mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-18 20:27:53 +00:00
sync : ggml (#2001)
* sync : update scripts * sync : ggml * talk-llama : sync llama.cpp * make : WHISPER_CUBLAS -> WHISPER_CUDA * ci : try to fix sycl build * talk-llama : fix make build
This commit is contained in:
parent
1558ec5a16
commit
2948c740a2
18
.github/workflows/build.yml
vendored
18
.github/workflows/build.yml
vendored
@ -152,13 +152,13 @@ jobs:
|
|||||||
|
|
||||||
ubuntu-22-cmake-sycl:
|
ubuntu-22-cmake-sycl:
|
||||||
runs-on: ubuntu-22.04
|
runs-on: ubuntu-22.04
|
||||||
|
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
dwhisper_sycl: [ON]
|
dwhisper_sycl: [ON]
|
||||||
dcmake_c_compiler: [icx]
|
dcmake_c_compiler: [icx]
|
||||||
dcmake_cxx_compiler: [icpx]
|
dcmake_cxx_compiler: [icpx]
|
||||||
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
|
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
|
||||||
|
|
||||||
continue-on-error: true
|
continue-on-error: true
|
||||||
@ -166,7 +166,7 @@ jobs:
|
|||||||
steps:
|
steps:
|
||||||
- name: Clone
|
- name: Clone
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
- name: add oneAPI to apt
|
- name: add oneAPI to apt
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
@ -190,7 +190,7 @@ jobs:
|
|||||||
- name: Clone
|
- name: Clone
|
||||||
id: checkout
|
id: checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
- name: Build
|
- name: Build
|
||||||
id: cmake_build
|
id: cmake_build
|
||||||
run: |
|
run: |
|
||||||
@ -202,13 +202,13 @@ jobs:
|
|||||||
|
|
||||||
ubuntu-22-cmake-sycl-fp16:
|
ubuntu-22-cmake-sycl-fp16:
|
||||||
runs-on: ubuntu-22.04
|
runs-on: ubuntu-22.04
|
||||||
|
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
dwhisper_sycl: [ON]
|
dwhisper_sycl: [ON]
|
||||||
dcmake_c_compiler: [icx]
|
dcmake_c_compiler: [icx]
|
||||||
dcmake_cxx_compiler: [icpx]
|
dcmake_cxx_compiler: [icpx]
|
||||||
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
|
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
|
||||||
|
|
||||||
continue-on-error: true
|
continue-on-error: true
|
||||||
@ -216,7 +216,7 @@ jobs:
|
|||||||
steps:
|
steps:
|
||||||
- name: Clone
|
- name: Clone
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
- name: add oneAPI to apt
|
- name: add oneAPI to apt
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
@ -240,7 +240,7 @@ jobs:
|
|||||||
- name: Clone
|
- name: Clone
|
||||||
id: checkout
|
id: checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
- name: Build
|
- name: Build
|
||||||
id: cmake_build
|
id: cmake_build
|
||||||
run: |
|
run: |
|
||||||
@ -249,7 +249,7 @@ jobs:
|
|||||||
cd build
|
cd build
|
||||||
cmake -DWHISPER_SYCL_F16=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
|
cmake -DWHISPER_SYCL_F16=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
|
||||||
cmake --build . --config Release -j $(nproc)
|
cmake --build . --config Release -j $(nproc)
|
||||||
|
|
||||||
windows:
|
windows:
|
||||||
runs-on: windows-latest
|
runs-on: windows-latest
|
||||||
|
|
||||||
|
@ -74,7 +74,8 @@ else()
|
|||||||
option(WHISPER_BLAS "whisper: use BLAS libraries" OFF)
|
option(WHISPER_BLAS "whisper: use BLAS libraries" OFF)
|
||||||
option(WHISPER_BLAS_VENDOR "whisper: BLAS library vendor" Generic)
|
option(WHISPER_BLAS_VENDOR "whisper: BLAS library vendor" Generic)
|
||||||
option(WHISPER_OPENBLAS "whisper: prefer OpenBLAS" OFF)
|
option(WHISPER_OPENBLAS "whisper: prefer OpenBLAS" OFF)
|
||||||
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
|
option(WHISPER_CUDA "whisper: support for CUDA" OFF)
|
||||||
|
option(WHISPER_CUBLAS "whisper: support for CUDA (deprecated)" OFF)
|
||||||
option(WHISPER_HIPBLAS "whisper: support for hipBLAS" OFF)
|
option(WHISPER_HIPBLAS "whisper: support for hipBLAS" OFF)
|
||||||
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
|
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
|
||||||
option(WHISPER_SYCL "whisper: use SYCL" OFF)
|
option(WHISPER_SYCL "whisper: use SYCL" OFF)
|
||||||
@ -240,6 +241,11 @@ if (WHISPER_BLAS)
|
|||||||
endif ()
|
endif ()
|
||||||
|
|
||||||
if (WHISPER_CUBLAS)
|
if (WHISPER_CUBLAS)
|
||||||
|
message(WARNING "WHISPER_CUBLAS is deprecated and will be removed in the future.\nUse WHISPER_CUDA instead")
|
||||||
|
set(WHISPER_CUDA ON)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
if (WHISPER_CUDA)
|
||||||
cmake_minimum_required(VERSION 3.17)
|
cmake_minimum_required(VERSION 3.17)
|
||||||
|
|
||||||
find_package(CUDAToolkit)
|
find_package(CUDAToolkit)
|
||||||
@ -249,9 +255,11 @@ if (WHISPER_CUBLAS)
|
|||||||
|
|
||||||
enable_language(CUDA)
|
enable_language(CUDA)
|
||||||
|
|
||||||
set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h)
|
file(GLOB GGML_SOURCES_CUDA "ggml-cuda/*.cu")
|
||||||
|
list(APPEND GGML_SOURCES_CUDA ggml-cuda.h)
|
||||||
|
list(APPEND GGML_SOURCES_CUDA ggml-cuda.cu)
|
||||||
|
|
||||||
add_compile_definitions(GGML_USE_CUBLAS)
|
add_compile_definitions(GGML_USE_CUDA)
|
||||||
|
|
||||||
if (WHISPER_STATIC)
|
if (WHISPER_STATIC)
|
||||||
if (WIN32)
|
if (WIN32)
|
||||||
@ -286,7 +294,7 @@ if (WHISPER_HIPBLAS)
|
|||||||
|
|
||||||
if (${hipblas_FOUND} AND ${hip_FOUND})
|
if (${hipblas_FOUND} AND ${hip_FOUND})
|
||||||
message(STATUS "HIP and hipBLAS found")
|
message(STATUS "HIP and hipBLAS found")
|
||||||
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
|
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA)
|
||||||
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
|
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
|
||||||
set_property(TARGET ggml-rocm PROPERTY POSITION_INDEPENDENT_CODE ON)
|
set_property(TARGET ggml-rocm PROPERTY POSITION_INDEPENDENT_CODE ON)
|
||||||
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
|
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
|
||||||
|
36
Makefile
36
Makefile
@ -216,20 +216,29 @@ ifdef WHISPER_OPENBLAS
|
|||||||
endif
|
endif
|
||||||
|
|
||||||
ifdef WHISPER_CUBLAS
|
ifdef WHISPER_CUBLAS
|
||||||
|
# WHISPER_CUBLAS is deprecated and will be removed in the future
|
||||||
|
WHISPER_CUDA := 1
|
||||||
|
endif
|
||||||
|
|
||||||
|
ifdef WHISPER_CUDA
|
||||||
ifeq ($(shell expr $(NVCC_VERSION) \>= 11.6), 1)
|
ifeq ($(shell expr $(NVCC_VERSION) \>= 11.6), 1)
|
||||||
CUDA_ARCH_FLAG ?= native
|
CUDA_ARCH_FLAG ?= native
|
||||||
else
|
else
|
||||||
CUDA_ARCH_FLAG ?= all
|
CUDA_ARCH_FLAG ?= all
|
||||||
endif
|
endif
|
||||||
|
|
||||||
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
CFLAGS += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||||
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
CXXFLAGS += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||||
LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
||||||
WHISPER_OBJ += ggml-cuda.o
|
WHISPER_OBJ += ggml-cuda.o
|
||||||
|
WHISPER_OBJ += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||||
NVCC = nvcc
|
NVCC = nvcc
|
||||||
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=$(CUDA_ARCH_FLAG)
|
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=$(CUDA_ARCH_FLAG)
|
||||||
|
|
||||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
|
||||||
|
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -c $< -o $@
|
||||||
|
|
||||||
|
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
||||||
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
|
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
|
||||||
endif
|
endif
|
||||||
|
|
||||||
@ -237,14 +246,18 @@ ifdef WHISPER_HIPBLAS
|
|||||||
ROCM_PATH ?= /opt/rocm
|
ROCM_PATH ?= /opt/rocm
|
||||||
HIPCC ?= $(ROCM_PATH)/bin/hipcc
|
HIPCC ?= $(ROCM_PATH)/bin/hipcc
|
||||||
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
||||||
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
|
||||||
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
|
||||||
LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||||
LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||||
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
|
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
|
||||||
WHISPER_OBJ += ggml-cuda.o
|
WHISPER_OBJ += ggml-cuda.o
|
||||||
|
WHISPER_OBJ += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||||
|
|
||||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
|
||||||
|
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||||
|
|
||||||
|
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
||||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||||
endif
|
endif
|
||||||
|
|
||||||
@ -309,6 +322,13 @@ $(info I CC: $(CCV))
|
|||||||
$(info I CXX: $(CXXV))
|
$(info I CXX: $(CXXV))
|
||||||
$(info )
|
$(info )
|
||||||
|
|
||||||
|
ifdef WHISPER_CUBLAS
|
||||||
|
$(info !!!!)
|
||||||
|
$(info WHISPER_CUBLAS is deprecated and will be removed in the future. Use WHISPER_CUDA instead.)
|
||||||
|
$(info !!!!)
|
||||||
|
$(info )
|
||||||
|
endif
|
||||||
|
|
||||||
#
|
#
|
||||||
# Build library
|
# Build library
|
||||||
#
|
#
|
||||||
@ -410,8 +430,8 @@ lsp: examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
|
|||||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
|
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
|
||||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
|
||||||
|
|
||||||
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
|
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp examples/talk-llama/unicode-data.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
|
||||||
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp examples/talk-llama/unicode-data.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
|
||||||
|
|
||||||
#
|
#
|
||||||
# Audio samples
|
# Audio samples
|
||||||
|
@ -414,11 +414,11 @@ For more information about the Core ML implementation please refer to PR [#1037]
|
|||||||
With NVIDIA cards the processing of the models is done efficiently on the GPU via cuBLAS and custom CUDA kernels.
|
With NVIDIA cards the processing of the models is done efficiently on the GPU via cuBLAS and custom CUDA kernels.
|
||||||
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
|
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
|
||||||
|
|
||||||
Now build `whisper.cpp` with cuBLAS support:
|
Now build `whisper.cpp` with CUDA support:
|
||||||
|
|
||||||
```
|
```
|
||||||
make clean
|
make clean
|
||||||
WHISPER_CUBLAS=1 make -j
|
WHISPER_CUDA=1 make -j
|
||||||
```
|
```
|
||||||
|
|
||||||
## OpenCL GPU support via CLBlast
|
## OpenCL GPU support via CLBlast
|
||||||
|
@ -70,6 +70,7 @@ bool ggml_common_quantize_0(
|
|||||||
case GGML_FTYPE_MOSTLY_IQ1_S:
|
case GGML_FTYPE_MOSTLY_IQ1_S:
|
||||||
case GGML_FTYPE_MOSTLY_IQ4_NL:
|
case GGML_FTYPE_MOSTLY_IQ4_NL:
|
||||||
case GGML_FTYPE_MOSTLY_IQ4_XS:
|
case GGML_FTYPE_MOSTLY_IQ4_XS:
|
||||||
|
case GGML_FTYPE_MOSTLY_IQ1_M:
|
||||||
{
|
{
|
||||||
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
|
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
|
||||||
return false;
|
return false;
|
||||||
@ -193,6 +194,8 @@ bool ggml_common_quantize_0(
|
|||||||
case GGML_TYPE_I8:
|
case GGML_TYPE_I8:
|
||||||
case GGML_TYPE_I16:
|
case GGML_TYPE_I16:
|
||||||
case GGML_TYPE_I32:
|
case GGML_TYPE_I32:
|
||||||
|
case GGML_TYPE_I64:
|
||||||
|
case GGML_TYPE_F64:
|
||||||
case GGML_TYPE_Q8_1:
|
case GGML_TYPE_Q8_1:
|
||||||
case GGML_TYPE_Q8_K:
|
case GGML_TYPE_Q8_K:
|
||||||
case GGML_TYPE_IQ2_XXS:
|
case GGML_TYPE_IQ2_XXS:
|
||||||
@ -203,6 +206,7 @@ bool ggml_common_quantize_0(
|
|||||||
case GGML_TYPE_IQ1_S:
|
case GGML_TYPE_IQ1_S:
|
||||||
case GGML_TYPE_IQ4_NL:
|
case GGML_TYPE_IQ4_NL:
|
||||||
case GGML_TYPE_IQ4_XS:
|
case GGML_TYPE_IQ4_XS:
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
case GGML_TYPE_COUNT:
|
case GGML_TYPE_COUNT:
|
||||||
{
|
{
|
||||||
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
|
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
if (WHISPER_SDL2)
|
if (WHISPER_SDL2)
|
||||||
# talk-llama
|
# talk-llama
|
||||||
set(TARGET talk-llama)
|
set(TARGET talk-llama)
|
||||||
add_executable(${TARGET} talk-llama.cpp llama.cpp unicode.cpp)
|
add_executable(${TARGET} talk-llama.cpp llama.cpp unicode.cpp unicode-data.cpp)
|
||||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||||
|
|
||||||
if (WHISPER_CLBLAST)
|
if (WHISPER_CLBLAST)
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -39,7 +39,7 @@
|
|||||||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||||
|
|
||||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||||
#define LLAMA_SESSION_VERSION 4
|
#define LLAMA_SESSION_VERSION 5
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
@ -117,6 +117,7 @@ extern "C" {
|
|||||||
LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
|
LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
|
||||||
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
|
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
|
||||||
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
|
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
|
||||||
|
|
||||||
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||||||
};
|
};
|
||||||
@ -275,13 +276,16 @@ extern "C" {
|
|||||||
|
|
||||||
// model quantization parameters
|
// model quantization parameters
|
||||||
typedef struct llama_model_quantize_params {
|
typedef struct llama_model_quantize_params {
|
||||||
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||||||
enum llama_ftype ftype; // quantize to this llama_ftype
|
enum llama_ftype ftype; // quantize to this llama_ftype
|
||||||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
enum ggml_type output_tensor_type; // output tensor type
|
||||||
bool quantize_output_tensor; // quantize output.weight
|
enum ggml_type token_embedding_type; // itoken embeddings tensor type
|
||||||
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||||
bool pure; // quantize all tensors to the default type
|
bool quantize_output_tensor; // quantize output.weight
|
||||||
void * imatrix; // pointer to importance matrix data
|
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||||||
|
bool pure; // quantize all tensors to the default type
|
||||||
|
void * imatrix; // pointer to importance matrix data
|
||||||
|
void * kv_overrides; // pointer to vector containing overrides
|
||||||
} llama_model_quantize_params;
|
} llama_model_quantize_params;
|
||||||
|
|
||||||
// grammar types
|
// grammar types
|
||||||
@ -388,6 +392,7 @@ extern "C" {
|
|||||||
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
|
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
|
||||||
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
||||||
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
|
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
|
||||||
|
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
|
||||||
|
|
||||||
// Get the model's RoPE frequency scaling factor
|
// Get the model's RoPE frequency scaling factor
|
||||||
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
||||||
@ -435,10 +440,24 @@ extern "C" {
|
|||||||
// Returns 0 on success
|
// Returns 0 on success
|
||||||
LLAMA_API int32_t llama_model_apply_lora_from_file(
|
LLAMA_API int32_t llama_model_apply_lora_from_file(
|
||||||
const struct llama_model * model,
|
const struct llama_model * model,
|
||||||
const char * path_lora,
|
const char * path_lora,
|
||||||
float scale,
|
float scale,
|
||||||
const char * path_base_model,
|
const char * path_base_model,
|
||||||
int32_t n_threads);
|
int32_t n_threads);
|
||||||
|
|
||||||
|
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
|
||||||
|
// the currently loaded vector.
|
||||||
|
// n_embd should be the size of a single layer's control, and data should point
|
||||||
|
// to an n_embd x n_layers buffer starting from layer 1.
|
||||||
|
// il_start and il_end are the layer range the vector should apply to (both inclusive)
|
||||||
|
// See llama_control_vector_load in common to load a control vector.
|
||||||
|
LLAMA_API int32_t llama_control_vector_apply(
|
||||||
|
struct llama_context * lctx,
|
||||||
|
const float * data,
|
||||||
|
size_t len,
|
||||||
|
int32_t n_embd,
|
||||||
|
int32_t il_start,
|
||||||
|
int32_t il_end);
|
||||||
|
|
||||||
//
|
//
|
||||||
// KV cache
|
// KV cache
|
||||||
@ -659,23 +678,29 @@ extern "C" {
|
|||||||
LLAMA_API void llama_synchronize(struct llama_context * ctx);
|
LLAMA_API void llama_synchronize(struct llama_context * ctx);
|
||||||
|
|
||||||
// Token logits obtained from the last call to llama_decode()
|
// Token logits obtained from the last call to llama_decode()
|
||||||
// The logits for the last token are stored in the last row
|
// The logits for which llama_batch.logits[i] != 0 are stored contiguously
|
||||||
// Logits for which llama_batch.logits[i] == 0 are undefined
|
// in the order they have appeared in the batch.
|
||||||
// Rows: n_tokens provided with llama_batch
|
// Rows: number of tokens for which llama_batch.logits[i] != 0
|
||||||
// Cols: n_vocab
|
// Cols: n_vocab
|
||||||
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
||||||
|
|
||||||
// Logits for the ith token. Equivalent to:
|
// Logits for the ith token. Equivalent to:
|
||||||
// llama_get_logits(ctx) + i*n_vocab
|
// llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
|
||||||
|
// returns NULL for invalid ids.
|
||||||
LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
|
LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
|
||||||
|
|
||||||
// Get all output token embeddings
|
// Get all output token embeddings.
|
||||||
// shape: [n_tokens*n_embd] (1-dimensional)
|
// when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
|
||||||
|
// the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
|
||||||
|
// in the order they have appeared in the batch.
|
||||||
|
// shape: [n_outputs*n_embd]
|
||||||
|
// Otherwise, returns NULL.
|
||||||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||||
|
|
||||||
// Get the embeddings for the ith token
|
// Get the embeddings for the ith token. Equivalent to:
|
||||||
// llama_get_embeddings(ctx) + i*n_embd
|
// llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
|
||||||
// shape: [n_embd] (1-dimensional)
|
// shape: [n_embd] (1-dimensional)
|
||||||
|
// returns NULL for invalid ids.
