HIP: implement FlashAttention via rocWMMA for CDNA and RDNA3+ (llama/12032)

Adds GGML_HIP_ROCWMMA_FATTN and rocwmma header check
Adds rocWMMA support to fattn-wmma-f16
This commit is contained in:
David Huang 2025-03-04 05:10:54 +08:00 committed by Georgi Gerganov
parent dc6f4e7c05
commit edd1d8686a
6 changed files with 145 additions and 95 deletions

View File

@ -162,6 +162,7 @@ set_property(CACHE GGML_CUDA_COMPRESSION_MODE PROPERTY STRINGS "none;speed;balan
option(GGML_HIP "ggml: use HIP" OFF)
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)

View File

@ -62,6 +62,7 @@
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
#define GGML_CUDA_CC_IS_AMD(cc) (cc >= GGML_CUDA_CC_OFFSET_AMD)
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
@ -196,6 +197,10 @@ typedef float2 dfloat2;
#define FP16_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3))
#define FP16_MMA_AVAILABLE
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3))
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#define NEW_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
@ -223,12 +228,18 @@ static bool fast_fp16_hardware_available(const int cc) {
// Any FP16 tensor core instructions are available for ggml code.
static bool fp16_mma_available(const int cc) {
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
return false;
#else
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA ||
GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
}
// To be used for feature selection of external libraries, e.g. cuBLAS.
static bool fp16_mma_hardware_available(const int cc) {
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA;
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA ||
GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3;
}
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.

View File

@ -57,12 +57,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
@ -70,7 +71,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
const int shift = k_KQ & (QI8_1/2);
const int v = (get_int_b2(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int u = Q_q8[k_KQ_0/warp_size];
const int sumi = ggml_cuda_dp4a(v, u, 0);
@ -78,14 +79,14 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/warp_size];
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */);
} else
#endif // FP16_AVAILABLE
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (8/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/warp_size].x - (8/QI8_1)*Q_ds[k_KQ_0/warp_size].y));
}
}
@ -97,12 +98,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
@ -110,7 +112,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
const int shift = k_KQ & (QI8_1/2);
const int v = (get_int_b4(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int u = Q_q8[k_KQ_0/warp_size];
const int sumi = ggml_cuda_dp4a(v, u, 0);
@ -118,7 +120,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/warp_size];
const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1);
sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled));
} else
@ -126,8 +128,8 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/warp_size].x * sumi;
const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/warp_size].y / QI8_1;
sum += (T) (sumid4d8 + m4s8scaled);
}
@ -141,12 +143,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
@ -161,7 +164,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
v |= (vh << 18) & 0x00100000; // 2 -> 20
v |= (vh << 25) & 0x10000000; // 3 -> 28
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int u = Q_q8[k_KQ_0/warp_size];
const int sumi = ggml_cuda_dp4a(v, u, 0);
@ -169,14 +172,14 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/warp_size];
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */;
} else
#endif // FP16_AVAILABLE
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (16/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/warp_size].x - (16/QI8_1)*Q_ds[k_KQ_0/warp_size].y));
}
}
@ -188,12 +191,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
@ -208,7 +212,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
v |= (vh << 18) & 0x00100000; // 2 -> 20
v |= (vh << 25) & 0x10000000; // 3 -> 28
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int u = Q_q8[k_KQ_0/warp_size];
const int sumi = ggml_cuda_dp4a(v, u, 0);
@ -216,7 +220,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/warp_size];
const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1);
sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled));
} else
@ -224,8 +228,8 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/warp_size].x * sumi;
const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/warp_size].y / QI8_1;
sum += (T) (sumid5d8 + m5s8scaled);
}
@ -239,12 +243,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_0;
@ -255,13 +260,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
T Q_d;
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
Q_d = __low2half(Q_ds[k_KQ_0/WARP_SIZE]);
Q_d = __low2half(Q_ds[k_KQ_0/warp_size]);
} else {
const float2 * Q_ds = (const float2 *) Q_ds_v;
Q_d = Q_ds[k_KQ_0/WARP_SIZE].x;
Q_d = Q_ds[k_KQ_0/warp_size].x;
}
sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/WARP_SIZE], K_q8_0[ib].d, Q_d);
sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/warp_size], K_q8_0[ib].d, Q_d);
}
return sum;
@ -272,6 +277,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) {
const half2 * K_h2 = (const half2 *) K_c;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
GGML_UNUSED(Q_q8);
GGML_UNUSED(Q_ds_v);
@ -282,11 +288,11 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
half2 sum2 = make_half2(0.0f, 0.0f);
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const half2 K_ik = K_h2[k_KQ];
sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
sum2 += K_ik * Q_h2[k_KQ_0/warp_size];
}
return __low2half(sum2) + __high2half(sum2);
@ -298,12 +304,12 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
float sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const half2 K_ik = K_h2[k_KQ];
sum += __low2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].x;
sum += __high2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].y;
sum += __low2float(K_ik) * Q_f2[k_KQ_0/warp_size].x;
sum += __high2float(K_ik) * Q_f2[k_KQ_0/warp_size].y;
}
return sum;
@ -698,6 +704,8 @@ void launch_fattn(
GGML_ASSERT(Q->ne[3] == 1);
const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size;
ggml_cuda_pool & pool = ctx.pool();
cudaStream_t main_stream = ctx.stream();
const int id = ggml_cuda_get_device();
@ -750,7 +758,7 @@ void launch_fattn(
const int ntiles_x = ((Q->ne[1] + ncols1 - 1) / ncols1);
const int ntiles_total = ntiles_x * (Q->ne[2] / ncols2) * Q->ne[3];
const dim3 block_dim(WARP_SIZE, nwarps, 1);
const dim3 block_dim(warp_size, nwarps, 1);
dim3 blocks_num;
if (parallel_blocks == 0) {
// For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup.
@ -796,6 +804,8 @@ void launch_fattn(
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
GGML_ASSERT(block_dim.x % warp_size == 0);
GGML_ASSERT(!GGML_CUDA_CC_IS_AMD(cc) || block_dim.x * block_dim.y <= 4 * (unsigned int)warp_size);
fattn_kernel<<<blocks_num, block_dim, nbytes_shared, main_stream>>>(
(const char *) Q->data,
K_data,

