diff --git a/README.md b/README.md index c02f66b8..a70e58df 100644 --- a/README.md +++ b/README.md @@ -89,10 +89,11 @@ Now build the [main](examples/main) example and transcribe an audio file like th ```bash # build the main example -make -j +cmake -B build +cmake --build build --config Release # transcribe an audio file -./main -f samples/jfk.wav +./build/bin/main -f samples/jfk.wav ``` --- @@ -265,11 +266,12 @@ Here are the steps for creating and using a quantized model: ```bash # quantize a model with Q5_0 method -make -j quantize -./quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0 +cmake -B build +cmake --build build --config Release +./build/bin/quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0 # run the examples as usual, specifying the quantized model file -./main -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav +./build/bin/main -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav ``` ## Core ML support @@ -303,10 +305,6 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in - Build `whisper.cpp` with Core ML support: ```bash - # using Makefile - make clean - WHISPER_COREML=1 make -j - # using CMake cmake -B build -DWHISPER_COREML=1 cmake --build build -j --config Release @@ -426,8 +424,8 @@ First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-do Now build `whisper.cpp` with CUDA support: ``` -make clean -GGML_CUDA=1 make -j +cmake -B build -DGGML_CUDA=1 +cmake --build build -j --config Release ``` ## Vulkan GPU support @@ -436,8 +434,8 @@ First, make sure your graphics card driver provides support for Vulkan API. Now build `whisper.cpp` with Vulkan support: ``` -make clean -make GGML_VULKAN=1 -j +cmake -B build -DGGML_VULKAN=1 +cmake --build build -j --config Release ``` ## BLAS CPU support via OpenBLAS @@ -448,28 +446,13 @@ First, make sure you have installed `openblas`: https://www.openblas.net/ Now build `whisper.cpp` with OpenBLAS support: ``` -make clean -GGML_OPENBLAS=1 make -j -``` - -## BLAS CPU support via Intel MKL - -Encoder processing can be accelerated on the CPU via the BLAS compatible interface of Intel's Math Kernel Library. -First, make sure you have installed Intel's MKL runtime and development packages: https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html - -Now build `whisper.cpp` with Intel MKL BLAS support: - -``` -source /opt/intel/oneapi/setvars.sh -mkdir build -cd build -cmake -DWHISPER_MKL=ON .. -WHISPER_MKL=1 make -j +cmake -B build -DGGML_BLAS=1 +cmake --build build -j --config Release ``` ## Ascend NPU support -Ascend NPU provides inference acceleration via [`CANN`](https://www.hiascend.com/en/software/cann) and AI cores. +Ascend NPU provides inference acceleration via [`CANN`](https://www.hiascend.com/en/software/cann) and AI cores. First, check if your Ascend NPU device is supported: @@ -483,10 +466,8 @@ Then, make sure you have installed [`CANN toolkit`](https://www.hiascend.com/en/ Now build `whisper.cpp` with CANN support: ``` -mkdir build -cd build -cmake .. -D GGML_CANN=on -make -j +cmake -B build -DGGML_CANN=1 +cmake --build build -j --config Release ``` Run the inference examples as usual, for example: @@ -636,8 +617,9 @@ The [stream](examples/stream) tool samples the audio every half a second and run More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10). ```bash -make stream -j -./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000 +cmake -B build +cmake --build build --config Release +./build/bin/stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000 ``` https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4