|
||||||
LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
|
LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
|
||||||
|
|
||||||
// Get the embeddings for a sequence id
|
// Get the embeddings for a sequence id
|
||||||
@ -945,6 +970,16 @@ extern "C" {
|
|||||||
int32_t n_past,
|
int32_t n_past,
|
||||||
int32_t n_predict);
|
int32_t n_predict);
|
||||||
|
|
||||||
|
/// @details Build a split GGUF final path for this chunk.
|
||||||
|
/// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
|
||||||
|
// Returns the split_path length.
|
||||||
|
LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
|
||||||
|
|
||||||
|
/// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
|
||||||
|
/// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
|
||||||
|
// Returns the split_prefix length.
|
||||||
|
LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
|
||||||
|
|
||||||
// Performance information
|
// Performance information
|
||||||
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
||||||
|
|
||||||
|
1651
examples/talk-llama/unicode-data.cpp
Normal file
1651
examples/talk-llama/unicode-data.cpp
Normal file
File diff suppressed because it is too large
Load Diff
16
examples/talk-llama/unicode-data.h
Normal file
16
examples/talk-llama/unicode-data.h
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <cstdint>
|
||||||
|
#include <map>
|
||||||
|
#include <utility>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_digit;
|
||||||
|
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter;
|
||||||
|
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_whitespace;
|
||||||
|
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_accent_mark;
|
||||||
|
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_punctuation;
|
||||||
|
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_symbol;
|
||||||
|
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_control;
|
||||||
|
extern const std::multimap<uint32_t, uint32_t> unicode_map_nfd;
|
||||||
|
extern const std::map<char32_t, char32_t> unicode_map_lowercase;
|
File diff suppressed because it is too large
Load Diff
@ -24,3 +24,5 @@ int unicode_cpt_type(const std::string & utf8);
|
|||||||
std::string unicode_byte_to_utf8(uint8_t byte);
|
std::string unicode_byte_to_utf8(uint8_t byte);
|
||||||
uint8_t unicode_utf8_to_byte(const std::string & utf8);
|
uint8_t unicode_utf8_to_byte(const std::string & utf8);
|
||||||
|
|
||||||
|
// simple tolower that only implements one-to-one mapping, not one-to-many
|
||||||
|
char32_t unicode_tolower(char32_t cp);
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
set(CMAKE_CXX_STANDARD 11)
|
|
||||||
|
|
||||||
add_subdirectory(libwchess)
|
add_subdirectory(libwchess)
|
||||||
|
|
||||||
if (EMSCRIPTEN)
|
if (EMSCRIPTEN)
|
||||||
|
@ -98,6 +98,7 @@ if [ -f $SRC_WHISPER/ggml-src.patch ]; then
|
|||||||
# src/ggml-backend-impl.h -> ggml-backend-impl.h
|
# src/ggml-backend-impl.h -> ggml-backend-impl.h
|
||||||
# src/ggml-backend.c -> ggml-backend.c
|
# src/ggml-backend.c -> ggml-backend.c
|
||||||
# src/ggml-common.h -> ggml-common.h
|
# src/ggml-common.h -> ggml-common.h
|
||||||
|
# src/ggml-cuda/* -> ggml-cuda/
|
||||||
# src/ggml-cuda.cu -> ggml-cuda.cu
|
# src/ggml-cuda.cu -> ggml-cuda.cu
|
||||||
# src/ggml-cuda.h -> ggml-cuda.h
|
# src/ggml-cuda.h -> ggml-cuda.h
|
||||||
# src/ggml-impl.h -> ggml-impl.h
|
# src/ggml-impl.h -> ggml-impl.h
|
||||||
@ -135,6 +136,7 @@ if [ -f $SRC_WHISPER/ggml-src.patch ]; then
|
|||||||
-e 's/src\/ggml-backend-impl\.h/ggml-backend-impl.h/g' \
|
-e 's/src\/ggml-backend-impl\.h/ggml-backend-impl.h/g' \
|
||||||
-e 's/src\/ggml-backend\.c/ggml-backend.c/g' \
|
-e 's/src\/ggml-backend\.c/ggml-backend.c/g' \
|
||||||
-e 's/src\/ggml-common\.h/ggml-common.h/g' \
|
-e 's/src\/ggml-common\.h/ggml-common.h/g' \
|
||||||
|
-e 's/src\/ggml-cuda\//ggml-cuda\//g' \
|
||||||
-e 's/src\/ggml-cuda\.cu/ggml-cuda.cu/g' \
|
-e 's/src\/ggml-cuda\.cu/ggml-cuda.cu/g' \
|
||||||
-e 's/src\/ggml-cuda\.h/ggml-cuda.h/g' \
|
-e 's/src\/ggml-cuda\.h/ggml-cuda.h/g' \
|
||||||
-e 's/src\/ggml-impl\.h/ggml-impl.h/g' \
|
-e 's/src\/ggml-impl\.h/ggml-impl.h/g' \
|
||||||
|
@ -6,6 +6,7 @@ cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c
|
|||||||
cp -rpv ../ggml/src/ggml-backend-impl.h ./ggml-backend-impl.h
|
cp -rpv ../ggml/src/ggml-backend-impl.h ./ggml-backend-impl.h
|
||||||
cp -rpv ../ggml/src/ggml-backend.c ./ggml-backend.c
|
cp -rpv ../ggml/src/ggml-backend.c ./ggml-backend.c
|
||||||
cp -rpv ../ggml/src/ggml-common.h ./ggml-common.h
|
cp -rpv ../ggml/src/ggml-common.h ./ggml-common.h
|
||||||
|
cp -rpv ../ggml/src/ggml-cuda/* ./ggml-cuda/
|
||||||
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
|
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
|
||||||
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
|
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
|
||||||
cp -rpv ../ggml/src/ggml-kompute.cpp ./ggml-kompute.cpp
|
cp -rpv ../ggml/src/ggml-kompute.cpp ./ggml-kompute.cpp
|
||||||
|
@ -1,6 +1,8 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
cp -rpv ../llama.cpp/llama.h ./examples/talk-llama/llama.h
|
cp -rpv ../llama.cpp/llama.h ./examples/talk-llama/llama.h
|
||||||
cp -rpv ../llama.cpp/llama.cpp ./examples/talk-llama/llama.cpp
|
cp -rpv ../llama.cpp/llama.cpp ./examples/talk-llama/llama.cpp
|
||||||
cp -rpv ../llama.cpp/unicode.h ./examples/talk-llama/unicode.h
|
cp -rpv ../llama.cpp/unicode.h ./examples/talk-llama/unicode.h
|
||||||
cp -rpv ../llama.cpp/unicode.cpp ./examples/talk-llama/unicode.cpp
|
cp -rpv ../llama.cpp/unicode.cpp ./examples/talk-llama/unicode.cpp
|
||||||
|
cp -rpv ../llama.cpp/unicode-data.h ./examples/talk-llama/unicode-data.h
|
||||||
|
cp -rpv ../llama.cpp/unicode-data.cpp ./examples/talk-llama/unicode-data.cpp
|
||||||
|
10
ggml-alloc.c
10
ggml-alloc.c
@ -548,7 +548,11 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
|||||||
for (int i = 0; i < graph->n_nodes; i++) {
|
for (int i = 0; i < graph->n_nodes; i++) {
|
||||||
struct ggml_tensor * node = graph->nodes[i];
|
struct ggml_tensor * node = graph->nodes[i];
|
||||||
|
|
||||||
if (ggml_is_view(node)) {
|
// TODO: better way to add external dependencies
|
||||||
|
// GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
|
||||||
|
// control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
|
||||||
|
// itself is never used and should not be considered a dependency
|
||||||
|
if (ggml_is_view(node) && node->op != GGML_OP_NONE) {
|
||||||
struct ggml_tensor * view_src = node->view_src;
|
struct ggml_tensor * view_src = node->view_src;
|
||||||
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
|
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
|
||||||
}
|
}
|
||||||
@ -565,8 +569,8 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
|||||||
|
|
||||||
ggml_gallocr_hash_get(galloc, src)->n_children += 1;
|
ggml_gallocr_hash_get(galloc, src)->n_children += 1;
|
||||||
|
|
||||||
// allocate explicit inputs and leafs
|
// allocate explicit inputs
|
||||||
if (src->flags & GGML_TENSOR_FLAG_INPUT || src->op == GGML_OP_NONE) {
|
if (src->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||||
ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
|
ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -103,6 +103,11 @@ extern "C" {
|
|||||||
// check if the backend supports an operation
|
// check if the backend supports an operation
|
||||||
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||||
|
|
||||||
|
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
|
||||||
|
// these should be expensive operations with large batch sizes that may benefit from running on this backend
|
||||||
|
// even if the weight has to be copied from the CPU temporarily
|
||||||
|
bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||||
|
|
||||||
// (optional) event synchronization
|
// (optional) event synchronization
|
||||||
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
|
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
|
||||||
void (*GGML_CALL event_free) (ggml_backend_event_t event);
|
void (*GGML_CALL event_free) (ggml_backend_event_t event);
|
||||||
|
280
ggml-backend.c
280
ggml-backend.c
@ -278,7 +278,7 @@ enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_
|
|||||||
return err;
|
return err;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||||
return backend->iface.graph_compute(backend, cgraph);
|
return backend->iface.graph_compute(backend, cgraph);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -286,6 +286,13 @@ bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor *
|
|||||||
return backend->iface.supports_op(backend, op);
|
return backend->iface.supports_op(backend, op);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||||
|
if (backend->iface.offload_op != NULL) {
|
||||||
|
return backend->iface.offload_op(backend, op);
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
// backend copy
|
// backend copy
|
||||||
|
|
||||||
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||||
@ -413,7 +420,7 @@ GGML_CALL static void ggml_backend_registry_init(void) {
|
|||||||
ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
|
ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
|
||||||
|
|
||||||
// add forward decls here to avoid including the backend headers
|
// add forward decls here to avoid including the backend headers
|
||||||
#ifdef GGML_USE_CUBLAS
|
#ifdef GGML_USE_CUDA
|
||||||
extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
|
extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
|
||||||
ggml_backend_cuda_reg_devices();
|
ggml_backend_cuda_reg_devices();
|
||||||
#endif
|
#endif
|
||||||
@ -761,6 +768,10 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg
|
|||||||
|
|
||||||
if (cpu_plan->cplan.work_size > 0) {
|
if (cpu_plan->cplan.work_size > 0) {
|
||||||
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
|
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
|
||||||
|
if (cpu_plan->cplan.work_data == NULL) {
|
||||||
|
free(cpu_plan);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
|
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
|
||||||
@ -834,6 +845,7 @@ static struct ggml_backend_i cpu_backend_i = {
|
|||||||
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
||||||
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
||||||
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
||||||
|
/* .offload_op = */ NULL,
|
||||||
/* .event_new = */ NULL,
|
/* .event_new = */ NULL,
|
||||||
/* .event_free = */ NULL,
|
/* .event_free = */ NULL,
|
||||||
/* .event_record = */ NULL,
|
/* .event_record = */ NULL,
|
||||||
@ -999,11 +1011,11 @@ static bool ggml_is_view_op(enum ggml_op op) {
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifndef GGML_SCHED_MAX_SPLITS
|
#ifndef GGML_SCHED_MAX_SPLITS
|
||||||
#define GGML_SCHED_MAX_SPLITS 256
|
#define GGML_SCHED_MAX_SPLITS 2048
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
|
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
|
||||||
#define GGML_SCHED_MAX_SPLIT_INPUTS 16
|
#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifndef GGML_SCHED_MAX_COPIES
|
#ifndef GGML_SCHED_MAX_COPIES
|
||||||
@ -1043,8 +1055,9 @@ struct ggml_backend_sched {
|
|||||||
struct ggml_cgraph * graph;
|
struct ggml_cgraph * graph;
|
||||||
|
|
||||||
// graph splits
|
// graph splits
|
||||||
struct ggml_backend_sched_split splits[GGML_SCHED_MAX_SPLITS];
|
struct ggml_backend_sched_split * splits;
|
||||||
int n_splits;
|
int n_splits;
|
||||||
|
int splits_capacity;
|
||||||
|
|
||||||
// pipeline parallelism support
|
// pipeline parallelism support
|
||||||
int n_copies;
|
int n_copies;
|
||||||
@ -1114,40 +1127,48 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
|||||||
// TODO: use supports_op to check if the backend supports the op
|
// TODO: use supports_op to check if the backend supports the op
|
||||||
|
|
||||||
// assign pre-allocated nodes to their backend
|
// assign pre-allocated nodes to their backend
|
||||||
// dst
|
int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
|
||||||
int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor);
|
if (cur_backend_id != -1) {
|
||||||
if (cur_backend != -1) {
|
|
||||||
SET_CAUSE(tensor, "1.dst");
|
SET_CAUSE(tensor, "1.dst");
|
||||||
return cur_backend;
|
return cur_backend_id;
|
||||||
}
|
}
|
||||||
|
|
||||||
// view_src
|
// view_src
|
||||||
if (tensor->view_src != NULL) {
|
if (tensor->view_src != NULL) {
|
||||||
cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
|
cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
|
||||||
if (cur_backend != -1) {
|
if (cur_backend_id != -1) {
|
||||||
SET_CAUSE(tensor, "1.vsrc");
|
SET_CAUSE(tensor, "1.vsrc");
|
||||||
return cur_backend;
|
return cur_backend_id;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// input
|
// graph input
|
||||||
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
|
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||||
cur_backend = sched->n_backends - 1; // last backend (assumed CPU)
|
cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
|
||||||
SET_CAUSE(tensor, "1.inp");
|
SET_CAUSE(tensor, "1.inp");
|
||||||
return cur_backend;
|
return cur_backend_id;
|
||||||
}
|
}
|
||||||
|
|
||||||
// assign nodes that use weights to the backend of the weights
|
// assign nodes that use weights to the backend of the weights
|
||||||
|
// operations with weights are preferably run on the same backend as the weights
|
||||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||||
const struct ggml_tensor * src = tensor->src[i];
|
const struct ggml_tensor * src = tensor->src[i];
|
||||||
if (src == NULL) {
|
if (src == NULL) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||||
int src_backend = ggml_backend_sched_backend_from_buffer(sched, src);
|
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
|
||||||
// operations with weights are always run on the same backend as the weights
|
// check if a backend with higher prio wants to offload the op
|
||||||
|
if (src_backend_id == sched->n_backends - 1) {
|
||||||
|
for (int b = 0; b < src_backend_id; b++) {
|
||||||
|
if (ggml_backend_offload_op(sched->backends[b], tensor)) {
|
||||||
|
SET_CAUSE(tensor, "1.off");
|
||||||
|
return b;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
SET_CAUSE(tensor, "1.wgt%d", i);
|
SET_CAUSE(tensor, "1.wgt%d", i);
|
||||||
return src_backend;
|
return src_backend_id;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1227,28 +1248,31 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
// pass 1: assign backends to ops with pre-allocated inputs
|
// pass 1: assign backends to ops with pre-allocated inputs
|
||||||
for (int i = 0; i < graph->n_leafs; i++) {
|
for (int i = 0; i < graph->n_leafs; i++) {
|
||||||
struct ggml_tensor * leaf = graph->leafs[i];
|
struct ggml_tensor * leaf = graph->leafs[i];
|
||||||
if (tensor_backend_id(leaf) != -1) {
|
int * leaf_backend_id = &tensor_backend_id(leaf);
|
||||||
|
if (*leaf_backend_id != -1) {
|
||||||
// do not overwrite user assignments
|
// do not overwrite user assignments
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
tensor_backend_id(leaf) = ggml_backend_sched_backend_id_from_cur(sched, leaf);
|
*leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < graph->n_nodes; i++) {
|
for (int i = 0; i < graph->n_nodes; i++) {
|
||||||
struct ggml_tensor * node = graph->nodes[i];
|
struct ggml_tensor * node = graph->nodes[i];
|
||||||
if (tensor_backend_id(node) != -1) {
|
int * node_backend_id = &tensor_backend_id(node);
|
||||||
|
if (*node_backend_id != -1) {
|
||||||
// do not overwrite user assignments
|
// do not overwrite user assignments
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
tensor_backend_id(node) = ggml_backend_sched_backend_id_from_cur(sched, node);
|
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
|
||||||
// src
|
// src
|
||||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
struct ggml_tensor * src = node->src[j];
|
struct ggml_tensor * src = node->src[j];
|
||||||
if (src == NULL) {
|
if (src == NULL) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
if (tensor_backend_id(src) == -1) {
|
int * src_backend_id = &tensor_backend_id(src);
|
||||||
tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src);
|
if (*src_backend_id == -1) {
|
||||||
|
*src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1270,21 +1294,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
if (ggml_is_view_op(node->op)) {
|
if (ggml_is_view_op(node->op)) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
int tensor_backend_id = tensor_backend_id(node);
|
int * node_backend_id = &tensor_backend_id(node);
|
||||||
if (tensor_backend_id != -1) {
|
if (*node_backend_id != -1) {
|
||||||
if (tensor_backend_id == sched->n_backends - 1) {
|
if (*node_backend_id == sched->n_backends - 1) {
|
||||||
// skip cpu (lowest prio backend)
|
// skip cpu (lowest prio backend)
|
||||||
cur_backend_id = -1;
|
cur_backend_id = -1;
|
||||||
} else {
|
} else {
|
||||||
cur_backend_id = tensor_backend_id;
|
cur_backend_id = *node_backend_id;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
tensor_backend_id(node) = cur_backend_id;
|
*node_backend_id = cur_backend_id;
|
||||||
SET_CAUSE(node, "2.2");
|
SET_CAUSE(node, "2.2");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// pass 2.1 expand gpu up
|
// pass 2.1 expand gpu up
|
||||||
{
|
{
|
||||||
int cur_backend_id = -1;
|
int cur_backend_id = -1;
|
||||||
@ -1293,22 +1316,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
if (ggml_is_view_op(node->op)) {
|
if (ggml_is_view_op(node->op)) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
int tensor_backend_id = tensor_backend_id(node);
|
int * node_backend_id = &tensor_backend_id(node);
|
||||||
if (tensor_backend_id != -1) {
|
if (*node_backend_id != -1) {
|
||||||
if (tensor_backend_id == sched->n_backends - 1) {
|
if (*node_backend_id == sched->n_backends - 1) {
|
||||||
// skip cpu (lowest prio backend)
|
// skip cpu (lowest prio backend)
|
||||||
cur_backend_id = -1;
|
cur_backend_id = -1;
|
||||||
} else {
|
} else {
|
||||||
cur_backend_id = tensor_backend_id;
|
cur_backend_id = *node_backend_id;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
tensor_backend_id(node) = cur_backend_id;
|
*node_backend_id = cur_backend_id;
|
||||||
SET_CAUSE(node, "2.1");
|
SET_CAUSE(node, "2.1");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// pass 2.4 expand rest down
|
// pass 2.4 expand rest down
|
||||||
{
|
{
|
||||||
int cur_backend_id = -1;
|
int cur_backend_id = -1;
|
||||||
@ -1317,16 +1338,16 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
if (ggml_is_view_op(node->op)) {
|
if (ggml_is_view_op(node->op)) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
int tensor_backend_id = tensor_backend_id(node);
|
int * node_backend_id = &tensor_backend_id(node);
|
||||||
if (tensor_backend_id != -1) {
|
if (*node_backend_id != -1) {
|
||||||
cur_backend_id = tensor_backend_id;
|
cur_backend_id = *node_backend_id;
|
||||||
} else {
|
} else {
|
||||||
tensor_backend_id(node) = cur_backend_id;
|
*node_backend_id = cur_backend_id;
|
||||||
SET_CAUSE(node, "2.4");
|
SET_CAUSE(node, "2.4");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// pass 2.3 expand rest up
|
// pass 2.3 expand rest up
|
||||||
{
|
{
|
||||||
int cur_backend_id = -1;
|
int cur_backend_id = -1;
|
||||||
for (int i = graph->n_nodes - 1; i >= 0; i--) {
|
for (int i = graph->n_nodes - 1; i >= 0; i--) {
|
||||||
@ -1334,11 +1355,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
if (ggml_is_view_op(node->op)) {
|
if (ggml_is_view_op(node->op)) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
int tensor_backend_id = tensor_backend_id(node);
|
int * node_backend_id = &tensor_backend_id(node);
|
||||||
if (tensor_backend_id != -1) {
|
if (*node_backend_id != -1) {
|
||||||
cur_backend_id = tensor_backend_id;
|
cur_backend_id = *node_backend_id;
|
||||||
} else {
|
} else {
|
||||||
tensor_backend_id(node) = cur_backend_id;