View File

@ -7,14 +7,19 @@
#include "fattn-wmma-f16.cuh"
#ifdef FP16_MMA_AVAILABLE
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#include <mma.h>
namespace wmma = nvcuda::wmma;
#elif defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)
#undef HIP_ENABLE_WARP_SYNC_BUILTINS // conflicts with rocWMMA headers
#include <rocwmma/rocwmma.hpp>
namespace wmma = rocwmma;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // FP16_MMA_AVAILABLE
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t, bool use_logit_softcap>
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*ggml_cuda_get_physical_warp_size(), 1)
static __global__ void flash_attn_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
@ -51,7 +56,7 @@ static __global__ void flash_attn_ext_f16(
const int ne1,
const int ne2,
const int ne3) {
#if defined(FLASH_ATTN_AVAILABLE) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
#if defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)))
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
@ -60,6 +65,8 @@ static __global__ void flash_attn_ext_f16(
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
@ -68,11 +75,11 @@ static __global__ void flash_attn_ext_f16(
constexpr int frag_m = ncols == 8 ? 32 : 16;
constexpr int frag_n = ncols == 8 ? 8 : 16;
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, half, wmma::row_major> frag_a_K;
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, half, wmma::col_major> frag_a_V;
typedef wmma::fragment<wmma::matrix_b, frag_m, frag_n, 16, half, wmma::col_major> frag_b;
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
@ -132,9 +139,9 @@ static __global__ void flash_attn_ext_f16(
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
if (i0 + warp_size > D/2 && i >= D/2) {
break;
}
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
@ -146,9 +153,9 @@ static __global__ void flash_attn_ext_f16(
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
for (int i0 = 0; i0 < D; i0 += warp_size) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D && i >= D) {
if (i0 + warp_size > D && i >= D) {
break;
}
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
@ -162,7 +169,7 @@ static __global__ void flash_attn_ext_f16(
for (int i0 = 0; i0 < D; i0 += 16) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
}
}
@ -176,20 +183,20 @@ static __global__ void flash_attn_ext_f16(
frag_c_KQ KQ_c[ncols/frag_n];
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
wmma::fill_fragment(KQ_c[j], static_cast<KQ_acc_t>(0.0f));
}
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
frag_a_K K_a;
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
}
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, wmma::mem_col_major);
}
}
@ -202,27 +209,27 @@ static __global__ void flash_attn_ext_f16(
const int j = j0 + threadIdx.y;
if (std::is_same<KQ_acc_t, float>::value) {
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
float KQ_f_tmp[FATTN_KQ_STRIDE / warp_size];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += warp_size) {
const int k = k0 + threadIdx.x;
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
KQ_f_tmp[k0/warp_size] = KQ_f[j*kqs_padded + k];
if (use_logit_softcap) {
KQ_f_tmp[k0/WARP_SIZE] = logit_softcap*tanhf(KQ_f_tmp[k0/WARP_SIZE]);
KQ_f_tmp[k0/warp_size] = logit_softcap*tanhf(KQ_f_tmp[k0/warp_size]);
}
}
float KQ_max_new = KQ_max_f[j0/nwarps];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += warp_size) {
const int k = k0 + threadIdx.x;
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
KQ_f_tmp[k0/warp_size] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/warp_size]);
}
KQ_max_new = warp_reduce_max(KQ_max_new);
KQ_max_new = warp_reduce_max<warp_size>(KQ_max_new);
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
KQ_max_scale_f[j0/nwarps] = expf(diff);
@ -233,48 +240,48 @@ static __global__ void flash_attn_ext_f16(
float KQ_rowsum_add = 0.0f;
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += warp_size) {
const int k = k0 + threadIdx.x;
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
const float diff = KQ_f_tmp[k0/warp_size] - KQ_max_f[j0/nwarps];
KQ_f_tmp[k0/warp_size] = expf(diff);
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
KQ_f_tmp[k0/warp_size] = 0.0f;
}
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
KQ_rowsum_add += KQ_f_tmp[k0/warp_size];
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/warp_size];
}
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
