mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-18 20:27:53 +00:00
readme : update build instructions
This commit is contained in:
parent
472464453d
commit
627b11c78a
56
README.md
56
README.md
@ -89,10 +89,11 @@ Now build the [main](examples/main) example and transcribe an audio file like th
|
|||||||
|
|
||||||
```bash
|
```bash
|
||||||
# build the main example
|
# build the main example
|
||||||
make -j
|
cmake -B build
|
||||||
|
cmake --build build --config Release
|
||||||
|
|
||||||
# transcribe an audio file
|
# transcribe an audio file
|
||||||
./main -f samples/jfk.wav
|
./build/bin/main -f samples/jfk.wav
|
||||||
```
|
```
|
||||||
|
|
||||||
---
|
---
|
||||||
@ -265,11 +266,12 @@ Here are the steps for creating and using a quantized model:
|
|||||||
|
|
||||||
```bash
|
```bash
|
||||||
# quantize a model with Q5_0 method
|
# quantize a model with Q5_0 method
|
||||||
make -j quantize
|
cmake -B build
|
||||||
./quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
|
cmake --build build --config Release
|
||||||
|
./build/bin/quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
|
||||||
|
|
||||||
# run the examples as usual, specifying the quantized model file
|
# run the examples as usual, specifying the quantized model file
|
||||||
./main -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav
|
./build/bin/main -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav
|
||||||
```
|
```
|
||||||
|
|
||||||
## Core ML support
|
## Core ML support
|
||||||
@ -303,10 +305,6 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
|
|||||||
- Build `whisper.cpp` with Core ML support:
|
- Build `whisper.cpp` with Core ML support:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# using Makefile
|
|
||||||
make clean
|
|
||||||
WHISPER_COREML=1 make -j
|
|
||||||
|
|
||||||
# using CMake
|
# using CMake
|
||||||
cmake -B build -DWHISPER_COREML=1
|
cmake -B build -DWHISPER_COREML=1
|
||||||
cmake --build build -j --config Release
|
cmake --build build -j --config Release
|
||||||
@ -426,8 +424,8 @@ First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-do
|
|||||||
Now build `whisper.cpp` with CUDA support:
|
Now build `whisper.cpp` with CUDA support:
|
||||||
|
|
||||||
```
|
```
|
||||||
make clean
|
cmake -B build -DGGML_CUDA=1
|
||||||
GGML_CUDA=1 make -j
|
cmake --build build -j --config Release
|
||||||
```
|
```
|
||||||
|
|
||||||
## Vulkan GPU support
|
## Vulkan GPU support
|
||||||
@ -436,8 +434,8 @@ First, make sure your graphics card driver provides support for Vulkan API.
|
|||||||
|
|
||||||
Now build `whisper.cpp` with Vulkan support:
|
Now build `whisper.cpp` with Vulkan support:
|
||||||
```
|
```
|
||||||
make clean
|
cmake -B build -DGGML_VULKAN=1
|
||||||
make GGML_VULKAN=1 -j
|
cmake --build build -j --config Release
|
||||||
```
|
```
|
||||||
|
|
||||||
## BLAS CPU support via OpenBLAS
|
## BLAS CPU support via OpenBLAS
|
||||||
@ -448,28 +446,13 @@ First, make sure you have installed `openblas`: https://www.openblas.net/
|
|||||||
Now build `whisper.cpp` with OpenBLAS support:
|
Now build `whisper.cpp` with OpenBLAS support:
|
||||||
|
|
||||||
```
|
```
|
||||||
make clean
|
cmake -B build -DGGML_BLAS=1
|
||||||
GGML_OPENBLAS=1 make -j
|
cmake --build build -j --config Release
|
||||||
```
|
|
||||||
|
|
||||||
## BLAS CPU support via Intel MKL
|
|
||||||
|
|
||||||
Encoder processing can be accelerated on the CPU via the BLAS compatible interface of Intel's Math Kernel Library.
|
|
||||||
First, make sure you have installed Intel's MKL runtime and development packages: https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
|
|
||||||
|
|
||||||
Now build `whisper.cpp` with Intel MKL BLAS support:
|
|
||||||
|
|
||||||
```
|
|
||||||
source /opt/intel/oneapi/setvars.sh
|
|
||||||
mkdir build
|
|
||||||
cd build
|
|
||||||
cmake -DWHISPER_MKL=ON ..
|
|
||||||
WHISPER_MKL=1 make -j
|
|
||||||
```
|
```
|
||||||
|
|
||||||
## Ascend NPU support
|
## Ascend NPU support
|
||||||
|
|
||||||
Ascend NPU provides inference acceleration via [`CANN`](https://www.hiascend.com/en/software/cann) and AI cores.
|
Ascend NPU provides inference acceleration via [`CANN`](https://www.hiascend.com/en/software/cann) and AI cores.
|
||||||
|
|
||||||
First, check if your Ascend NPU device is supported:
|
First, check if your Ascend NPU device is supported:
|
||||||
|
|
||||||
@ -483,10 +466,8 @@ Then, make sure you have installed [`CANN toolkit`](https://www.hiascend.com/en/
|
|||||||
Now build `whisper.cpp` with CANN support:
|
Now build `whisper.cpp` with CANN support:
|
||||||
|
|
||||||
```
|
```
|
||||||
mkdir build
|
cmake -B build -DGGML_CANN=1
|
||||||
cd build
|
cmake --build build -j --config Release
|
||||||
cmake .. -D GGML_CANN=on
|
|
||||||
make -j
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Run the inference examples as usual, for example:
|
Run the inference examples as usual, for example:
|
||||||
@ -636,8 +617,9 @@ The [stream](examples/stream) tool samples the audio every half a second and run
|
|||||||
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
|
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
make stream -j
|
cmake -B build
|
||||||
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
|
cmake --build build --config Release
|
||||||
|
./build/bin/stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
|
||||||
```
|
```
|
||||||
|
|
||||||
https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4
|
https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4
|
||||||
|
Loading…
Reference in New Issue
Block a user