|
*node_backend_id = cur_backend_id;
|
||||||
SET_CAUSE(node, "2.3");
|
SET_CAUSE(node, "2.3");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1351,9 +1372,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
// pass 3: assign backends to remaining src from dst and view_src
|
// pass 3: assign backends to remaining src from dst and view_src
|
||||||
for (int i = 0; i < graph->n_nodes; i++) {
|
for (int i = 0; i < graph->n_nodes; i++) {
|
||||||
struct ggml_tensor * node = graph->nodes[i];
|
struct ggml_tensor * node = graph->nodes[i];
|
||||||
int cur_backend_id = tensor_backend_id(node);
|
int * cur_backend_id = &tensor_backend_id(node);
|
||||||
if (node->view_src != NULL && cur_backend_id == -1) {
|
if (node->view_src != NULL && *cur_backend_id == -1) {
|
||||||
cur_backend_id = tensor_backend_id(node) = tensor_backend_id(node->view_src);
|
*cur_backend_id = tensor_backend_id(node->view_src);
|
||||||
SET_CAUSE(node, "3.vsrc");
|
SET_CAUSE(node, "3.vsrc");
|
||||||
}
|
}
|
||||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
@ -1361,14 +1382,14 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
if (src == NULL) {
|
if (src == NULL) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
int src_backend_id = tensor_backend_id(src);
|
int * src_backend_id = &tensor_backend_id(src);
|
||||||
if (src_backend_id == -1) {
|
if (*src_backend_id == -1) {
|
||||||
if (src->view_src != NULL) {
|
if (src->view_src != NULL) {
|
||||||
// views are always on the same backend as the source
|
// views are always on the same backend as the source
|
||||||
tensor_backend_id(src) = tensor_backend_id(src->view_src);
|
*src_backend_id = tensor_backend_id(src->view_src);
|
||||||
SET_CAUSE(src, "3.vsrc");
|
SET_CAUSE(src, "3.vsrc");
|
||||||
} else {
|
} else {
|
||||||
tensor_backend_id(src) = cur_backend_id;
|
*src_backend_id = *cur_backend_id;
|
||||||
SET_CAUSE(src, "3.cur");
|
SET_CAUSE(src, "3.cur");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1380,19 +1401,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
|
|
||||||
// pass 4: split graph, find tensors that need to be copied
|
// pass 4: split graph, find tensors that need to be copied
|
||||||
{
|
{
|
||||||
int cur_split = 0;
|
int i_split = 0;
|
||||||
|
struct ggml_backend_sched_split * split = &sched->splits[0];
|
||||||
// find the backend of the first split, skipping view ops
|
// find the backend of the first split, skipping view ops
|
||||||
for (int i = 0; i < graph->n_nodes; i++) {
|
for (int i = 0; i < graph->n_nodes; i++) {
|
||||||
struct ggml_tensor * node = graph->nodes[i];
|
struct ggml_tensor * node = graph->nodes[i];
|
||||||
if (!ggml_is_view_op(node->op)) {
|
if (!ggml_is_view_op(node->op)) {
|
||||||
sched->splits[0].backend_id = tensor_backend_id(node);
|
split->backend_id = tensor_backend_id(node);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
sched->splits[0].i_start = 0;
|
split->i_start = 0;
|
||||||
sched->splits[0].n_inputs = 0;
|
split->n_inputs = 0;
|
||||||
memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
|
memset(split->inputs, 0, sizeof(split->inputs)); //HACK
|
||||||
int cur_backend_id = sched->splits[0].backend_id;
|
int cur_backend_id = split->backend_id;
|
||||||
for (int i = 0; i < graph->n_nodes; i++) {
|
for (int i = 0; i < graph->n_nodes; i++) {
|
||||||
struct ggml_tensor * node = graph->nodes[i];
|
struct ggml_tensor * node = graph->nodes[i];
|
||||||
|
|
||||||
@ -1400,18 +1422,54 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
int tensor_backend_id = tensor_backend_id(node);
|
const int node_backend_id = tensor_backend_id(node);
|
||||||
|
|
||||||
GGML_ASSERT(tensor_backend_id != -1); // all nodes should be assigned by now
|
GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
|
||||||
|
|
||||||
if (tensor_backend_id != cur_backend_id) {
|
// check if we should start a new split based on the sources of the current node
|
||||||
sched->splits[cur_split].i_end = i;
|
bool need_new_split = false;
|
||||||
cur_split++;
|
if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
|
||||||
GGML_ASSERT(cur_split < GGML_SCHED_MAX_SPLITS);
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
sched->splits[cur_split].backend_id = tensor_backend_id;
|
struct ggml_tensor * src = node->src[j];
|
||||||
sched->splits[cur_split].i_start = i;
|
if (src == NULL) {
|
||||||
sched->splits[cur_split].n_inputs = 0;
|
continue;
|
||||||
cur_backend_id = tensor_backend_id;
|
}
|
||||||
|
// check if a weight is on a different backend
|
||||||
|
// by starting a new split, the memory of the previously offloaded weights can be reused
|
||||||
|
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||||
|
int src_backend_id = tensor_backend_id(src);
|
||||||
|
if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
|
||||||
|
need_new_split = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// check if the split has too many inputs
|
||||||
|
if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
|
||||||
|
const size_t id = hash_id(src);
|
||||||
|
int src_backend_id = sched->tensor_backend_id[id];
|
||||||
|
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
|
||||||
|
//printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
|
||||||
|
need_new_split = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (node_backend_id != cur_backend_id || need_new_split) {
|
||||||
|
split->i_end = i;
|
||||||
|
i_split++;
|
||||||
|
if (i_split >= sched->splits_capacity) {
|
||||||
|
sched->splits_capacity *= 2;
|
||||||
|
sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
|
||||||
|
GGML_ASSERT(sched->splits != NULL);
|
||||||
|
}
|
||||||
|
GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
|
||||||
|
split = &sched->splits[i_split];
|
||||||
|
split->backend_id = node_backend_id;
|
||||||
|
split->i_start = i;
|
||||||
|
split->n_inputs = 0;
|
||||||
|
cur_backend_id = node_backend_id;
|
||||||
}
|
}
|
||||||
|
|
||||||
// find inputs that are not on the same backend
|
// find inputs that are not on the same backend
|
||||||
@ -1421,10 +1479,10 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
int src_backend_id = tensor_backend_id(src);
|
const int src_backend_id = tensor_backend_id(src);
|
||||||
assert(src_backend_id != -1); // all inputs should be assigned by now
|
assert(src_backend_id != -1); // all inputs should be assigned by now
|
||||||
|
|
||||||
if (src->flags & GGML_TENSOR_FLAG_INPUT) {
|
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
|
||||||
size_t id = hash_id(src);
|
size_t id = hash_id(src);
|
||||||
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
|
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
|
||||||
ggml_backend_t backend = sched->backends[src_backend_id];
|
ggml_backend_t backend = sched->backends[src_backend_id];
|
||||||
@ -1441,7 +1499,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
||||||
}
|
}
|
||||||
sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
|
sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
|
||||||
tensor_backend_id(tensor_copy) = src_backend_id;
|
|
||||||
SET_CAUSE(tensor_copy, "4.cpy");
|
SET_CAUSE(tensor_copy, "4.cpy");
|
||||||
}
|
}
|
||||||
int n_graph_inputs = sched->n_graph_inputs++;
|
int n_graph_inputs = sched->n_graph_inputs++;
|
||||||
@ -1450,9 +1507,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (src_backend_id != tensor_backend_id) {
|
if (src_backend_id != node_backend_id) {
|
||||||
// create a copy of the input in the split's backend
|
// create a copy of the input in the split's backend
|
||||||
size_t id = hash_id(src);
|
const size_t id = hash_id(src);
|
||||||
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
|
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
|
||||||
ggml_backend_t backend = sched->backends[cur_backend_id];
|
ggml_backend_t backend = sched->backends[cur_backend_id];
|
||||||
for (int c = 0; c < sched->n_copies; c++) {
|
for (int c = 0; c < sched->n_copies; c++) {
|
||||||
@ -1463,76 +1520,42 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
||||||
}
|
}
|
||||||
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
|
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
|
||||||
tensor_backend_id(tensor_copy) = cur_backend_id;
|
|
||||||
SET_CAUSE(tensor_copy, "4.cpy");
|
SET_CAUSE(tensor_copy, "4.cpy");
|
||||||
}
|
}
|
||||||
int n_inputs = sched->splits[cur_split].n_inputs++;
|
int n_inputs = split->n_inputs++;
|
||||||
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
|
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
|
||||||
sched->splits[cur_split].inputs[n_inputs] = src;
|
split->inputs[n_inputs] = src;
|
||||||
}
|
}
|
||||||
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
|
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
sched->splits[cur_split].i_end = graph->n_nodes;
|
split->i_end = graph->n_nodes;
|
||||||
sched->n_splits = cur_split + 1;
|
sched->n_splits = i_split + 1;
|
||||||
}
|
}
|
||||||
#ifdef DEBUG_PASS4
|
#ifdef DEBUG_PASS4
|
||||||
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifndef NDEBUG
|
|
||||||
// sanity check: all sources should have the same backend as the node
|
|
||||||
for (int i = 0; i < graph->n_nodes; i++) {
|
|
||||||
struct ggml_tensor * node = graph->nodes[i];
|
|
||||||
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
|
|
||||||
if (tensor_backend == NULL) {
|
|
||||||
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
|
|
||||||
}
|
|
||||||
if (node->view_src != NULL && tensor_backend != ggml_backend_sched_get_tensor_backend(sched, node->view_src)) {
|
|
||||||
fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
|
|
||||||
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
|
|
||||||
node->view_src->name, ggml_backend_sched_get_tensor_backend(sched, node->view_src) ?
|
|
||||||
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, node->view_src)) : "NULL");
|
|
||||||
}
|
|
||||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
||||||
struct ggml_tensor * src = node->src[j];
|
|
||||||
if (src == NULL) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
|
|
||||||
if (src_backend != tensor_backend /* && src_backend != NULL */) {
|
|
||||||
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
|
|
||||||
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
|
|
||||||
j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL");
|
|
||||||
}
|
|
||||||
if (src->view_src != NULL && src_backend != ggml_backend_sched_get_tensor_backend(sched, src->view_src)) {
|
|
||||||
fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
|
|
||||||
src->name, src_backend ? ggml_backend_name(src_backend) : "NULL",
|
|
||||||
src->view_src->name, ggml_backend_sched_get_tensor_backend(sched, src->view_src) ?
|
|
||||||
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, src->view_src)) : "NULL");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
fflush(stderr);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// create copies of the graph for each split
|
// create copies of the graph for each split
|
||||||
// TODO: avoid this copy
|
// TODO: avoid this copy
|
||||||
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS, false);
|
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
|
||||||
for (int i = 0; i < sched->n_splits; i++) {
|
for (int i = 0; i < sched->n_splits; i++) {
|
||||||
struct ggml_backend_sched_split * split = &sched->splits[i];
|
struct ggml_backend_sched_split * split = &sched->splits[i];
|
||||||
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
|
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
|
||||||
|
|
||||||
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
|
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
|
||||||
for (int j = 0; j < split->n_inputs; j++) {
|
for (int j = 0; j < split->n_inputs; j++) {
|
||||||
|
assert(graph_copy->size > (graph_copy->n_nodes + 1));
|
||||||
|
|
||||||
struct ggml_tensor * input = split->inputs[j];
|
struct ggml_tensor * input = split->inputs[j];
|
||||||
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id][sched->cur_copy];
|
const size_t input_id = hash_id(input);
|
||||||
|
struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
|
||||||
|
|
||||||
// add a dependency to the input source so that it is not freed before the copy is done
|
// add a dependency to the input source so that it is not freed before the copy is done
|
||||||
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
|
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
|
||||||
input_dep->src[0] = input;
|
input_dep->src[0] = input;
|
||||||
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input);
|
sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
|
||||||
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
|
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
|
||||||
|
|
||||||
// add a dependency to the input copy so that it is allocated at the start of the split
|
// add a dependency to the input copy so that it is allocated at the start of the split
|
||||||
@ -1541,6 +1564,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
}
|
}
|
||||||
|
|
||||||
for (int j = split->i_start; j < split->i_end; j++) {
|
for (int j = split->i_start; j < split->i_end; j++) {
|
||||||
|
assert(graph_copy->size > graph_copy->n_nodes);
|
||||||
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
|
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
|
||||||
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
|
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
|
||||||
}
|
}
|
||||||
@ -1625,13 +1649,12 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
|
|||||||
}
|
}
|
||||||
ggml_backend_tensor_copy(input, input_cpy);
|
ggml_backend_tensor_copy(input, input_cpy);
|
||||||
} else {
|
} else {
|
||||||
|
// wait for the split backend to finish using the input before overwriting it
|
||||||
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
||||||
ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
|
ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
|
||||||
} else {
|
} else {
|
||||||
ggml_backend_synchronize(split_backend);
|
ggml_backend_synchronize(split_backend);
|
||||||
ggml_backend_synchronize(input_backend);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
|
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1701,17 +1724,21 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
|||||||
struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
|
struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
|
||||||
|
|
||||||
// initialize hash table
|
// initialize hash table
|
||||||
sched->hash_set = ggml_hash_set_new(graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
|
sched->hash_set = ggml_hash_set_new(graph_size);
|
||||||
sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
|
sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
|
||||||
sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
|
sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
|
||||||
sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size);
|
|
||||||
sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), graph_size);
|
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
|
||||||
|
sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), nodes_size);
|
||||||
|
sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), nodes_size);
|
||||||
|
|
||||||
sched->n_backends = n_backends;
|
sched->n_backends = n_backends;
|
||||||
|
|
||||||
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
|
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
|
||||||
|
|
||||||
GGML_ASSERT(sched->n_copies <= GGML_SCHED_MAX_COPIES);
|
const int initial_splits_capacity = 16;
|
||||||
|
sched->splits = calloc(sizeof(sched->splits[0]), initial_splits_capacity);
|
||||||
|
sched->splits_capacity = initial_splits_capacity;
|
||||||
|
|
||||||
for (int b = 0; b < n_backends; b++) {
|
for (int b = 0; b < n_backends; b++) {
|
||||||
sched->backends[b] = backends[b];
|
sched->backends[b] = backends[b];
|
||||||
@ -1742,6 +1769,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
|||||||
}
|
}
|
||||||
ggml_gallocr_free(sched->galloc);
|
ggml_gallocr_free(sched->galloc);
|
||||||
ggml_free(sched->ctx);
|
ggml_free(sched->ctx);
|
||||||
|
free(sched->splits);
|
||||||
free(sched->hash_set.keys);
|
free(sched->hash_set.keys);
|
||||||
free(sched->tensor_backend_id);
|
free(sched->tensor_backend_id);
|
||||||
free(sched->tensor_copies);
|
free(sched->tensor_copies);
|
||||||
@ -1762,6 +1790,8 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
||||||
|
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
|
||||||
|
|
||||||
ggml_backend_sched_split_graph(sched, measure_graph);
|
ggml_backend_sched_split_graph(sched, measure_graph);
|
||||||
|
|
||||||
// TODO: extract this to a separate function
|
// TODO: extract this to a separate function
|
||||||
@ -1776,7 +1806,7 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
|
|||||||
}
|
}
|
||||||
|
|
||||||
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||||
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
|
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
|
||||||
|
|
||||||
ggml_backend_sched_split_graph(sched, graph);
|
ggml_backend_sched_split_graph(sched, graph);
|
||||||
|
|
||||||
|
@ -70,11 +70,11 @@ extern "C" {
|
|||||||
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||||
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||||
|
|
||||||
GGML_API enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||||
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||||
|
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||||
GGML_API bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
|
||||||
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||||
|
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||||
|
|
||||||
// tensor copy between different backends
|
// tensor copy between different backends
|
||||||
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||||
|
@ -377,6 +377,27 @@ typedef struct {
|
|||||||
} block_iq1_s;
|
} block_iq1_s;
|
||||||
static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
|
static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
|
||||||
|
|
||||||
|
// 1.75 bpw
|
||||||
|
typedef struct {
|
||||||
|
uint8_t qs[QK_K/8]; // grid index, low 8 bits
|
||||||
|
uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8)
|
||||||
|
#if QK_K == 64
|
||||||
|
ggml_half d;
|
||||||
|
#endif
|
||||||
|
uint8_t scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64)
|
||||||
|
} block_iq1_m;
|
||||||
|
#if QK_K == 64
|
||||||
|
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32 + sizeof(ggml_half), "wrong iq1_m block size/padding");
|
||||||
|
#else
|
||||||
|
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding");
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Used by IQ1_M quants
|
||||||
|
typedef union {
|
||||||
|
ggml_half f16;
|
||||||
|
uint16_t u16;
|
||||||
|
} iq1m_scale_t;
|
||||||
|
|
||||||
// Non-linear quants
|
// Non-linear quants
|
||||||
#define QK4_NL 32
|
#define QK4_NL 32
|
||||||
typedef struct {
|
typedef struct {
|
||||||
@ -1050,6 +1071,7 @@ GGML_TABLE_END()
|
|||||||
|
|
||||||
#define NGRID_IQ1S 2048
|
#define NGRID_IQ1S 2048
|
||||||
#define IQ1S_DELTA 0.125f
|
#define IQ1S_DELTA 0.125f
|
||||||
|
#define IQ1M_DELTA 0.125f
|
||||||
#if defined(GGML_COMMON_IMPL_C)
|
#if defined(GGML_COMMON_IMPL_C)
|
||||||
GGML_TABLE_BEGIN(uint64_t, iq1s_grid, NGRID_IQ1S)
|
GGML_TABLE_BEGIN(uint64_t, iq1s_grid, NGRID_IQ1S)
|
||||||
0xffffffffffffffff, 0xffffffffffffff01, 0xffffffffffff0000, 0xffffffffffff01ff,
|
0xffffffffffffffff, 0xffffffffffffff01, 0xffffffffffff0000, 0xffffffffffff01ff,
|
||||||
|
11137
ggml-cuda.cu
11137
ggml-cuda.cu
File diff suppressed because it is too large
Load Diff
21
ggml-cuda.h
21
ggml-cuda.h
@ -17,29 +17,17 @@ extern "C" {
|
|||||||
|
|
||||||
#define GGML_CUDA_MAX_DEVICES 16
|
#define GGML_CUDA_MAX_DEVICES 16
|
||||||
|
|
||||||
// Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`.
