change the reorder tensor from init to execute OP (llama/13003)

This commit is contained in:
Neo Zhang Jianyu 2025-04-25 17:37:51 +08:00 committed by Georgi Gerganov
parent fe21ddf0dc
commit eeb259909e
2 changed files with 61 additions and 65 deletions

View File

@ -313,7 +313,6 @@ struct ggml_backend_sycl_context {
int device;
std::string name;
optimize_feature opt_feature;
bool optimized_graph=false;
queue_ptr qptrs[GGML_SYCL_MAX_DEVICES][GGML_SYCL_MAX_STREAMS] = { { nullptr } };

View File

@ -192,7 +192,7 @@ static void ggml_check_sycl() try {
if (!initialized) {
g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
g_ggml_sycl_disable_optimize= get_sycl_env("GGML_SYCL_DISABLE_OPT", 1);
g_ggml_sycl_disable_optimize= get_sycl_env("GGML_SYCL_DISABLE_OPT", 0);
g_ggml_sycl_disable_graph = get_sycl_env("GGML_SYCL_DISABLE_GRAPH", 1);
GGML_SYCL_DEBUG("[SYCL] call ggml_check_sycl\n");
GGML_LOG_INFO("Running with Environment Variables:\n");
@ -2852,6 +2852,64 @@ static bool ggml_sycl_supports_dmmv(enum ggml_type type) {
}
}
static void reorder_qw(char *data_device, const int ncols, const int nrows,
size_t size, size_t offset, dpct::queue_ptr stream) {
auto tmp_buf = sycl::malloc_shared<char>(size, *stream);
SYCL_CHECK(
CHECK_TRY_ERROR((*stream).memcpy(tmp_buf, data_device, size)
.wait()));
GGML_ASSERT((size % sizeof(block_q4_0) == 0));
GGML_ASSERT((offset % sizeof(block_q4_0) == 0));
int offset_blks = offset / sizeof(block_q4_0);
auto qs_ptr = (uint8_t*)data_device + offset_blks * QK4_0 / 2;;
auto d_ptr = (sycl::half*)(qs_ptr + ncols * nrows / 2) + offset_blks;
stream->parallel_for(
size / sizeof(block_q4_0),
[=](auto i) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
const block_q4_0* x = (const block_q4_0*)tmp_buf;
const int ib = i;
for (int j = 0; j < QK4_0/2; j ++)
{
*(qs_ptr + ib * QK4_0 / 2 + j) = x[ib].qs[j];
}
*(d_ptr + ib) = x[ib].d;
});
sycl::free(tmp_buf, *stream);
}
static void reorder_qw(const ggml_tensor * src0, dpct::queue_ptr stream) {
char*data_device = (char*)src0->data;
size_t ncols = src0->ne[0];
size_t nrows = src0->ne[1];
size_t size = ggml_nbytes(src0);
reorder_qw(data_device, ncols, nrows, size, 0, stream);
}
/*
* This function could be called when the OP (mul_mat) function support reorder optimizition.
*/
static void opt_for_reorder(ggml_backend_sycl_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
if (!g_ggml_sycl_disable_optimize && //allow optimize, controlled by $GGML_SYCL_DISABLE_OPT
ctx->opt_feature.reorder && //allow this device due to good perf, skip the devices with bad perf.
dst->op == GGML_OP_MUL_MAT && //limit to some supported cases of Q4_0, to do for more cases.
src0->type == GGML_TYPE_Q4_0 &&
src1->ne[2]==1 && src1->ne[3]==1) {
ggml_tensor_extra_gpu* extra = (ggml_tensor_extra_gpu*)src0->extra;
if (!extra) return; //only happen in CI/UT permute case.
if (extra->optimized_feature.reorder) return; //skip the tensor which is handled for reorder.
reorder_qw(src0, ctx->stream());
extra->optimized_feature.reorder = true; //used to decode/dequan in next steps.
}
}
static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer);
@ -2914,6 +2972,7 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
// KQ + KQV multi-batch
ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
} else if (use_dequantize_mul_mat_vec) {
opt_for_reorder(&ctx, src0, src1, dst); //the OP function in this branch support reorder.
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
// save_tensor_txt("1/dst_1.txt", (float*) dst->data, src0->ne[1], sizeof(float), ctx.stream());
} else if (use_mul_mat_vec_q) {
@ -2921,6 +2980,7 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
} else if (use_mul_mat_q) {
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
} else {
opt_for_reorder(&ctx, src0, src1, dst); //the OP function in this branch support reorder.
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
}
}
@ -3545,71 +3605,8 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
static void reorder_qw(char *data_device, const int ncols, const int nrows,
size_t size, size_t offset, dpct::queue_ptr stream) {
auto tmp_buf = sycl::malloc_shared<char>(size, *stream);
SYCL_CHECK(
CHECK_TRY_ERROR((*stream).memcpy(tmp_buf, data_device, size)
.wait()));
GGML_ASSERT((size % sizeof(block_q4_0) == 0));
GGML_ASSERT((offset % sizeof(block_q4_0) == 0));
int offset_blks = offset / sizeof(block_q4_0);
auto qs_ptr = (uint8_t*)data_device + offset_blks * QK4_0 / 2;;
auto d_ptr = (sycl::half*)(qs_ptr + ncols * nrows / 2) + offset_blks;
stream->parallel_for(
size / sizeof(block_q4_0),
[=](auto i) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
const block_q4_0* x = (const block_q4_0*)tmp_buf;
const int ib = i;
for (int j = 0; j < QK4_0/2; j ++)
{
*(qs_ptr + ib * QK4_0 / 2 + j) = x[ib].qs[j];
}
*(d_ptr + ib) = x[ib].d;
});
sycl::free(tmp_buf, *stream);
}
static void reorder_qw(ggml_tensor * src0, dpct::queue_ptr stream) {
char*data_device = (char*)src0->data;
size_t ncols = src0->ne[0];
size_t nrows = src0->ne[1];
size_t size = ggml_nbytes(src0);
reorder_qw(data_device, ncols, nrows, size, 0, stream);
}
static void opt_for_reorder(ggml_tensor * dst, dpct::queue_ptr stream) {
ggml_tensor *src0 = dst->src[0];
ggml_tensor *src1 = dst->src[1];
if (dst->op == GGML_OP_MUL_MAT && src0->type == GGML_TYPE_Q4_0 &&
src1->ne[2]==1 && src1->ne[3]==1) {
reorder_qw(src0, stream);
ggml_tensor_extra_gpu* extra = (ggml_tensor_extra_gpu*)src0->extra;
GGML_ASSERT(extra);
extra->optimized_feature.reorder = true; //used to decode/dequan in next steps.
}
}
static void optimize_graph_once(ggml_cgraph * cgraph, ggml_backend_sycl_context * ctx) {
dpct::queue_ptr stream = ctx->stream();
if (ctx->optimized_graph) {
return;
}
ctx->optimized_graph = true;
for (int i = 0; i < cgraph->n_nodes; i++) {
if (ctx->opt_feature.reorder) opt_for_reorder(cgraph->nodes[i], stream);
}
}
static void ggml_backend_sycl_graph_compute_impl(ggml_backend_sycl_context * sycl_ctx, ggml_cgraph * cgraph) {
ggml_sycl_set_main_device(sycl_ctx->device);
if (!g_ggml_sycl_disable_optimize) optimize_graph_once(cgraph, sycl_ctx);
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];