KQ_rowsum_add = warp_reduce_sum<warp_size>(KQ_rowsum_add);
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
} else {
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*warp_size)];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += warp_size) {
const int k = k0 + threadIdx.x;
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
KQ2_tmp[k0/warp_size] = KQ2[j*(kqs_padded/2) + k];
if (use_logit_softcap) {
// There is no dedicated tangens hyperbolicus function for half2.
KQ2_tmp[k0/WARP_SIZE] = h2exp(KQ2_tmp[k0/WARP_SIZE]*make_half2(2.0f, 2.0f));
KQ2_tmp[k0/WARP_SIZE] = (KQ2_tmp[k0/WARP_SIZE] - make_half2(1.0f, 1.0f))
/(KQ2_tmp[k0/WARP_SIZE] + make_half2(1.0f, 1.0f));
KQ2_tmp[k0/warp_size] = h2exp(KQ2_tmp[k0/warp_size]*make_half2(2.0f, 2.0f));
KQ2_tmp[k0/warp_size] = (KQ2_tmp[k0/warp_size] - make_half2(1.0f, 1.0f))
/(KQ2_tmp[k0/warp_size] + make_half2(1.0f, 1.0f));
KQ2_tmp[k0/WARP_SIZE] *= logit_softcap_2;
KQ2_tmp[k0/warp_size] *= logit_softcap_2;
}
}
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += warp_size) {
const int k = k0 + threadIdx.x;
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
KQ2_tmp[k0/warp_size] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/warp_size]);
}
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
KQ_max_new = __half2half2(warp_reduce_max<warp_size>(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
@ -283,17 +290,17 @@ static __global__ void flash_attn_ext_f16(
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += warp_size) {
const int k = k0 + threadIdx.x;
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
const half2 diff = KQ2_tmp[k0/warp_size] - KQ_max_h2[j0/nwarps];
KQ2_tmp[k0/warp_size] = h2exp(diff);
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
*((uint32_t *) &KQ2_tmp[k0/warp_size]) &= ftz_mask;
KQ_rowsum_add += KQ2_tmp[k0/warp_size];
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/warp_size];
}
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
KQ_rowsum_add = warp_reduce_sum<warp_size>(KQ_rowsum_add);
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
@ -308,7 +315,7 @@ static __global__ void flash_attn_ext_f16(
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
nvcuda::wmma::load_matrix_sync(
wmma::load_matrix_sync(
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
KQ + j0*(kqar*kqs_padded) + k,
kqar*kqs_padded);
@ -320,7 +327,7 @@ static __global__ void flash_attn_ext_f16(
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], static_cast<half>(0.0f));
}
#pragma unroll
@ -328,10 +335,10 @@ static __global__ void flash_attn_ext_f16(
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
frag_a_V v_a;
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
}
}
}
@ -343,10 +350,10 @@ static __global__ void flash_attn_ext_f16(
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
nvcuda::wmma::store_matrix_sync(
wmma::store_matrix_sync(
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
D_padded, nvcuda::wmma::mem_col_major);
D_padded, wmma::mem_col_major);
}
}
@ -364,9 +371,9 @@ static __global__ void flash_attn_ext_f16(
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
if (i0 + warp_size > D/2 && i >= D/2) {
break;
}
@ -398,9 +405,9 @@ static __global__ void flash_attn_ext_f16(
}
#pragma unroll
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
for (int i0 = 0; i0 < D; i0 += warp_size) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D && i >= D) {
if (i0 + warp_size > D && i >= D) {
break;
}
float dst_val = VKQ[j_VKQ*D_padded + i];
@ -425,7 +432,7 @@ static __global__ void flash_attn_ext_f16(
}
#else
NO_DEVICE_CODE;
#endif // defined(FLASH_ATTN_AVAILABLE) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
#endif // defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)))
}
constexpr int get_max_power_of_2(int x) {
@ -515,6 +522,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_ten
const ggml_tensor * Q = dst->src[0];
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size;
if (prec != GGML_PREC_DEFAULT) {
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
@ -571,7 +579,8 @@ void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_ten
return;
}
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
if (Q->ne[1] <= 8 && Q->ne[0] % warp_size == 0) {
constexpr int cols_per_block = 8;
switch (Q->ne[0]) {
case 64:
@ -592,6 +601,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_ten
}
return;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 16;