|
|
||||||
GGML_API GGML_CALL void ggml_init_cublas(void);
|
|
||||||
|
|
||||||
// Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`.
|
|
||||||
GGML_API GGML_CALL bool ggml_cublas_loaded(void);
|
|
||||||
|
|
||||||
GGML_API GGML_CALL void * ggml_cuda_host_malloc(size_t size);
|
|
||||||
GGML_API GGML_CALL void ggml_cuda_host_free(void * ptr);
|
|
||||||
|
|
||||||
GGML_API GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
|
||||||
GGML_API GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
|
||||||
|
|
||||||
GGML_API GGML_CALL int ggml_cuda_get_device_count(void);
|
|
||||||
GGML_API GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
|
|
||||||
|
|
||||||
// backend API
|
// backend API
|
||||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
|
GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
|
||||||
|
|
||||||
GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
|
GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||||
|
|
||||||
|
// device buffer
|
||||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||||
|
|
||||||
// split tensor buffer that splits matrices by rows across multiple devices
|
// split tensor buffer that splits matrices by rows across multiple devices
|
||||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
|
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
|
||||||
|
|
||||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||||
|
|
||||||
@ -47,6 +35,9 @@ GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void);
|
|||||||
GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||||
GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
||||||
|
|
||||||
|
GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
|
||||||
|
GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
47
ggml-cuda/acc.cu
Normal file
47
ggml-cuda/acc.cu
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
#include "acc.cuh"
|
||||||
|
|
||||||
|
static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
|
||||||
|
const int ne10, const int ne11, const int ne12,
|
||||||
|
const int nb1, const int nb2, int offset) {
|
||||||
|
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||||
|
if (i >= ne) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
int src1_idx = i - offset;
|
||||||
|
int oz = src1_idx / nb2;
|
||||||
|
int oy = (src1_idx - (oz * nb2)) / nb1;
|
||||||
|
int ox = src1_idx % nb1;
|
||||||
|
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
|
||||||
|
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
|
||||||
|
} else {
|
||||||
|
dst[i] = x[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
|
||||||
|
const int ne10, const int ne11, const int ne12,
|
||||||
|
const int nb1, const int nb2, const int offset, cudaStream_t stream) {
|
||||||
|
int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
|
||||||
|
acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
const float * src1_d = (const float *)src1->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
|
||||||
|
|
||||||
|
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
||||||
|
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
||||||
|
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
|
||||||
|
int offset = dst->op_params[3] / 4; // offset in bytes
|
||||||
|
|
||||||
|
acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, stream);
|
||||||
|
}
|
5
ggml-cuda/acc.cuh
Normal file
5
ggml-cuda/acc.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_ACC_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
63
ggml-cuda/alibi.cu
Normal file
63
ggml-cuda/alibi.cu
Normal file
@ -0,0 +1,63 @@
|
|||||||
|
#include "alibi.cuh"
|
||||||
|
|
||||||
|
static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
|
||||||
|
const int n_heads_log2_floor, const float m0, const float m1) {
|
||||||
|
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (col >= ncols) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
|
const int i = row*ncols + col;
|
||||||
|
|
||||||
|
const int k = row/k_rows;
|
||||||
|
|
||||||
|
float m_k;
|
||||||
|
if (k < n_heads_log2_floor) {
|
||||||
|
m_k = powf(m0, k + 1);
|
||||||
|
} else {
|
||||||
|
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
dst[i] = col * m_k + x[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
|
||||||
|
const int k_rows, const int n_heads_log2_floor, const float m0,
|
||||||
|
const float m1, cudaStream_t stream) {
|
||||||
|
const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1);
|
||||||
|
const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE);
|
||||||
|
const dim3 block_nums(num_blocks_x, nrows, 1);
|
||||||
|
alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t ne01 = src0->ne[1];
|
||||||
|
const int64_t ne02 = src0->ne[2];
|
||||||
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||||
|
const int n_head = ((int32_t *) dst->op_params)[1];
|
||||||
|
float max_bias;
|
||||||
|
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
||||||
|
|
||||||
|
//GGML_ASSERT(ne01 + n_past == ne00);
|
||||||
|
GGML_ASSERT(n_head == ne02);
|
||||||
|
|
||||||
|
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
||||||
|
|
||||||
|
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
||||||
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
||||||
|
|
||||||
|
alibi_f32_cuda(src0_d, dst_d, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, stream);
|
||||||
|
}
|
5
ggml-cuda/alibi.cuh
Normal file
5
ggml-cuda/alibi.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_ALIBI_BLOCK_SIZE 32
|
||||||
|
|
||||||
|
void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
34
ggml-cuda/arange.cu
Normal file
34
ggml-cuda/arange.cu
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
#include "arange.cuh"
|
||||||
|
|
||||||
|
static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) {
|
||||||
|
// blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||||
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (nidx >= ne0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[nidx] = start + step * nidx;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) {
|
||||||
|
int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE;
|
||||||
|
arange_f32<<<num_blocks, CUDA_ARANGE_BLOCK_SIZE, 0, stream>>>(dst, ne0, start, step);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
float start;
|
||||||
|
float stop;
|
||||||
|
float step;
|
||||||
|
memcpy(&start, (float *)dst->op_params + 0, sizeof(float));
|
||||||
|
memcpy(&stop, (float *)dst->op_params + 1, sizeof(float));
|
||||||
|
memcpy(&step, (float *)dst->op_params + 2, sizeof(float));
|
||||||
|
|
||||||
|
int64_t steps = (int64_t)ceil((stop - start) / step);
|
||||||
|
GGML_ASSERT(ggml_nelements(dst) == steps);
|
||||||
|
|
||||||
|
arange_f32_cuda(dst_d, dst->ne[0], start, step, stream);
|
||||||
|
}
|
5
ggml-cuda/arange.cuh
Normal file
5
ggml-cuda/arange.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_ARANGE_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
77
ggml-cuda/argsort.cu
Normal file
77
ggml-cuda/argsort.cu
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
#include "argsort.cuh"
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
|
||||||
|
T tmp = a;
|
||||||
|
a = b;
|
||||||
|
b = tmp;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<ggml_sort_order order>
|
||||||
|
static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) {
|
||||||
|
// bitonic sort
|
||||||
|
int col = threadIdx.x;
|
||||||
|
int row = blockIdx.y;
|
||||||
|
|
||||||
|
if (col >= ncols) return;
|
||||||
|
|
||||||
|
const float * x_row = x + row * ncols;
|
||||||
|
int * dst_row = dst + row * ncols;
|
||||||
|
|
||||||
|
// initialize indices
|
||||||
|
if (col < ncols) {
|
||||||
|
dst_row[col] = col;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
for (int k = 2; k <= ncols; k *= 2) {
|
||||||
|
for (int j = k / 2; j > 0; j /= 2) {
|
||||||
|
int ixj = col ^ j;
|
||||||
|
if (ixj > col) {
|
||||||
|
if ((col & k) == 0) {
|
||||||
|
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
|
||||||
|
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
|
||||||
|
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
|
||||||
|
// bitonic sort requires ncols to be power of 2
|
||||||
|
GGML_ASSERT((ncols & (ncols - 1)) == 0);
|
||||||
|
|
||||||
|
const dim3 block_dims(ncols, 1, 1);
|
||||||
|
const dim3 block_nums(1, nrows, 1);
|
||||||
|
if (order == GGML_SORT_ORDER_ASC) {
|
||||||
|
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||||
|
} else if (order == GGML_SORT_ORDER_DESC) {
|
||||||
|
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
|
||||||
|
const int64_t ncols = src0->ne[0];
|
||||||
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
||||||
|
|
||||||
|
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||||||
|
}
|
3
ggml-cuda/argsort.cuh
Normal file
3
ggml-cuda/argsort.cuh
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
236
ggml-cuda/binbcast.cu
Normal file
236
ggml-cuda/binbcast.cu
Normal file
@ -0,0 +1,236 @@
|
|||||||
|
#include "binbcast.cuh"
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float op_repeat(const float a, const float b) {
|
||||||
|
return b;
|
||||||
|
GGML_UNUSED(a);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float op_add(const float a, const float b) {
|
||||||
|
return a + b;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float op_mul(const float a, const float b) {
|
||||||
|
return a * b;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float op_div(const float a, const float b) {
|
||||||
|
return a / b;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||||||
|
static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||||||
|
int ne0, int ne1, int ne2, int ne3,
|
||||||
|
int ne10, int ne11, int ne12, int ne13,
|
||||||
|
/*int s0, */ int s1, int s2, int s3,
|
||||||
|
/*int s10,*/ int s11, int s12, int s13) {
|
||||||
|
const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
|
||||||
|
const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
|
||||||
|
const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
|
||||||
|
|
||||||
|
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i11 = i1 % ne11;
|
||||||
|
const int i12 = i2 % ne12;
|
||||||
|
const int i13 = i3 % ne13;
|
||||||
|
|
||||||
|
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
|
||||||
|
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||||
|
const size_t i_dst = i_src0;
|
||||||
|
|
||||||
|
const src0_t * src0_row = src0 + i_src0;
|
||||||
|
const src1_t * src1_row = src1 + i_src1;
|
||||||
|
dst_t * dst_row = dst + i_dst;
|
||||||
|
|
||||||
|
for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
|
||||||
|
const int i10 = i0 % ne10;
|
||||||
|
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||||||
|
static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||||||
|
int ne0, int ne1, int ne2, int ne3,
|
||||||
|
int ne10, int ne11, int ne12, int ne13,
|
||||||
|
/*int s0, */ int s1, int s2, int s3,
|
||||||
|
/*int s10,*/ int s11, int s12, int s13) {
|
||||||
|
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
const int i3 = i/(ne2*ne1*ne0);
|
||||||
|
const int i2 = (i/(ne1*ne0)) % ne2;
|
||||||
|
const int i1 = (i/ne0) % ne1;
|
||||||
|
const int i0 = i % ne0;
|
||||||
|
|
||||||
|
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i11 = i1 % ne11;
|
||||||
|
const int i12 = i2 % ne12;
|
||||||
|
const int i13 = i3 % ne13;
|
||||||
|
|
||||||
|
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
|
||||||
|
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||||
|
const size_t i_dst = i_src0;
|
||||||
|
|
||||||
|
const src0_t * src0_row = src0 + i_src0;
|
||||||
|
const src1_t * src1_row = src1 + i_src1;
|
||||||
|
dst_t * dst_row = dst + i_dst;
|
||||||
|
|
||||||
|
const int i10 = i0 % ne10;
|
||||||
|
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<float (*bin_op)(const float, const float)>
|
||||||
|
struct bin_bcast_cuda {
|
||||||
|
template<typename src0_t, typename src1_t, typename dst_t>
|
||||||
|
void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
|
||||||
|
const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
|
||||||
|
cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||||||
|
|
||||||
|
int nr0 = ne10/ne0;
|
||||||
|
int nr1 = ne11/ne1;
|
||||||
|
int nr2 = ne12/ne2;
|
||||||
|
int nr3 = ne13/ne3;
|
||||||
|
|
||||||
|
int nr[4] = { nr0, nr1, nr2, nr3 };
|
||||||
|
|
||||||
|
// collapse dimensions until first broadcast dimension
|
||||||
|
int64_t cne0[] = {ne0, ne1, ne2, ne3};
|
||||||
|
int64_t cne1[] = {ne10, ne11, ne12, ne13};
|
||||||
|
size_t cnb0[] = {nb0, nb1, nb2, nb3};
|
||||||
|
size_t cnb1[] = {nb10, nb11, nb12, nb13};
|
||||||
|
auto collapse = [](int64_t cne[]) {
|
||||||
|
cne[0] *= cne[1];
|
||||||
|
cne[1] = cne[2];
|
||||||
|
cne[2] = cne[3];
|
||||||
|
cne[3] = 1;
|
||||||
|
};
|
||||||
|
|
||||||
|
auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
|
||||||
|
cnb[1] *= cne[1];
|
||||||
|
cnb[2] *= cne[2];
|
||||||
|
cnb[3] *= cne[3];
|
||||||
|
};
|
||||||
|
|
||||||
|
for (int i = 0; i < 4; i++) {
|
||||||
|
if (nr[i] != 1) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (i > 0) {
|
||||||
|
collapse_nb(cnb0, cne0);
|
||||||
|
collapse_nb(cnb1, cne1);
|
||||||
|
collapse(cne0);
|
||||||
|
collapse(cne1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
int64_t ne0 = cne0[0];
|
||||||
|
int64_t ne1 = cne0[1];
|
||||||
|
int64_t ne2 = cne0[2];
|
||||||
|
int64_t ne3 = cne0[3];
|
||||||
|
|
||||||
|
int64_t ne10 = cne1[0];
|
||||||
|
int64_t ne11 = cne1[1];
|
||||||
|
int64_t ne12 = cne1[2];
|
||||||
|
int64_t ne13 = cne1[3];
|
||||||
|
|
||||||
|
size_t nb0 = cnb0[0];
|
||||||
|
size_t nb1 = cnb0[1];
|
||||||
|
size_t nb2 = cnb0[2];
|
||||||
|
size_t nb3 = cnb0[3];
|
||||||
|
|
||||||
|
size_t nb10 = cnb1[0];
|
||||||
|
size_t nb11 = cnb1[1];
|
||||||
|
size_t nb12 = cnb1[2];
|
||||||
|
size_t nb13 = cnb1[3];
|
||||||
|
|
||||||
|
size_t s0 = nb0 / sizeof(dst_t);
|
||||||
|
size_t s1 = nb1 / sizeof(dst_t);
|
||||||
|
size_t s2 = nb2 / sizeof(dst_t);
|
||||||
|
size_t s3 = nb3 / sizeof(dst_t);
|
||||||
|
|
||||||
|
size_t s10 = nb10 / sizeof(src1_t);
|
||||||
|
size_t s11 = nb11 / sizeof(src1_t);
|
||||||
|
size_t s12 = nb12 / sizeof(src1_t);
|
||||||
|
size_t s13 = nb13 / sizeof(src1_t);
|
||||||
|
|
||||||
|
GGML_ASSERT(s0 == 1);
|
||||||
|
GGML_ASSERT(s10 == 1);
|
||||||
|
|
||||||
|
const int block_size = 128;
|
||||||
|
|
||||||
|
int64_t hne0 = std::max(ne0/2LL, 1LL);
|
||||||
|
|
||||||
|
dim3 block_dims;
|
||||||
|
block_dims.x = std::min<unsigned int>(hne0, block_size);
|
||||||
|
block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
|
||||||
|
block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
|
||||||
|
|
||||||
|
dim3 block_nums(
|
||||||
|
(hne0 + block_dims.x - 1) / block_dims.x,
|
||||||
|
(ne1 + block_dims.y - 1) / block_dims.y,
|
||||||
|
(ne2*ne3 + block_dims.z - 1) / block_dims.z
|
||||||
|
);
|
||||||
|
|
||||||
|
if (block_nums.z > 65535) {
|
||||||
|
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
|
||||||
|
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
|
||||||
|
k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
|
||||||
|
src0_dd, src1_dd, dst_dd,
|
||||||
|
ne0, ne1, ne2, ne3,
|
||||||
|
ne10, ne11, ne12, ne13,
|
||||||
|
/* s0, */ s1, s2, s3,
|
||||||
|
/* s10, */ s11, s12, s13);
|
||||||
|
} else {
|
||||||
|
k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
src0_dd, src1_dd, dst_dd,
|
||||||
|
ne0, ne1, ne2, ne3,
|
||||||
|
ne10, ne11, ne12, ne13,
|
||||||
|
/* s0, */ s1, s2, s3,
|
||||||
|
/* s10, */ s11, s12, s13);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<class op>
|
||||||
|
static void ggml_cuda_op_bin_bcast(
|
||||||
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||||
|
const void * src0_dd, const void * src1_dd, void * dst_dd, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||||
|
op()(src0, src1, dst, (const float *)src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
||||||
|
op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (half *) dst_dd, stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||||
|
op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
|
||||||
|
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||||
|
}
|
6
ggml-cuda/binbcast.cuh
Normal file
6
ggml-cuda/binbcast.cuh
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
35
ggml-cuda/clamp.cu
Normal file
35
ggml-cuda/clamp.cu
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
#include "clamp.cuh"
|
||||||
|
|
||||||
|
static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
|
||||||
|
clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
float min;
|
||||||
|
float max;
|
||||||
|
memcpy(&min, dst->op_params, sizeof(float));
|
||||||
|
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
||||||
|
|
||||||
|
clamp_f32_cuda(src0_d, dst_d, min, max, ggml_nelements(src0), stream);
|
||||||
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
}
|
5
ggml-cuda/clamp.cuh
Normal file
5
ggml-cuda/clamp.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_CLAMP_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
557
ggml-cuda/common.cuh
Normal file
557
ggml-cuda/common.cuh
Normal file
@ -0,0 +1,557 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "ggml.h"
|
||||||
|
#include "ggml-cuda.h"
|
||||||
|
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS)
|
||||||
|
#define GGML_COMMON_DECL_HIP
|
||||||
|
#define GGML_COMMON_IMPL_HIP
|
||||||
|
#else
|
||||||
|
#define GGML_COMMON_DECL_CUDA
|
||||||
|
#define GGML_COMMON_IMPL_CUDA
|
||||||
|
#endif
|
||||||
|
#include "ggml-common.h"
|
||||||
|
|
||||||
|
#include <cstdio>
|
||||||
|
#include <array>
|
||||||
|
#include <cassert>
|
||||||
|
#include <cfloat>
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS)
|
||||||
|
#include <hip/hip_runtime.h>
|
||||||
|
#include <hipblas/hipblas.h>
|
||||||
|
#include <hip/hip_fp16.h>
|
||||||
|
#ifdef __HIP_PLATFORM_AMD__
|
||||||
|
// for rocblas_initialize()
|
||||||
|
#include "rocblas/rocblas.h"
|
||||||
|
#endif // __HIP_PLATFORM_AMD__
|
||||||
|
#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
|
||||||
|
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
|
||||||
|
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
|
||||||
|
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
|
||||||
|
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
|
||||||
|
#define CUBLAS_OP_N HIPBLAS_OP_N
|
||||||
|
#define CUBLAS_OP_T HIPBLAS_OP_T
|
||||||
|
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
|
||||||
|
#define CUBLAS_TF32_TENSOR_OP_MATH 0
|
||||||
|
#define CUDA_R_16F HIPBLAS_R_16F
|
||||||
|
#define CUDA_R_32F HIPBLAS_R_32F
|
||||||
|
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
|
||||||
|
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
|
||||||
|
#define cublasCreate hipblasCreate
|
||||||
|
#define cublasDestroy hipblasDestroy
|
||||||
|
#define cublasGemmEx hipblasGemmEx
|
||||||
|
#define cublasGemmBatchedEx hipblasGemmBatchedEx
|
||||||
|
#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
|
||||||
|
#define cublasHandle_t hipblasHandle_t
|
||||||
|
#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
|
||||||
|
#define cublasSetStream hipblasSetStream
|
||||||
|
#define cublasSgemm hipblasSgemm
|
||||||
|
#define cublasStatus_t hipblasStatus_t
|
||||||
|
#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
|
||||||
|
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
|
||||||
|
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
|
||||||
|
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
|
||||||
|
#define cudaDeviceProp hipDeviceProp_t
|
||||||
|
#define cudaDeviceSynchronize hipDeviceSynchronize
|
||||||
|
#define cudaError_t hipError_t
|
||||||
|
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
|
||||||
|
#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
|
||||||
|
#define cudaEventCreateWithFlags hipEventCreateWithFlags
|
||||||
|
#define cudaEventDisableTiming hipEventDisableTiming
|
||||||
|
#define cudaEventRecord hipEventRecord
|
||||||
|
#define cudaEventSynchronize hipEventSynchronize
|
||||||
|
#define cudaEvent_t hipEvent_t
|
||||||
|
#define cudaEventDestroy hipEventDestroy
|
||||||
|
#define cudaFree hipFree
|
||||||
|
#define cudaFreeHost hipHostFree
|
||||||
|
#define cudaGetDevice hipGetDevice
