{
nth0 = 8;
nth1 = 8;
nsg = N_SG_Q5_1;
nr0 = N_R0_Q5_1;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32].pipeline;
} break;
case GGML_TYPE_Q8_0:
{
nth0 = 8;
nth1 = 8;
nsg = N_SG_Q8_0;
nr0 = N_R0_Q8_0;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32].pipeline;
} break;
case GGML_TYPE_Q2_K:
{
nth0 = 2;
nth1 = 32;
nsg = N_SG_Q2_K;
nr0 = N_R0_Q2_K;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32].pipeline;
} break;
case GGML_TYPE_Q3_K:
{
nth0 = 2;
nth1 = 32;
nsg = N_SG_Q3_K;
nr0 = N_R0_Q3_K;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32].pipeline;
} break;
case GGML_TYPE_Q4_K:
{
nth0 = 4; //1;
nth1 = 8; //32;
nsg = N_SG_Q4_K;
nr0 = N_R0_Q4_K;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32].pipeline;
} break;
case GGML_TYPE_Q5_K:
{
nth0 = 2;
nth1 = 32;
nsg = N_SG_Q5_K;
nr0 = N_R0_Q5_K;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32].pipeline;
} break;
case GGML_TYPE_Q6_K:
{
nth0 = 2;
nth1 = 32;
nsg = N_SG_Q6_K;
nr0 = N_R0_Q6_K;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32].pipeline;
} break;
case GGML_TYPE_IQ2_XXS:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ2_XXS;
nr0 = N_R0_IQ2_XXS;
smem = 256*8+128;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32].pipeline;
} break;
case GGML_TYPE_IQ2_XS:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ2_XS;
nr0 = N_R0_IQ2_XS;
smem = 512*8+128;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline;
} break;
case GGML_TYPE_IQ3_XXS:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ3_XXS;
nr0 = N_R0_IQ3_XXS;
smem = 256*4+128;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32].pipeline;
} break;
case GGML_TYPE_IQ3_S:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ3_S;
nr0 = N_R0_IQ3_S;
smem = 512*4;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32].pipeline;
} break;
case GGML_TYPE_IQ2_S:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ2_S;
nr0 = N_R0_IQ2_S;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32].pipeline;
} break;
case GGML_TYPE_IQ1_S:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ1_S;
nr0 = N_R0_IQ1_S;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline;
} break;
case GGML_TYPE_IQ1_M:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ1_M;
nr0 = N_R0_IQ1_M;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32].pipeline;
} break;
case GGML_TYPE_IQ4_NL:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ4_NL;
nr0 = N_R0_IQ4_NL;
smem = 32*sizeof(float);
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline;
} break;
case GGML_TYPE_IQ4_XS:
{
nth0 = 4;
nth1 = 16;
nsg = N_SG_IQ4_XS;
nr0 = N_R0_IQ4_XS;
smem = 32*sizeof(float);
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
} break;
default:
@ -3052,7 +3039,7 @@ static void ggml_metal_encode_node(
};
if (ggml_is_quantized(src0t)) {
GGML_ASSERT(ne00 >= nth0*nth1);
GGML_ASSERT(ne00 >= nsg*nr0);
}
ggml_metal_kargs_mul_mv_id args = {
@ -3085,43 +3072,12 @@ static void ggml_metal_encode_node(
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:4];
const int64_t _ne1 = 1;
const int tgz = dst_rows;
const int64_t ne123 = dst_rows;
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 ||
src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K ||
src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) {
const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4;
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) {
const int mem_size = 32*sizeof(float);
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q3_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else {
const int64_t ny = (_ne1 + nrows - 1)/nrows; // = _ne1
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
if (smem > 0) {
[encoder setThreadgroupMemoryLength:smem atIndex:0];
}
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nr0*nsg - 1)/(nr0*nsg), (_ne1 + nr1 - 1)/nr1, ne123) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
}
} break;
case GGML_OP_GET_ROWS:

File diff suppressed because it is too large Load Diff