View File

@ -250,10 +250,18 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
ggml_cuda_set_device(ctx.device);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int warp_size = ggml_cuda_info().devices[ggml_cuda_get_device()].warp_size;
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
// On AMD the tile kernels perform poorly, use the vec kernel instead:
if (cc >= GGML_CUDA_CC_OFFSET_AMD) {
#if defined(GGML_HIP_ROCWMMA_FATTN)
if (fp16_mma_available(cc)) {
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
return;
}
#endif // defined(GGML_HIP_ROCWMMA_FATTN)
// On AMD the tile kernels perform poorly, use the vec kernel instead:
if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
} else {
@ -291,7 +299,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
const int gqa_ratio = Q->ne[2] / K->ne[2];
const bool mma_fast_for_bs1 = fp16_mma_available(cc) && gqa_ratio % 2 == 0 &&
K->type == GGML_TYPE_F16 && V->type == GGML_TYPE_F16 && mask;
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0 && !mma_fast_for_bs1) {
if (Q->ne[1] == 1 && Q->ne[0] % (2*warp_size) == 0 && !mma_fast_for_bs1) {
if (prec == GGML_PREC_DEFAULT) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
return;

View File

@ -39,6 +39,12 @@ endif()
find_package(hip REQUIRED)
find_package(hipblas REQUIRED)
find_package(rocblas REQUIRED)
if (GGML_HIP_ROCWMMA_FATTN)
CHECK_INCLUDE_FILE_CXX("rocwmma/rocwmma.hpp" FOUND_ROCWMMA)
if (NOT ${FOUND_ROCWMMA})
message(FATAL_ERROR "rocwmma has not been found")
endif()
endif()
if (${hip_VERSION} VERSION_LESS 5.5)
message(FATAL_ERROR "At least ROCM/HIP V5.5 is required")
@ -107,6 +113,10 @@ if (GGML_HIP_NO_VMM)
add_compile_definitions(GGML_HIP_NO_VMM)
endif()
if (GGML_HIP_ROCWMMA_FATTN)
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN)
endif()
if (NOT GGML_CUDA_FA)
add_compile_definitions(GGML_CUDA_NO_FA)
endif()