|
||||||
|
#define cudaGetDeviceCount hipGetDeviceCount
|
||||||
|
#define cudaGetDeviceProperties hipGetDeviceProperties
|
||||||
|
#define cudaGetErrorString hipGetErrorString
|
||||||
|
#define cudaGetLastError hipGetLastError
|
||||||
|
#define cudaHostRegister hipHostRegister
|
||||||
|
#define cudaHostRegisterPortable hipHostRegisterPortable
|
||||||
|
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
|
||||||
|
#define cudaHostUnregister hipHostUnregister
|
||||||
|
#define cudaLaunchHostFunc hipLaunchHostFunc
|
||||||
|
#ifdef GGML_HIP_UMA
|
||||||
|
#define cudaMalloc hipMallocManaged
|
||||||
|
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
|
||||||
|
#else
|
||||||
|
#define cudaMalloc hipMalloc
|
||||||
|
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
|
||||||
|
#endif
|
||||||
|
#define cudaMemcpy hipMemcpy
|
||||||
|
#define cudaMemcpyAsync hipMemcpyAsync
|
||||||
|
#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
|
||||||
|
#define cudaMemcpy2DAsync hipMemcpy2DAsync
|
||||||
|
#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
|
||||||
|
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
|
||||||
|
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
|
||||||
|
#define cudaMemcpyKind hipMemcpyKind
|
||||||
|
#define cudaMemset hipMemset
|
||||||
|
#define cudaMemsetAsync hipMemsetAsync
|
||||||
|
#define cudaMemGetInfo hipMemGetInfo
|
||||||
|
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
|
||||||
|
#define cudaSetDevice hipSetDevice
|
||||||
|
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
|
||||||
|
#define cudaStreamDestroy hipStreamDestroy
|
||||||
|
#define cudaStreamFireAndForget hipStreamFireAndForget
|
||||||
|
#define cudaStreamNonBlocking hipStreamNonBlocking
|
||||||
|
#define cudaStreamPerThread hipStreamPerThread
|
||||||
|
#define cudaStreamSynchronize hipStreamSynchronize
|
||||||
|
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
|
||||||
|
#define cudaStream_t hipStream_t
|
||||||
|
#define cudaSuccess hipSuccess
|
||||||
|
#define __trap abort
|
||||||
|
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
|
||||||
|
#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
|
||||||
|
#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
|
||||||
|
#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
|
||||||
|
#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
|
||||||
|
#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
|
||||||
|
#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
|
||||||
|
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
|
||||||
|
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
|
||||||
|
#else
|
||||||
|
#include <cuda_runtime.h>
|
||||||
|
#include <cuda.h>
|
||||||
|
#include <cublas_v2.h>
|
||||||
|
#include <cuda_fp16.h>
|
||||||
|
|
||||||
|
#if CUDART_VERSION < 11020
|
||||||
|
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
|
||||||
|
#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
|
||||||
|
#define CUBLAS_COMPUTE_16F CUDA_R_16F
|
||||||
|
#define CUBLAS_COMPUTE_32F CUDA_R_32F
|
||||||
|
#define cublasComputeType_t cudaDataType_t
|
||||||
|
#endif // CUDART_VERSION < 11020
|
||||||
|
|
||||||
|
#endif // defined(GGML_USE_HIPBLAS)
|
||||||
|
|
||||||
|
#define STRINGIZE_IMPL(...) #__VA_ARGS__
|
||||||
|
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
|
||||||
|
|
||||||
|
#define WARP_SIZE 32
|
||||||
|
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
|
||||||
|
|
||||||
|
#define CC_PASCAL 600
|
||||||
|
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
|
||||||
|
#define CC_VOLTA 700
|
||||||
|
#define CC_OFFSET_AMD 1000000
|
||||||
|
#define CC_RDNA1 (CC_OFFSET_AMD + 1010)
|
||||||
|
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
|
||||||
|
#define CC_RDNA3 (CC_OFFSET_AMD + 1100)
|
||||||
|
|
||||||
|
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
|
||||||
|
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
|
||||||
|
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
|
||||||
|
// - 7B quantum model: +100-200 MB
|
||||||
|
// - 13B quantum model: +200-400 MB
|
||||||
|
//
|
||||||
|
//#define GGML_CUDA_FORCE_MMQ
|
||||||
|
|
||||||
|
// TODO: improve this to be correct for more hardware
|
||||||
|
// for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
|
||||||
|
#if !defined(GGML_CUDA_FORCE_MMQ)
|
||||||
|
#define CUDA_USE_TENSOR_CORES
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define MMVQ_MAX_BATCH_SIZE 8 // max batch size to use MMVQ kernels
|
||||||
|
#define MMQ_MAX_BATCH_SIZE 32 // max batch size to use MMQ kernels when tensor cores are available
|
||||||
|
|
||||||
|
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||||
|
|
||||||
|
#if defined(_MSC_VER)
|
||||||
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define GGML_CUDA_MAX_STREAMS 8
|
||||||
|
|
||||||
|
[[noreturn]]
|
||||||
|
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
|
||||||
|
|
||||||
|
#define CUDA_CHECK_GEN(err, success, error_fn) \
|
||||||
|
do { \
|
||||||
|
auto err_ = (err); \
|
||||||
|
if (err_ != (success)) { \
|
||||||
|
ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_)); \
|
||||||
|
} \
|
||||||
|
} while (0)
|
||||||
|
|
||||||
|
#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
|
||||||
|
|
||||||
|
#if CUDART_VERSION >= 12000
|
||||||
|
static const char * cublas_get_error_str(const cublasStatus_t err) {
|
||||||
|
return cublasGetStatusString(err);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
static const char * cublas_get_error_str(const cublasStatus_t err) {
|
||||||
|
switch (err) {
|
||||||
|
case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
|
||||||
|
case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
|
||||||
|
case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
|
||||||
|
case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
|
||||||
|
case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
|
||||||
|
case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
|
||||||
|
case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
|
||||||
|
case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
|
||||||
|
case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
|
||||||
|
default: return "unknown error";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif // CUDART_VERSION >= 12000
|
||||||
|
|
||||||
|
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
|
||||||
|
|
||||||
|
#if !defined(GGML_USE_HIPBLAS)
|
||||||
|
static const char * cu_get_error_str(CUresult err) {
|
||||||
|
const char * err_str;
|
||||||
|
cuGetErrorString(err, &err_str);
|
||||||
|
return err_str;
|
||||||
|
}
|
||||||
|
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if CUDART_VERSION >= 11100
|
||||||
|
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
|
||||||
|
#else
|
||||||
|
#define GGML_CUDA_ASSUME(x)
|
||||||
|
#endif // CUDART_VERSION >= 11100
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
typedef half dfloat; // dequantize float
|
||||||
|
typedef half2 dfloat2;
|
||||||
|
#else
|
||||||
|
typedef float dfloat; // dequantize float
|
||||||
|
typedef float2 dfloat2;
|
||||||
|
#endif //GGML_CUDA_F16
|
||||||
|
|
||||||
|
// dmmv = dequantize_mul_mat_vec
|
||||||
|
// TODO: remove this?
|
||||||
|
#ifndef GGML_CUDA_DMMV_X
|
||||||
|
#define GGML_CUDA_DMMV_X 32
|
||||||
|
#endif
|
||||||
|
|
||||||
|
[[noreturn]]
|
||||||
|
static __device__ void no_device_code(
|
||||||
|
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||||
|
printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
|
||||||
|
file_name, line, function_name, arch);
|
||||||
|
GGML_UNUSED(arch_list);
|
||||||
|
#else
|
||||||
|
printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
|
||||||
|
file_name, line, function_name, arch, arch_list);
|
||||||
|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||||
|
__trap();
|
||||||
|
|
||||||
|
GGML_UNUSED(no_device_code); // suppress unused function warning
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef __CUDA_ARCH__
|
||||||
|
#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
|
||||||
|
#else
|
||||||
|
#define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
|
||||||
|
#endif // __CUDA_ARCH__
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float warp_reduce_sum(float x) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||||
|
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
|
||||||
|
}
|
||||||
|
return x;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||||
|
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
|
||||||
|
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
|
||||||
|
}
|
||||||
|
return a;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||||
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||||
|
#pragma unroll
|
||||||
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||||
|
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
||||||
|
}
|
||||||
|
return a;
|
||||||
|
#else
|
||||||
|
GGML_UNUSED(a);
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||||
|
}
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float warp_reduce_max(float x) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||||
|
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||||
|
}
|
||||||
|
return x;
|
||||||
|
}
|
||||||
|
|
||||||
|
//static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||||
|
//#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
|
||||||
|
//#pragma unroll
|
||||||
|
// for (int mask = 16; mask > 0; mask >>= 1) {
|
||||||
|
// x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||||
|
// }
|
||||||
|
// return x;
|
||||||
|
//#else
|
||||||
|
// GGML_UNUSED(x);
|
||||||
|
// NO_DEVICE_CODE;
|
||||||
|
//#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
|
||||||
|
//}
|
||||||
|
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS)
|
||||||
|
#define __CUDA_ARCH__ 1300
|
||||||
|
|
||||||
|
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
|
||||||
|
defined(__gfx1150__) || defined(__gfx1151__)
|
||||||
|
#define RDNA3
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
|
||||||
|
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
|
||||||
|
#define RDNA2
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef __has_builtin
|
||||||
|
#define __has_builtin(x) 0
|
||||||
|
#endif
|
||||||
|
|
||||||
|
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
|
||||||
|
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
|
||||||
|
static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
|
||||||
|
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
||||||
|
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
||||||
|
#if __has_builtin(__builtin_elementwise_sub_sat)
|
||||||
|
const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
|
||||||
|
return reinterpret_cast<const int &>(c);
|
||||||
|
#else
|
||||||
|
int8x4_t c;
|
||||||
|
int16_t tmp;
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < 4; i++) {
|
||||||
|
tmp = va[i] - vb[i];
|
||||||
|
if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
|
||||||
|
if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
|
||||||
|
c[i] = tmp;
|
||||||
|
}
|
||||||
|
return reinterpret_cast<int &>(c);
|
||||||
|
#endif // __has_builtin(__builtin_elementwise_sub_sat)
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ int __vsub4(const int a, const int b) {
|
||||||
|
return __vsubss4(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
|
||||||
|
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
|
||||||
|
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
|
||||||
|
unsigned int c;
|
||||||
|
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < 4; ++i) {
|
||||||
|
vc[i] = va[i] == vb[i] ? 0xff : 0x00;
|
||||||
|
}
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
|
||||||
|
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
|
||||||
|
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
||||||
|
#elif defined(RDNA3)
|
||||||
|
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
|
||||||
|
#elif defined(__gfx1010__) || defined(__gfx900__)
|
||||||
|
int tmp1;
|
||||||
|
int tmp2;
|
||||||
|
asm("\n \
|
||||||
|
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
|
||||||
|
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
|
||||||
|
v_add3_u32 %0, %1, %2, %0 \n \
|
||||||
|
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
|
||||||
|
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
|
||||||
|
v_add3_u32 %0, %1, %2, %0 \n \
|
||||||
|
"
|
||||||
|
: "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
|
||||||
|
: "v"(a), "v"(b)
|
||||||
|
);
|
||||||
|
#else
|
||||||
|
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
||||||
|
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
||||||
|
c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
|
||||||
|
#endif
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
#endif // defined(GGML_USE_HIPBLAS)
|
||||||
|
|
||||||
|
// TODO: move to ggml-common.h
|
||||||
|
static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||||
|
|
||||||
|
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
|
||||||
|
|
||||||
|
|
||||||
|
//////////////////////
|
||||||
|
|
||||||
|
struct ggml_cuda_device_info {
|
||||||
|
int device_count;
|
||||||
|
|
||||||
|
struct cuda_device_info {
|
||||||
|
int cc; // compute capability
|
||||||
|
size_t smpb; // max. shared memory per block
|
||||||
|
bool vmm; // virtual memory support
|
||||||
|
size_t vmm_granularity; // granularity of virtual memory
|
||||||
|
size_t total_vram;
|
||||||
|
};
|
||||||
|
|
||||||
|
cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
|
||||||
|
|
||||||
|
std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
|
||||||
|
};
|
||||||
|
|
||||||
|
const ggml_cuda_device_info & ggml_cuda_info();
|
||||||
|
|
||||||
|
void ggml_cuda_set_device(int device);
|
||||||
|
int ggml_cuda_get_device();
|
||||||
|
|
||||||
|
struct ggml_cuda_pool {
|
||||||
|
virtual ~ggml_cuda_pool() = default;
|
||||||
|
|
||||||
|
virtual void * alloc(size_t size, size_t * actual_size) = 0;
|
||||||
|
virtual void free(void * ptr, size_t size) = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
struct ggml_cuda_pool_alloc {
|
||||||
|
ggml_cuda_pool * pool = nullptr;
|
||||||
|
T * ptr = nullptr;
|
||||||
|
size_t actual_size = 0;
|
||||||
|
|
||||||
|
ggml_cuda_pool_alloc() = default;
|
||||||
|
|
||||||
|
explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
|
||||||
|
alloc(size);
|
||||||
|
}
|
||||||
|
|
||||||
|
~ggml_cuda_pool_alloc() {
|
||||||
|
if (ptr != nullptr) {
|
||||||
|
pool->free(ptr, actual_size);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// size is in number of elements
|
||||||
|
T * alloc(size_t size) {
|
||||||
|
GGML_ASSERT(pool != nullptr);
|
||||||
|
GGML_ASSERT(ptr == nullptr);
|
||||||
|
ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
|
||||||
|
return ptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
T * alloc(ggml_cuda_pool & pool, size_t size) {
|
||||||
|
this->pool = &pool;
|
||||||
|
return alloc(size);
|
||||||
|
}
|
||||||
|
|
||||||
|
T * get() {
|
||||||
|
return ptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
|
||||||
|
ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
|
||||||
|
ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
|
||||||
|
ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// backend interface
|
||||||
|
|
||||||
|
struct ggml_tensor_extra_gpu {
|
||||||
|
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
||||||
|
cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
|
||||||
|
};
|
||||||
|
|
||||||
|
struct ggml_backend_cuda_context {
|
||||||
|
int device;
|
||||||
|
std::string name;
|
||||||
|
cudaEvent_t copy_event = nullptr;
|
||||||
|
|
||||||
|
cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
|
||||||
|
cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
||||||
|
|
||||||
|
explicit ggml_backend_cuda_context(int device) :
|
||||||
|
device(device),
|
||||||
|
name(GGML_CUDA_NAME + std::to_string(device)) {
|
||||||
|
}
|
||||||
|
|
||||||
|
~ggml_backend_cuda_context() {
|
||||||
|
if (copy_event != nullptr) {
|
||||||
|
CUDA_CHECK(cudaEventDestroy(copy_event));
|
||||||
|
}
|
||||||
|
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
|
||||||
|
for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
|
||||||
|
if (streams[i][j] != nullptr) {
|
||||||
|
CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (cublas_handles[i] != nullptr) {
|
||||||
|
CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
cudaStream_t stream(int device, int stream) {
|
||||||
|
if (streams[device][stream] == nullptr) {
|
||||||
|
ggml_cuda_set_device(device);
|
||||||
|
CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
|
||||||
|
}
|
||||||
|
return streams[device][stream];
|
||||||
|
}
|
||||||
|
|
||||||
|
cudaStream_t stream() {
|
||||||
|
return stream(device, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
cublasHandle_t cublas_handle(int device) {
|
||||||
|
if (cublas_handles[device] == nullptr) {
|
||||||
|
ggml_cuda_set_device(device);
|
||||||
|
CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
|
||||||
|
CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
|
||||||
|
}
|
||||||
|
return cublas_handles[device];
|
||||||
|
}
|
||||||
|
|
||||||
|
cublasHandle_t cublas_handle() {
|
||||||
|
return cublas_handle(device);
|
||||||
|
}
|
||||||
|
|
||||||
|
// pool
|
||||||
|
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
|
||||||
|
|
||||||
|
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
|
||||||
|
|
||||||
|
ggml_cuda_pool & pool(int device) {
|
||||||
|
if (pools[device] == nullptr) {
|
||||||
|
pools[device] = new_pool_for_device(device);
|
||||||
|
}
|
||||||
|
return *pools[device];
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_cuda_pool & pool() {
|
||||||
|
return pool(device);
|
||||||
|
}
|
||||||
|
};
|
49
ggml-cuda/concat.cu
Normal file
49
ggml-cuda/concat.cu
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
#include "concat.cuh"
|
||||||
|
|
||||||
|
static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) {
|
||||||
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (nidx >= ne0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
// operation
|
||||||
|
int offset_dst =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne0 +
|
||||||
|
blockIdx.z * ne0 * gridDim.y;
|
||||||
|
if (blockIdx.z < ne02) { // src0
|
||||||
|
int offset_src =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne0 +
|
||||||
|
blockIdx.z * ne0 * gridDim.y;
|
||||||
|
dst[offset_dst] = x[offset_src];
|
||||||
|
} else {
|
||||||
|
int offset_src =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne0 +
|
||||||
|
(blockIdx.z - ne02) * ne0 * gridDim.y;
|
||||||
|
dst[offset_dst] = y[offset_src];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
|
||||||
|
int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
|
||||||
|
dim3 gridDim(num_blocks, ne1, ne2);
|
||||||
|
concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
const float * src1_d = (const float *)src1->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
|
||||||
|
concat_f32_cuda(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4), dst_d + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], stream);
|
||||||
|
}
|
||||||
|
}
|
5
ggml-cuda/concat.cuh
Normal file
5
ggml-cuda/concat.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_CONCAT_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
824
ggml-cuda/convert.cu
Normal file
824
ggml-cuda/convert.cu
Normal file
@ -0,0 +1,824 @@
|
|||||||
|
#include "convert.cuh"
|
||||||
|
#include "dequantize.cuh"
|
||||||
|
|
||||||
|
#define CUDA_Q8_0_NE_ALIGN 2048
|
||||||
|
|
||||||
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||||
|
static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
|
||||||
|
const int i = 2*(blockDim.x*blockIdx.x + threadIdx.x);
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int ib = i/qk; // block index
|
||||||
|
const int iqs = (i%qk)/qr; // quant index
|
||||||
|
const int iybs = i - i%qk; // y block start index
|
||||||
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||||
|
|
||||||
|
// dequantize
|
||||||
|
dfloat2 v;
|
||||||
|
dequantize_kernel(vx, ib, iqs, v);
|
||||||
|
|
||||||
|
y[iybs + iqs + 0] = v.x;
|
||||||
|
y[iybs + iqs + y_offset] = v.y;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <bool need_check>
|
||||||
|
static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int k) {
|
||||||
|
#if __CUDA_ARCH__ >= CC_PASCAL
|
||||||
|
constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;
|
||||||
|
|
||||||
|
const int i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
|
||||||
|
const int * x0 = ((int *) vx) + blockIdx.x * nint;
|
||||||
|
half2 * y2 = (half2 *) (y + i0);
|
||||||
|
|
||||||
|
__shared__ int vals[nint];
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int ix0 = 0; ix0 < nint; ix0 += WARP_SIZE) {
|
||||||
|
if (need_check && i0*sizeof(block_q8_0)/QK8_0 + sizeof(int)*(ix0 + threadIdx.x) >= k*sizeof(block_q8_0)/QK8_0) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int ix = ix0 + threadIdx.x;
|
||||||
|
vals[ix] = x0[ix];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) {
|
||||||
|
if (need_check && i0 + iy + 2*threadIdx.x >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const half * b0 = ((const half *) vals) + (sizeof(block_q8_0)/sizeof(half)) * ((iy + 2*threadIdx.x)/QK8_0);
|
||||||
|
const half d = *b0;
|
||||||
|
const char2 qs = ((const char2 *) (b0 + 1))[threadIdx.x % (QK8_0/2)];
|
||||||
|
|
||||||
|
y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d));
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
GGML_UNUSED(vx);
|
||||||
|
GGML_UNUSED(y);
|
||||||
|
GGML_UNUSED(k);
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // __CUDA_ARCH__ >= CC_PASCAL
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
|
||||||
|
// assume 32 threads
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int il = tid/8;
|
||||||
|
const int ir = tid%8;
|
||||||
|
const int ib = 8*i + ir;
|
||||||
|
if (ib >= nb32) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_t * y = yy + 256*i + 32*ir + 4*il;
|
||||||
|
|
||||||
|
const block_q4_0 * x = (const block_q4_0 *)vx + ib;
|
||||||
|
const float d = __half2float(x->d);
|
||||||
|
const float dm = -8*d;
|
||||||
|
|
||||||
|
const uint8_t * q = x->qs + 4*il;
|
||||||
|
|
||||||
|
for (int l = 0; l < 4; ++l) {
|
||||||
|
y[l+ 0] = d * (q[l] & 0xF) + dm;
|
||||||
|
y[l+16] = d * (q[l] >> 4) + dm;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
|
||||||
|
// assume 32 threads
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int il = tid/8;
|
||||||
|
const int ir = tid%8;
|
||||||
|
const int ib = 8*i + ir;
|
||||||
|
if (ib >= nb32) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_t * y = yy + 256*i + 32*ir + 4*il;
|
||||||
|
|
||||||
|
const block_q4_1 * x = (const block_q4_1 *)vx + ib;
|
||||||
|
const float2 d = __half22float2(x->dm);
|
||||||
|
|
||||||
|
const uint8_t * q = x->qs + 4*il;
|
||||||
|
|
||||||
|
for (int l = 0; l < 4; ++l) {
|
||||||
|
y[l+ 0] = d.x * (q[l] & 0xF) + d.y;
|
||||||
|
y[l+16] = d.x * (q[l] >> 4) + d.y;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//================================== k-quants
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_q2_K * x = (const block_q2_K *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int n = tid/32;
|
||||||
|
const int l = tid - 32*n;
|
||||||
|
const int is = 8*n + l/16;
|
||||||
|
|
||||||
|
const uint8_t q = x[i].qs[32*n + l];
|
||||||
|
dst_t * y = yy + i*QK_K + 128*n;
|
||||||
|
|
||||||
|
float dall = __low2half(x[i].dm);
|
||||||
|
float dmin = __high2half(x[i].dm);
|
||||||
|
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
||||||
|
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||||
|
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
||||||
|
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
||||||
|
#else
|
||||||
|
const int is = tid/16; // 0 or 1
|
||||||
|
const int il = tid%16; // 0...15
|
||||||
|
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||||
|
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||||
|
float dall = __low2half(x[i].dm);
|
||||||
|
float dmin = __high2half(x[i].dm);
|
||||||
|
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
||||||
|
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_q3_K * x = (const block_q3_K *) vx;
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
const int r = threadIdx.x/4;
|
||||||
|
const int tid = r/2;
|
||||||
|
const int is0 = r%2;
|
||||||
|
const int l0 = 16*is0 + 4*(threadIdx.x%4);
|
||||||
|
const int n = tid / 4;
|
||||||
|
const int j = tid - 4*n;
|
||||||
|
|
||||||
|
uint8_t m = 1 << (4*n + j);
|
||||||
|
int is = 8*n + 2*j + is0;
|
||||||
|
int shift = 2*j;
|
||||||
|
|
||||||
|
int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
|
||||||
|
is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
|
||||||
|
is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
|
||||||
|
(x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
|
||||||
|
float d_all = x[i].d;
|
||||||
|
float dl = d_all * (us - 32);
|
||||||
|
|
||||||
|
dst_t * y = yy + i*QK_K + 128*n + 32*j;
|
||||||
|
const uint8_t * q = x[i].qs + 32*n;
|
||||||
|
const uint8_t * hm = x[i].hmask;
|
||||||
|
|
||||||
|
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
||||||
|
#else
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int is = tid/16; // 0 or 1
|
||||||
|
const int il = tid%16; // 0...15
|
||||||
|
const int im = il/8; // 0...1
|
||||||
|
const int in = il%8; // 0...7
|
||||||
|
|
||||||
|
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||||
|
|
||||||
|
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||||
|
const uint8_t h = x[i].hmask[in] >> (2*is + im);
|
||||||
|
const float d = (float)x[i].d;
|
||||||
|
|
||||||
|
if (is == 0) {
|
||||||
|
y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
||||||
|
y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
||||||
|
} else {
|
||||||
|
y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
||||||
|
y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
||||||
|
if (j < 4) {
|
||||||
|
d = q[j] & 63; m = q[j + 4] & 63;
|
||||||
|
} else {
|
||||||
|
d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
||||||
|
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
const block_q4_K * x = (const block_q4_K *) vx;
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
// assume 32 threads
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int il = tid/8;
|
||||||
|
const int ir = tid%8;
|
||||||
|
const int is = 2*il;
|
||||||
|
const int n = 4;
|
||||||
|
|
||||||
|
dst_t * y = yy + i*QK_K + 64*il + n*ir;
|
||||||
|
|
||||||
|
const float dall = __low2half(x[i].dm);
|
||||||
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
|
const uint8_t * q = x[i].qs + 32*il + n*ir;
|
||||||
|
|
||||||
|
uint8_t sc, m;
|
||||||
|
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
||||||
|
const float d1 = dall * sc; const float m1 = dmin * m;
|
||||||
|
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
||||||
|
const float d2 = dall * sc; const float m2 = dmin * m;
|
||||||
|
for (int l = 0; l < n; ++l) {
|
||||||
|
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
||||||
|
y[l +32] = d2 * (q[l] >> 4) - m2;
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const uint8_t * q = x[i].qs;
|
||||||
|
dst_t * y = yy + i*QK_K;
|
||||||
|
const float d = (float)x[i].dm[0];
|
||||||
|
const float m = (float)x[i].dm[1];
|
||||||
|
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
|
||||||
|
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
const block_q5_K * x = (const block_q5_K *) vx;
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
// assume 64 threads - this is very slightly better than the one below
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int il = tid/16; // il is in 0...3
|
||||||
|
const int ir = tid%16; // ir is in 0...15
|
||||||
|
const int is = 2*il; // is is in 0...6
|
||||||
|
|
||||||
|
dst_t * y = yy + i*QK_K + 64*il + 2*ir;
|
||||||
|
|
||||||
|
const float dall = __low2half(x[i].dm);
|
||||||
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
|
const uint8_t * ql = x[i].qs + 32*il + 2*ir;
|
||||||
|
const uint8_t * qh = x[i].qh + 2*ir;
|
||||||
|
|
||||||
|
uint8_t sc, m;
|
||||||
|
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
||||||
|
const float d1 = dall * sc; const float m1 = dmin * m;
|
||||||
|
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
||||||
|
const float d2 = dall * sc; const float m2 = dmin * m;
|
||||||
|
|
||||||
|
uint8_t hm = 1 << (2*il);
|
||||||
|
y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
|
||||||
|
y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
|
||||||
|
hm <<= 1;
|
||||||
|
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
||||||
|
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
||||||
|
#else
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const uint8_t q = x[i].qs[tid];
|
||||||
|
const int im = tid/8; // 0...3
|
||||||
|
const int in = tid%8; // 0...7
|
||||||
|
const int is = tid/16; // 0 or 1
|
||||||
|
const uint8_t h = x[i].qh[in] >> im;
|
||||||
|
const float d = x[i].d;
|
||||||
|
dst_t * y = yy + i*QK_K + tid;
|
||||||
|
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
|
||||||
|
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
const block_q6_K * x = (const block_q6_K *) vx;
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
|
||||||
|
// assume 64 threads - this is very slightly better than the one below
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int ip = tid/32; // ip is 0 or 1
|
||||||
|
const int il = tid - 32*ip; // 0...32
|
||||||
|
const int is = 8*ip + il/16;
|
||||||
|
|
||||||
|
dst_t * y = yy + i*QK_K + 128*ip + il;
|
||||||
|
|
||||||
|
const float d = x[i].d;
|
||||||
|
|
||||||
|
const uint8_t * ql = x[i].ql + 64*ip + il;
|
||||||
|
const uint8_t qh = x[i].qh[32*ip + il];
|
||||||
|
const int8_t * sc = x[i].scales + is;
|
||||||
|
|
||||||
|
y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
||||||
|
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
||||||
|
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||||
|
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
||||||
|
#else
|
||||||
|
|
||||||
|
// assume 32 threads
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int ip = tid/16; // 0 or 1
|
||||||
|
const int il = tid - 16*ip; // 0...15
|
||||||
|
|
||||||
|
dst_t * y = yy + i*QK_K + 16*ip + il;
|
||||||
|
|
||||||
|
const float d = x[i].d;
|
||||||
|
|
||||||
|
const uint8_t ql = x[i].ql[16*ip + il];
|
||||||
|
const uint8_t qh = x[i].qh[il] >> (2*ip);
|
||||||
|
const int8_t * sc = x[i].scales;
|
||||||
|
|
||||||
|
y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
||||||
|
y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
|
const uint16_t * q2 = x[i].qs + 4*ib;
|
||||||
|
const uint8_t * aux8 = (const uint8_t *)q2;
|
||||||
|
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]);
|
||||||
|
const uint32_t aux32 = q2[2] | (q2[3] << 16);
|
||||||
|
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
|
||||||
|
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
||||||
|
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||||
|
#else
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq2_xs * x = (const block_iq2_xs *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
|
const uint16_t * q2 = x[i].qs + 4*ib;
|
||||||
|
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
|
||||||
|
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||||
|
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
|
||||||
|
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||||
|
#else
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq2_s * x = (const block_iq2_s *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
|
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
|
||||||
|
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||||
|
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
|
||||||
|
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||||
|
#else
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
|
const uint8_t * q3 = x[i].qs + 8*ib;
|
||||||
|
const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
|
||||||
|
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
|
||||||
|
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
|
||||||
|
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||||
|
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
|
||||||
|
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
||||||
|
for (int j = 0; j < 4; ++j) {
|
||||||
|
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||||
|
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq3_s * x = (const block_iq3_s *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
|
const uint8_t * qs = x[i].qs + 8*ib;
|
||||||
|
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
|
||||||
|
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
|
||||||
|
const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
|
||||||
|
const uint8_t signs = x[i].signs[4*ib + il];
|
||||||
|
for (int j = 0; j < 4; ++j) {
|
||||||
|
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||||
|
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq1_s * x = (const block_iq1_s *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
|
const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
|
||||||
|
const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
|
||||||
|
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
||||||
|
grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
|
||||||
|
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
||||||
|
grid32[0] &= 0x0f0f0f0f;
|
||||||
|
for (int j = 0; j < 8; ++j) {
|
||||||
|
y[j] = d * (q[j] + delta);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq1_m * x = (const block_iq1_m *) vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
#if QK_K == 256
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
|
const uint16_t * sc = (const uint16_t *)x[i].scales;
|
||||||
|
iq1m_scale_t scale;
|
||||||
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||||
|
const int ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
|
||||||
|
const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
|
||||||
|
const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
|
||||||
|
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
||||||
|
grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)];
|
||||||
|
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
||||||
|
grid32[0] &= 0x0f0f0f0f;
|
||||||
|
for (int j = 0; j < 8; ++j) {
|
||||||
|
y[j] = d * (q[j] + delta);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||||
|
const uint8_t * q4 = x[ib].qs + 4*il;
|
||||||
|
const float d = (float)x[ib].d;
|
||||||
|
for (int j = 0; j < 4; ++j) {
|
||||||
|
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||||
|
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#if QK_K != 64
|
||||||
|
template<typename dst_t>
|
||||||
|
static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
const int i = blockIdx.x;
|
||||||
|
const block_iq4_xs * x = (const block_iq4_xs *)vx;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int il = tid/8; // 0...3
|
||||||
|
const int ib = tid%8; // 0...7
|
||||||
|
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||||
|
const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
|
||||||
|
const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
|
||||||
|
for (int j = 0; j < 4; ++j) {
|
||||||
|
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||||
|
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||||
|
static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE);
|
||||||
|
dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_Q8_0_NE_ALIGN - 1) / CUDA_Q8_0_NE_ALIGN;
|
||||||
|
if (k % CUDA_Q8_0_NE_ALIGN == 0) {
|
||||||
|
const bool need_check = false;
|
||||||
|
dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
|
||||||
|
} else {
|
||||||
|
const bool need_check = true;
|
||||||
|
dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
#if QK_K == 256
|
||||||
|
dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||||
|
#else
|
||||||
|
dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
#if QK_K == 256
|
||||||
|
dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||||
|
#else
|
||||||
|
dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb32 = k / 32;
|
||||||
|
const int nb = (k + 255) / 256;
|
||||||
|
dequantize_block_q4_0<<<nb, 32, 0, stream>>>(vx, y, nb32);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb32 = k / 32;
|
||||||
|
const int nb = (k + 255) / 256;
|
||||||
|
dequantize_block_q4_1<<<nb, 32, 0, stream>>>(vx, y, nb32);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
#if QK_K == 256
|
||||||
|
dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||||
|
#else
|
||||||
|
dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
#if QK_K == 256
|
||||||
|
dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||||
|
#else
|
||||||
|
dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_iq2_xxs<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_iq2_s<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_iq3_xxs<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_iq3_s<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = (k + QK_K - 1) / QK_K;
|
||||||
|
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq1_m_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
dequantize_block_iq1_m<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename dst_t>
|
||||||
|
static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||||
|
const int nb = (k + QK_K - 1) / QK_K;
|
||||||
|
#if QK_K == 64
|
||||||
|
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
#else
|
||||||
|
dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename src_t, typename dst_t>
|
||||||
|
static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const src_t * x = (src_t *) vx;
|
||||||
|
|
||||||
|
y[i] = x[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename src_t, typename dst_t>
|
||||||
|
static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||||
|
convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
||||||
|
int id;
|
||||||
|
switch (type) {
|
||||||
|
case GGML_TYPE_Q4_0:
|
||||||
|
return dequantize_row_q4_0_cuda;
|
||||||
|
case GGML_TYPE_Q4_1:
|
||||||
|
return dequantize_row_q4_1_cuda;
|
||||||
|
case GGML_TYPE_Q5_0:
|
||||||
|
return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
|
||||||
|
case GGML_TYPE_Q5_1:
|
||||||
|
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
||||||
|
case GGML_TYPE_Q8_0:
|
||||||
|
CUDA_CHECK(cudaGetDevice(&id));
|
||||||
|
if (ggml_cuda_info().devices[id].cc >= CC_PASCAL) {
|
||||||
|
return dequantize_block_q8_0_f16_cuda;
|
||||||
|
}
|
||||||
|
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
||||||
|
case GGML_TYPE_Q2_K:
|
||||||
|
return dequantize_row_q2_K_cuda;
|
||||||
|
case GGML_TYPE_Q3_K:
|
||||||
|
return dequantize_row_q3_K_cuda;
|
||||||
|
case GGML_TYPE_Q4_K:
|
||||||
|
return dequantize_row_q4_K_cuda;
|
||||||
|
case GGML_TYPE_Q5_K:
|
||||||
|
return dequantize_row_q5_K_cuda;
|
||||||
|
case GGML_TYPE_Q6_K:
|
||||||
|
return dequantize_row_q6_K_cuda;
|
||||||
|
case GGML_TYPE_IQ2_XXS:
|
||||||
|
return dequantize_row_iq2_xxs_cuda;
|
||||||
|
case GGML_TYPE_IQ2_XS:
|
||||||
|
return dequantize_row_iq2_xs_cuda;
|
||||||
|
case GGML_TYPE_IQ2_S:
|
||||||
|
return dequantize_row_iq2_s_cuda;
|
||||||
|
case GGML_TYPE_IQ3_XXS:
|
||||||
|
return dequantize_row_iq3_xxs_cuda;
|
||||||
|
case GGML_TYPE_IQ1_S:
|
||||||
|
return dequantize_row_iq1_s_cuda;
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
|
return dequantize_row_iq1_m_cuda;
|
||||||
|
case GGML_TYPE_IQ4_NL:
|
||||||
|
return dequantize_row_iq4_nl_cuda;
|
||||||
|
case GGML_TYPE_IQ4_XS:
|
||||||
|
return dequantize_row_iq4_xs_cuda;
|
||||||
|
case GGML_TYPE_IQ3_S:
|
||||||
|
return dequantize_row_iq3_s_cuda;
|
||||||
|
case GGML_TYPE_F32:
|
||||||
|
return convert_unary_cuda<float>;
|
||||||
|
default:
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
||||||
|
switch (type) {
|
||||||
|
case GGML_TYPE_Q4_0:
|
||||||
|
return dequantize_row_q4_0_cuda;
|
||||||
|
case GGML_TYPE_Q4_1:
|
||||||
|
return dequantize_row_q4_1_cuda;
|
||||||
|
case GGML_TYPE_Q5_0:
|
||||||
|
return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
|
||||||
|
case GGML_TYPE_Q5_1:
|
||||||
|
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
||||||
|
case GGML_TYPE_Q8_0:
|
||||||
|
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
||||||
|
case GGML_TYPE_Q2_K:
|
||||||
|
return dequantize_row_q2_K_cuda;
|
||||||
|
case GGML_TYPE_Q3_K:
|
||||||
|
return dequantize_row_q3_K_cuda;
|
||||||
|
case GGML_TYPE_Q4_K:
|
||||||
|
return dequantize_row_q4_K_cuda;
|
||||||
|
case GGML_TYPE_Q5_K:
|
||||||
|
return dequantize_row_q5_K_cuda;
|
||||||
|
case GGML_TYPE_Q6_K:
|
||||||
|
return dequantize_row_q6_K_cuda;
|
||||||
|
case GGML_TYPE_IQ2_XXS:
|
||||||
|
return dequantize_row_iq2_xxs_cuda;
|
||||||
|
case GGML_TYPE_IQ2_XS:
|
||||||
|
return dequantize_row_iq2_xs_cuda;
|
||||||
|
case GGML_TYPE_IQ2_S:
|
||||||
|
return dequantize_row_iq2_s_cuda;
|
||||||
|
case GGML_TYPE_IQ3_XXS:
|
||||||
|
return dequantize_row_iq3_xxs_cuda;
|
||||||
|
case GGML_TYPE_IQ1_S:
|
||||||
|
return dequantize_row_iq1_s_cuda;
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
|
return dequantize_row_iq1_m_cuda;
|
||||||
|
case GGML_TYPE_IQ4_NL:
|
||||||
|
return dequantize_row_iq4_nl_cuda;
|
||||||
|
case GGML_TYPE_IQ4_XS:
|
||||||
|
return dequantize_row_iq4_xs_cuda;
|
||||||
|
case GGML_TYPE_IQ3_S:
|
||||||
|
return dequantize_row_iq3_s_cuda;
|
||||||
|
case GGML_TYPE_F16:
|
||||||
|
return convert_unary_cuda<half>;
|
||||||
|
default:
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
}
|
13
ggml-cuda/convert.cuh
Normal file
13
ggml-cuda/convert.cuh
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int k, cudaStream_t stream);
|
||||||
|
|
||||||
|
typedef to_t_cuda_t<float> to_fp32_cuda_t;
|
||||||
|
typedef to_t_cuda_t<half> to_fp16_cuda_t;
|
||||||
|
|
||||||
|
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type);
|
||||||
|
|
||||||
|
to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type);
|
461
ggml-cuda/cpy.cu
Normal file
461
ggml-cuda/cpy.cu
Normal file
@ -0,0 +1,461 @@
|
|||||||
|
#include "cpy.cuh"
|
||||||
|
|
||||||
|
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
|
||||||
|
|
||||||
|
static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
float * dsti = (float *) cdsti;
|
||||||
|
|
||||||
|
*dsti = *xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
half * dsti = (half *) cdsti;
|
||||||
|
|
||||||
|
*dsti = __float2half(*xi);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
|
||||||
|
const half * xi = (const half *) cxi;
|
||||||
|
half * dsti = (half *) cdsti;
|
||||||
|
|
||||||
|
*dsti = *xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
||||||
|
const half * xi = (const half *) cxi;
|
||||||
|
float * dsti = (float *) cdsti;
|
||||||
|
|
||||||
|
*dsti = *xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <cpy_kernel_t cpy_1>
|
||||||
|
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||||
|
const int nb12, const int nb13) {
|
||||||
|
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= ne) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
||||||
|
// then combine those indices with the corresponding byte offsets to get the total offsets
|
||||||
|
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||||
|
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||||
|
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||||
|
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||||
|
const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||||
|
|
||||||
|
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
||||||
|
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||||
|
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||||
|
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||||
|
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
|
||||||
|
|
||||||
|
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
block_q8_0 * dsti = (block_q8_0 *) cdsti;
|
||||||
|
|
||||||
|
float amax = 0.0f; // absolute max
|
||||||
|
|
||||||
|
for (int j = 0; j < QK8_0; j++) {
|
||||||
|
const float v = xi[j];
|
||||||
|
amax = fmaxf(amax, fabsf(v));
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = amax / ((1 << 7) - 1);
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
dsti->d = d;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK8_0; ++j) {
|
||||||
|
const float x0 = xi[j]*id;
|
||||||
|
|
||||||
|
dsti->qs[j] = roundf(x0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
block_q4_0 * dsti = (block_q4_0 *) cdsti;
|
||||||
|
|
||||||
|
float amax = 0.0f;
|
||||||
|
float vmax = 0.0f;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK4_0; ++j) {
|
||||||
|
const float v = xi[j];
|
||||||
|
if (amax < fabsf(v)) {
|
||||||
|
amax = fabsf(v);
|
||||||
|
vmax = v;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = vmax / -8;
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
dsti->d = d;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK4_0/2; ++j) {
|
||||||
|
const float x0 = xi[0 + j]*id;
|
||||||
|
const float x1 = xi[QK4_0/2 + j]*id;
|
||||||
|
|
||||||
|
const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
|
||||||
|
const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
|
||||||
|
|
||||||
|
dsti->qs[j] = xi0;
|
||||||
|
dsti->qs[j] |= xi1 << 4;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
block_q4_1 * dsti = (block_q4_1 *) cdsti;
|
||||||
|
|
||||||
|
float vmin = FLT_MAX;
|
||||||
|
float vmax = -FLT_MAX;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK4_1; ++j) {
|
||||||
|
const float v = xi[j];
|
||||||
|
|
||||||
|
if (v < vmin) vmin = v;
|
||||||
|
if (v > vmax) vmax = v;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = (vmax - vmin) / ((1 << 4) - 1);
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
dsti->dm.x = d;
|
||||||
|
dsti->dm.y = vmin;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK4_1/2; ++j) {
|
||||||
|
const float x0 = (xi[0 + j] - vmin)*id;
|
||||||
|
const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
|
||||||
|
|
||||||
|
const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
|
||||||
|
const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
|
||||||
|
|
||||||
|
dsti->qs[j] = xi0;
|
||||||
|
dsti->qs[j] |= xi1 << 4;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
block_q5_0 * dsti = (block_q5_0 *) cdsti;
|
||||||
|
|
||||||
|
float amax = 0.0f;
|
||||||
|
float vmax = 0.0f;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK5_0; ++j) {
|
||||||
|
const float v = xi[j];
|
||||||
|
if (amax < fabsf(v)) {
|
||||||
|
amax = fabsf(v);
|
||||||
|
vmax = v;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = vmax / -16;
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
dsti->d = d;
|
||||||
|
|
||||||
|
uint32_t qh = 0;
|
||||||
|
for (int j = 0; j < QK5_0/2; ++j) {
|
||||||
|
const float x0 = xi[0 + j]*id;
|
||||||
|
const float x1 = xi[QK5_0/2 + j]*id;
|
||||||
|
|
||||||
|
const uint8_t xi0 = min(31, (int8_t)(x0 + 16.5f));
|
||||||
|
const uint8_t xi1 = min(31, (int8_t)(x1 + 16.5f));
|
||||||
|
|
||||||
|
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||||
|
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||||
|
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
|
||||||
|
}
|
||||||
|
memcpy(dsti->qh, &qh, sizeof(qh));
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
block_q5_1 * dsti = (block_q5_1 *) cdsti;
|
||||||
|
|
||||||
|
float min = xi[0];
|
||||||
|
float max = xi[0];
|
||||||
|
|
||||||
|
for (int j = 1; j < QK5_1; ++j) {
|
||||||
|
const float v = xi[j];
|
||||||
|
min = v < min ? v : min;
|
||||||
|
max = v > max ? v : max;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = (max - min) / 31;
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
dsti->dm.x = d;
|
||||||
|
dsti->dm.y = min;
|
||||||
|
|
||||||
|
uint32_t qh = 0;
|
||||||
|
for (int j = 0; j < QK5_1/2; ++j) {
|
||||||
|
const float x0 = (xi[0 + j] - min)*id;
|
||||||
|
const float x1 = (xi[QK5_1/2 + j] - min)*id;
|
||||||
|
|
||||||
|
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
|
||||||
|
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
|
||||||
|
|
||||||
|
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||||
|
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||||
|
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
|
||||||
|
}
|
||||||
|
memcpy(dsti->qh, &qh, sizeof(qh));
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static __device__ __forceinline__ int best_index_int8(int n, const int8_t * val, float x) {
|
||||||
|
if (x <= val[0]) return 0;
|
||||||
|
if (x >= val[n-1]) return n-1;
|
||||||
|
int ml = 0, mu = n-1;
|
||||||
|
while (mu-ml > 1) {
|
||||||
|
int mav = (ml+mu)/2;
|
||||||
|
if (x < val[mav]) mu = mav; else ml = mav;
|
||||||
|
}
|
||||||
|
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
|
||||||
|
const float * xi = (const float *) cxi;
|
||||||
|
block_iq4_nl * dsti = (block_iq4_nl *) cdsti;
|
||||||
|
|
||||||
|
float amax = 0.0f;
|
||||||
|
float vmax = 0.0f;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK4_NL; ++j) {
|
||||||
|
const float v = xi[j];
|
||||||
|
if (amax < fabsf(v)) {
|
||||||
|
amax = fabsf(v);
|
||||||
|
vmax = v;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
float d = vmax / kvalues_iq4nl[0];
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
float sumqx = 0, sumq2 = 0;
|
||||||
|
for (int j = 0; j < QK4_NL/2; ++j) {
|
||||||
|
const float x0 = xi[0 + j]*id;
|
||||||
|
const float x1 = xi[QK4_NL/2 + j]*id;
|
||||||
|
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0);
|
||||||
|
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1);
|
||||||
|
dsti->qs[j] = xi0 | (xi1 << 4);
|
||||||
|
const float v0 = kvalues_iq4nl[xi0];
|
||||||
|
const float v1 = kvalues_iq4nl[xi1];
|
||||||
|
const float w0 = xi[0 + j]*xi[0 + j];
|
||||||
|
const float w1 = xi[QK4_NL/2 + j]*xi[QK4_NL/2 + j];
|
||||||
|
sumqx += w0*v0*xi[j] + w1*v1*xi[QK4_NL/2 + j];
|
||||||
|
sumq2 += w0*v0*v0 + w1*v1*v1;
|
||||||
|
}
|
||||||
|
|
||||||
|
dsti->d = sumq2 > 0 ? sumqx/sumq2 : d;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <cpy_kernel_t cpy_blck, int qk>
|
||||||
|
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||||
|
const int nb12, const int nb13) {
|
||||||
|
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||||
|
|
||||||
|
if (i >= ne) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i03 = i/(ne00 * ne01 * ne02);
|
||||||
|
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||||
|
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||||
|
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||||
|
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||||
|
|
||||||
|
const int i13 = i/(ne10 * ne11 * ne12);
|
||||||
|
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||||
|
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||||
|
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||||
|
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||||
|
|
||||||
|
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f16_f32_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||||
|
cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_f32_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||||
|
cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_f16_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||||
|
cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_q8_0_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ne % QK8_0 == 0);
|
||||||
|
const int num_blocks = ne / QK8_0;
|
||||||
|
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_q4_0_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ne % QK4_0 == 0);
|
||||||
|
const int num_blocks = ne / QK4_0;
|
||||||
|
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_q4_1_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ne % QK4_1 == 0);
|
||||||
|
const int num_blocks = ne / QK4_1;
|
||||||
|
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_q5_0_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ne % QK5_0 == 0);
|
||||||
|
const int num_blocks = ne / QK5_0;
|
||||||
|
cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_q5_1_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ne % QK5_1 == 0);
|
||||||
|
const int num_blocks = ne / QK5_1;
|
||||||
|
cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f32_iq4_nl_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ne % QK4_NL == 0);
|
||||||
|
const int num_blocks = ne / QK4_NL;
|
||||||
|
cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cpy_f16_f16_cuda(
|
||||||
|
const char * cx, char * cdst, const int ne,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||||
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||||
|
|
||||||
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||||
|
cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||||
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) {
|
||||||
|
const int64_t ne = ggml_nelements(src0);
|
||||||
|
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||||
|
|
||||||
|
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
||||||
|
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t ne01 = src0->ne[1];
|
||||||
|
const int64_t ne02 = src0->ne[2];
|
||||||
|
|
||||||
|
//GGML_ASSERT(src0->ne[3] == 1);
|
||||||
|
|
||||||
|
const int64_t nb00 = src0->nb[0];
|
||||||
|
const int64_t nb01 = src0->nb[1];
|
||||||
|
const int64_t nb02 = src0->nb[2];
|
||||||
|
const int64_t nb03 = src0->nb[3];
|
||||||
|
|
||||||
|
const int64_t ne10 = src1->ne[0];
|
||||||
|
const int64_t ne11 = src1->ne[1];
|
||||||
|
const int64_t ne12 = src1->ne[2];
|
||||||
|
|
||||||
|
//GGML_ASSERT(src1->ne[3] == 1);
|
||||||
|
|
||||||
|
const int64_t nb10 = src1->nb[0];
|
||||||
|
const int64_t nb11 = src1->nb[1];
|
||||||
|
const int64_t nb12 = src1->nb[2];
|
||||||
|
const int64_t nb13 = src1->nb[3];
|
||||||
|
|
||||||
|
cudaStream_t main_stream = ctx.stream();
|
||||||
|
|
||||||
|
char * src0_ddc = (char *) src0->data;
|
||||||
|
char * src1_ddc = (char *) src1->data;
|
||||||
|
|
||||||
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||||
|
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||||
|
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||||
|
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
||||||
|
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
||||||
|
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
|
||||||
|
ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
|
||||||
|
ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
|
||||||
|
ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||||
|
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||||
|
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||||||
|
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
ggml_cuda_cpy(ctx, src0, dst);
|
||||||
|
}
|
7
ggml-cuda/cpy.cuh
Normal file
7
ggml-cuda/cpy.cuh
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_CPY_BLOCK_SIZE 32
|
||||||
|
|
||||||
|
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1);
|
||||||
|
|
||||||
|
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
103
ggml-cuda/dequantize.cuh
Normal file
103
ggml-cuda/dequantize.cuh
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
|
const block_q4_0 * x = (const block_q4_0 *) vx;
|
||||||
|
|
||||||
|
const dfloat d = x[ib].d;
|
||||||
|
|
||||||
|
const int vui = x[ib].qs[iqs];
|
||||||
|
|
||||||
|
v.x = vui & 0xF;
|
||||||
|
v.y = vui >> 4;
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
v = __hsub2(v, {8.0f, 8.0f});
|
||||||
|
v = __hmul2(v, {d, d});
|
||||||
|
#else
|
||||||
|
v.x = (v.x - 8.0f) * d;
|
||||||
|
v.y = (v.y - 8.0f) * d;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
|
const block_q4_1 * x = (const block_q4_1 *) vx;
|
||||||
|
|
||||||
|
const dfloat d = __low2half(x[ib].dm);
|
||||||
|
const dfloat m = __high2half(x[ib].dm);
|
||||||
|
|
||||||
|
const int vui = x[ib].qs[iqs];
|
||||||
|
|
||||||
|
v.x = vui & 0xF;
|
||||||
|
v.y = vui >> 4;
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
v = __hmul2(v, {d, d});
|
||||||
|
v = __hadd2(v, {m, m});
|
||||||
|
#else
|
||||||
|
v.x = (v.x * d) + m;
|
||||||
|
v.y = (v.y * d) + m;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
|
const block_q5_0 * x = (const block_q5_0 *) vx;
|
||||||
|
|
||||||
|
const dfloat d = x[ib].d;
|
||||||
|
|
||||||
|
uint32_t qh;
|
||||||
|
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||||
|
|
||||||
|
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
||||||
|
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
||||||
|
|
||||||
|
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
||||||
|
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
v = __hsub2(v, {16.0f, 16.0f});
|
||||||
|
v = __hmul2(v, {d, d});
|
||||||
|
#else
|
||||||
|
v.x = (v.x - 16.0f) * d;
|
||||||
|
v.y = (v.y - 16.0f) * d;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
|
const block_q5_1 * x = (const block_q5_1 *) vx;
|
||||||
|
|
||||||
|
const dfloat d = __low2half(x[ib].dm);
|
||||||
|
const dfloat m = __high2half(x[ib].dm);
|
||||||
|
|
||||||
|
uint32_t qh;
|
||||||
|
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||||
|
|
||||||
|
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
||||||
|
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
||||||
|
|
||||||
|
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
||||||
|
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
v = __hmul2(v, {d, d});
|
||||||
|
v = __hadd2(v, {m, m});
|
||||||
|
#else
|
||||||
|
v.x = (v.x * d) + m;
|
||||||
|
v.y = (v.y * d) + m;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
|
const block_q8_0 * x = (const block_q8_0 *) vx;
|
||||||
|
|
||||||
|
const dfloat d = x[ib].d;
|
||||||
|
|
||||||
|
v.x = x[ib].qs[iqs + 0];
|
||||||
|
v.y = x[ib].qs[iqs + 1];
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
v = __hmul2(v, {d, d});
|
||||||
|
#else
|
||||||
|
v.x *= d;
|
||||||
|
v.y *= d;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
40
ggml-cuda/diagmask.cu
Normal file
40
ggml-cuda/diagmask.cu
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
#include "diagmask.cuh"
|
||||||
|
|
||||||
|
static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
|
||||||
|
const int col = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
|
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (col >= ncols) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i = row*ncols + col;
|
||||||
|
//dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
|
||||||
|
//dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
|
||||||
|
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
|
||||||
|
const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
|
||||||
|
const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
|
||||||
|
const dim3 block_nums(nrows_x, block_num_x, 1);
|
||||||
|
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t ne01 = src0->ne[1];
|
||||||
|
const int nrows0 = ggml_nrows(src0);
|
||||||
|
|
||||||
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||||
|
|
||||||
|
diag_mask_inf_f32_cuda(src0_d, dst_d, ne00, nrows0, ne01, n_past, stream);
|
||||||
|
}
|
5
ggml-cuda/diagmask.cuh
Normal file
5
ggml-cuda/diagmask.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
|
||||||
|
|
||||||
|
void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
817
ggml-cuda/dmmv.cu
Normal file
817
ggml-cuda/dmmv.cu
Normal file
@ -0,0 +1,817 @@
|
|||||||
|
#include "dmmv.cuh"
|
||||||
|
#include "dequantize.cuh"
|
||||||
|
#include "convert.cuh"
|
||||||
|
|
||||||
|
#ifndef GGML_CUDA_MMV_Y
|
||||||
|
#define GGML_CUDA_MMV_Y 1
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef K_QUANTS_PER_ITERATION
|
||||||
|
#define K_QUANTS_PER_ITERATION 2
|
||||||
|
#else
|
||||||
|
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||||
|
|
||||||
|
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
||||||
|
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
if (row > nrows) return;
|
||||||
|
|
||||||
|
const int num_blocks_per_row = ncols / QK_K;
|
||||||
|
const int ib0 = row*num_blocks_per_row;
|
||||||
|
|
||||||
|
const block_q2_K * x = (const block_q2_K *)vx + ib0;
|
||||||
|
|
||||||
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
||||||
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||||
|
|
||||||
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
||||||
|
|
||||||
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||||
|
const int in = tid - step*im; // 0...15 or 0...7
|
||||||
|
|
||||||
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
|
||||||
|
const int q_offset = 32*im + l0;
|
||||||
|
const int s_offset = 8*im;
|
||||||
|
const int y_offset = 128*im + l0;
|
||||||
|
|
||||||
|
uint32_t aux[4];
|
||||||
|
const uint8_t * d = (const uint8_t *)aux;
|
||||||
|
const uint8_t * m = (const uint8_t *)(aux + 2);
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y = yy + i * QK_K + y_offset;
|
||||||
|
const uint8_t * q = x[i].qs + q_offset;
|
||||||
|
|
||||||
|
const float dall = __low2half(x[i].dm);
|
||||||
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
|
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
|
||||||
|
aux[0] = a[0] & 0x0f0f0f0f;
|
||||||
|
aux[1] = a[1] & 0x0f0f0f0f;
|
||||||
|
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
|
||||||
|
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
|
||||||
|
|
||||||
|
float sum1 = 0, sum2 = 0;
|
||||||
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
||||||
|
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
|
||||||
|
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
|
||||||
|
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
|
||||||
|
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
|
||||||
|
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
|
||||||
|
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
|
||||||
|
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
|
||||||
|
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
|
||||||
|
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
|
||||||
|
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
|
||||||
|
|
||||||
|
}
|
||||||
|
tmp += dall * sum1 - dmin * sum2;
|
||||||
|
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
||||||
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
||||||
|
const int offset = tid * K_QUANTS_PER_ITERATION;
|
||||||
|
|
||||||
|
uint32_t uaux[2];
|
||||||
|
const uint8_t * d = (const uint8_t *)uaux;
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y = yy + i * QK_K + offset;
|
||||||
|
const uint8_t * q = x[i].qs + offset;
|
||||||
|
const uint32_t * s = (const uint32_t *)x[i].scales;
|
||||||
|
|
||||||
|
uaux[0] = s[0] & 0x0f0f0f0f;
|
||||||
|
uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
|
||||||
|
|
||||||
|
const float2 dall = __half22float2(x[i].dm);
|
||||||
|
|
||||||
|
float sum1 = 0, sum2 = 0;
|
||||||
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
||||||
|
const uint8_t ql = q[l];
|
||||||
|
sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
|
||||||
|
+ y[l+16] * d[1] * ((ql >> 2) & 3)
|
||||||
|
+ y[l+32] * d[2] * ((ql >> 4) & 3)
|
||||||
|
+ y[l+48] * d[3] * ((ql >> 6) & 3);
|
||||||
|
sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
|
||||||
|
}
|
||||||
|
tmp += dall.x * sum1 - dall.y * sum2;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
dst[row] = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||||
|
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
if (row > nrows) return;
|
||||||
|
|
||||||
|
const int num_blocks_per_row = ncols / QK_K;
|
||||||
|
const int ib0 = row*num_blocks_per_row;
|
||||||
|
|
||||||
|
const block_q3_K * x = (const block_q3_K *)vx + ib0;
|
||||||
|
|
||||||
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
|
||||||
|
const uint16_t kmask1 = 0x0303;
|
||||||
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||||
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||||
|
|
||||||
|
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
|
||||||
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
||||||
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||||
|
const int in = tid - step*im; // 0....15 or 0...7
|
||||||
|
|
||||||
|
const uint8_t m = 1 << (4*im);
|
||||||
|
|
||||||
|
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
|
||||||
|
const int q_offset = 32*im + l0;
|
||||||
|
const int y_offset = 128*im + l0;
|
||||||
|
|
||||||
|
uint16_t utmp[4];
|
||||||
|
const int8_t * s = (const int8_t *)utmp;
|
||||||
|
|
||||||
|
const uint16_t s_shift = 4*im;
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y = yy + i * QK_K + y_offset;
|
||||||
|
const uint8_t * q = x[i].qs + q_offset;
|
||||||
|
const uint8_t * h = x[i].hmask + l0;
|
||||||
|
|
||||||
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||||
|
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
|
||||||
|
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
|
||||||
|
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
|
||||||
|
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
|
||||||
|
|
||||||
|
const float d = x[i].d;
|
||||||
|
|
||||||
|
float sum = 0;
|
||||||
|
for (int l = 0; l < n; ++l) {
|
||||||
|
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
|
||||||
|
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
|
||||||
|
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
|
||||||
|
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
|
||||||
|
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
|
||||||
|
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
|
||||||
|
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
|
||||||
|
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
|
||||||
|
}
|
||||||
|
tmp += d * sum;
|
||||||
|
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
|
||||||
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
||||||
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
||||||
|
const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
|
||||||
|
const int in = offset/8; // 0 or 1
|
||||||
|
const int im = offset%8; // 0...7
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y = yy + i * QK_K + offset;
|
||||||
|
const uint8_t * q = x[i].qs + offset;
|
||||||
|
const uint8_t * s = x[i].scales;
|
||||||
|
|
||||||
|
const float dall = (float)x[i].d;
|
||||||
|
|
||||||
|
float sum = 0;
|
||||||
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
||||||
|
const uint8_t hl = x[i].hmask[im+l] >> in;
|
||||||
|
const uint8_t ql = q[l];
|
||||||
|
sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
|
||||||
|
+ y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
|
||||||
|
+ y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
|
||||||
|
+ y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
|
||||||
|
}
|
||||||
|
tmp += sum;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
dst[row] = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||||
|
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
if (row > nrows) return;
|
||||||
|
const int num_blocks_per_row = ncols / QK_K;
|
||||||
|
const int ib0 = row*num_blocks_per_row;
|
||||||
|
|
||||||
|
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
const uint16_t kmask1 = 0x3f3f;
|
||||||
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
const uint16_t kmask3 = 0xc0c0;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||||
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||||
|
|
||||||
|
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
|
||||||
|
|
||||||
|
const int il = tid/step; // 0...3
|
||||||
|
const int ir = tid - step*il; // 0...7 or 0...3
|
||||||
|
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
|
||||||
|
|
||||||
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
||||||
|
const int in = il%2;
|
||||||
|
|
||||||
|
const int l0 = n*(2*ir + in);
|
||||||
|
const int q_offset = 32*im + l0;
|
||||||
|
const int y_offset = 64*im + l0;
|
||||||
|
|
||||||
|
uint16_t aux[4];
|
||||||
|
const uint8_t * sc = (const uint8_t *)aux;
|
||||||
|
|
||||||
|
#if K_QUANTS_PER_ITERATION == 2
|
||||||
|
uint32_t q32[4];
|
||||||
|
const uint8_t * q4 = (const uint8_t *)q32;
|
||||||
|
#else
|
||||||
|
uint16_t q16[4];
|
||||||
|
const uint8_t * q4 = (const uint8_t *)q16;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y1 = yy + i*QK_K + y_offset;
|
||||||
|
const float * y2 = y1 + 128;
|
||||||
|
|
||||||
|
const float dall = __low2half(x[i].dm);
|
||||||
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||||
|
aux[0] = a[im+0] & kmask1;
|
||||||
|
aux[1] = a[im+2] & kmask1;
|
||||||
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
||||||
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
||||||
|
|
||||||
|
#if K_QUANTS_PER_ITERATION == 2
|
||||||
|
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
|
||||||
|
const uint32_t * q2 = q1 + 16;
|
||||||
|
|
||||||
|
q32[0] = q1[0] & 0x0f0f0f0f;
|
||||||
|
q32[1] = q1[0] & 0xf0f0f0f0;
|
||||||
|
q32[2] = q2[0] & 0x0f0f0f0f;
|
||||||
|
q32[3] = q2[0] & 0xf0f0f0f0;
|
||||||
|
|
||||||
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
float smin = 0;
|
||||||
|
for (int l = 0; l < 4; ++l) {
|
||||||
|
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
|
||||||
|
s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
|
||||||
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
||||||
|
}
|
||||||
|
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
||||||
|
#else
|
||||||
|
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
|
||||||
|
const uint16_t * q2 = q1 + 32;
|
||||||
|
|
||||||
|
q16[0] = q1[0] & 0x0f0f;
|
||||||
|
q16[1] = q1[0] & 0xf0f0;
|
||||||
|
q16[2] = q2[0] & 0x0f0f;
|
||||||
|
q16[3] = q2[0] & 0xf0f0;
|
||||||
|
|
||||||
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
float smin = 0;
|
||||||
|
for (int l = 0; l < 2; ++l) {
|
||||||
|
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
|
||||||
|
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
|
||||||
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
||||||
|
}
|
||||||
|
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
||||||
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
||||||
|
|
||||||
|
const int step = tid * K_QUANTS_PER_ITERATION;
|
||||||
|
|
||||||
|
uint16_t aux16[2];
|
||||||
|
const uint8_t * s = (const uint8_t *)aux16;
|
||||||
|
|
||||||
|
float tmp = 0;
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||||
|
const uint8_t * q = x[i].qs + step;
|
||||||
|
const float * y = yy + i*QK_K + step;
|
||||||
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||||
|
aux16[0] = a[0] & 0x0f0f;
|
||||||
|
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
||||||
|
const float d = (float)x[i].dm[0];
|
||||||
|
const float m = (float)x[i].dm[1];
|
||||||
|
float sum = 0.f;
|
||||||
|
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
||||||
|
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
|
||||||
|
+ y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
|
||||||
|
+ y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
|
||||||
|
+ y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
|
||||||
|
}
|
||||||
|
tmp += sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
|
if (tid == 0) {
|
||||||
|
dst[row] = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
|
||||||
|
|
||||||
|
const int row = blockIdx.x;
|
||||||
|
const int num_blocks_per_row = ncols / QK_K;
|
||||||
|
const int ib0 = row*num_blocks_per_row;
|
||||||
|
|
||||||
|
const block_q5_K * x = (const block_q5_K *)vx + ib0;
|
||||||
|
|
||||||
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
const uint16_t kmask1 = 0x3f3f;
|
||||||
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
const uint16_t kmask3 = 0xc0c0;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x/2; // 0...15
|
||||||
|
const int ix = threadIdx.x%2;
|
||||||
|
|
||||||
|
const int il = tid/4; // 0...3
|
||||||
|
const int ir = tid - 4*il;// 0...3
|
||||||
|
const int n = 2;
|
||||||
|
|
||||||
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
||||||
|
const int in = il%2;
|
||||||
|
|
||||||
|
const int l0 = n*(2*ir + in);
|
||||||
|
const int q_offset = 32*im + l0;
|
||||||
|
const int y_offset = 64*im + l0;
|
||||||
|
|
||||||
|
const uint8_t hm1 = 1 << (2*im);
|
||||||
|
const uint8_t hm2 = hm1 << 4;
|
||||||
|
|
||||||
|
uint16_t aux[4];
|
||||||
|
const uint8_t * sc = (const uint8_t *)aux;
|
||||||
|
|
||||||
|
uint16_t q16[8];
|
||||||
|
const uint8_t * q4 = (const uint8_t *)q16;
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
||||||
|
|
||||||
|
const uint8_t * ql1 = x[i].qs + q_offset;
|
||||||
|
const uint8_t * qh = x[i].qh + l0;
|
||||||
|
const float * y1 = yy + i*QK_K + y_offset;
|
||||||
|
const float * y2 = y1 + 128;
|
||||||
|
|
||||||
|
const float dall = __low2half(x[i].dm);
|
||||||
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||||
|
aux[0] = a[im+0] & kmask1;
|
||||||
|
aux[1] = a[im+2] & kmask1;
|
||||||
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
||||||
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
||||||
|
|
||||||
|
float4 sum = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
float smin = 0;
|
||||||
|
const uint16_t * q1 = (const uint16_t *)ql1;
|
||||||
|
const uint16_t * q2 = q1 + 32;
|
||||||
|
q16[0] = q1[0] & 0x0f0f;
|
||||||
|
q16[1] = q1[8] & 0x0f0f;
|
||||||
|
q16[2] = (q1[0] >> 4) & 0x0f0f;
|
||||||
|
q16[3] = (q1[8] >> 4) & 0x0f0f;
|
||||||
|
q16[4] = q2[0] & 0x0f0f;
|
||||||
|
q16[5] = q2[8] & 0x0f0f;
|
||||||
|
q16[6] = (q2[0] >> 4) & 0x0f0f;
|
||||||
|
q16[7] = (q2[8] >> 4) & 0x0f0f;
|
||||||
|
for (int l = 0; l < n; ++l) {
|
||||||
|
sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
|
||||||
|
+ y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
|
||||||
|
sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
|
||||||
|
+ y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
|
||||||
|
sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
|
||||||
|
+ y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
|
||||||
|
sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
|
||||||
|
+ y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
|
||||||
|
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
||||||
|
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
||||||
|
}
|
||||||
|
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
||||||
|
}
|
||||||
|
|
||||||
|
#else
|
||||||
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
||||||
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
||||||
|
const int step = tid * K_QUANTS_PER_ITERATION;
|
||||||
|
const int im = step/8;
|
||||||
|
const int in = step%8;
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||||
|
const uint8_t * q = x[i].qs + step;
|
||||||
|
const int8_t * s = x[i].scales;
|
||||||
|
const float * y = yy + i*QK_K + step;
|
||||||
|
const float d = x[i].d;
|
||||||
|
float sum = 0.f;
|
||||||
|
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
||||||
|
const uint8_t h = x[i].qh[in+j] >> im;
|
||||||
|
sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
|
||||||
|
+ y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
|
||||||
|
+ y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
|
||||||
|
+ y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
|
||||||
|
}
|
||||||
|
tmp += sum;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
dst[row] = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||||
|
|
||||||
|
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
||||||
|
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
if (row > nrows) return;
|
||||||
|
|
||||||
|
const int num_blocks_per_row = ncols / QK_K;
|
||||||
|
const int ib0 = row*num_blocks_per_row;
|
||||||
|
|
||||||
|
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
|
|
||||||
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||||
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
||||||
|
|
||||||
|
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
|
||||||
|
|
||||||
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||||
|
const int in = tid - step*im; // 0...15 or 0...7
|
||||||
|
|
||||||
|
#if K_QUANTS_PER_ITERATION == 1
|
||||||
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
||||||
|
const int is = 0;
|
||||||
|
#else
|
||||||
|
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
||||||
|
const int is = in / 4;
|
||||||
|
#endif
|
||||||
|
const int ql_offset = 64*im + l0;
|
||||||
|
const int qh_offset = 32*im + l0;
|
||||||
|
const int s_offset = 8*im + is;
|
||||||
|
const int y_offset = 128*im + l0;
|
||||||
|
|
||||||
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y = yy + i * QK_K + y_offset;
|
||||||
|
const uint8_t * ql = x[i].ql + ql_offset;
|
||||||
|
const uint8_t * qh = x[i].qh + qh_offset;
|
||||||
|
const int8_t * s = x[i].scales + s_offset;
|
||||||
|
|
||||||
|
const float d = x[i].d;
|
||||||
|
|
||||||
|
#if K_QUANTS_PER_ITERATION == 1
|
||||||
|
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
|
||||||
|
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
|
||||||
|
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
|
||||||
|
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
|
||||||
|
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
|
||||||
|
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
|
||||||
|
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
|
||||||
|
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
|
||||||
|
tmp += sum;
|
||||||
|
#else
|
||||||
|
float sum = 0;
|
||||||
|
for (int l = 0; l < 4; ++l) {
|
||||||
|
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
|
||||||
|
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
|
||||||
|
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
|
||||||
|
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
|
||||||
|
}
|
||||||
|
tmp += sum;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#else
|
||||||
|
|
||||||
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
|
||||||
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
|
||||||
|
|
||||||
|
const int step = tid * K_QUANTS_PER_ITERATION;
|
||||||
|
|
||||||
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
|
const float * y = yy + i * QK_K + step;
|
||||||
|
const uint8_t * ql = x[i].ql + step;
|
||||||
|
const uint8_t * qh = x[i].qh + step;
|
||||||
|
const int8_t * s = x[i].scales;
|
||||||
|
|
||||||
|
const float d = x[i+0].d;
|
||||||
|
|
||||||
|
float sum = 0;
|
||||||
|
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
||||||
|
sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
|
||||||
|
+ y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
|
||||||
|
+ y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
|
||||||
|
+ y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
|
||||||
|
}
|
||||||
|
tmp += sum;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
|
if (tid == 0) {
|
||||||
|
dst[row] = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
|
const half * x = (const half *) vx;
|
||||||
|
|
||||||
|
// automatic half -> float type cast if dfloat == float
|
||||||
|
v.x = x[ib + iqs + 0];
|
||||||
|
v.y = x[ib + iqs + 1];
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
||||||
|
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
|
||||||
|
// qk = quantized weights per x block
|
||||||
|
// qr = number of quantized weights per data value in x block
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
|
||||||
|
if (row >= nrows) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
|
||||||
|
const int iter_stride = 2*GGML_CUDA_DMMV_X;
|
||||||
|
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
|
||||||
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||||
|
|
||||||
|
// partial sum for each thread
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
|
||||||
|
#else
|
||||||
|
float tmp = 0.0f;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
|
||||||
|
for (int i = 0; i < ncols; i += iter_stride) {
|
||||||
|
const int col = i + vals_per_iter*tid;
|
||||||
|
const int ib = (row*ncols + col)/qk; // x block index
|
||||||
|
const int iqs = (col%qk)/qr; // x quant index
|
||||||
|
const int iybs = col - col%qk; // y block start index
|
||||||
|
|
||||||
|
// processing >2 values per i iter is faster for fast GPUs
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < vals_per_iter; j += 2) {
|
||||||
|
// process 2 vals per j iter
|
||||||
|
|
||||||
|
// dequantize
|
||||||
|
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
|
||||||
|
dfloat2 v;
|
||||||
|
dequantize_kernel(vx, ib, iqs + j/qr, v);
|
||||||
|
|
||||||
|
// matrix multiplication
|
||||||
|
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
tmp += __hmul2(v, {
|
||||||
|
y[iybs + iqs + j/qr + 0],
|
||||||
|
y[iybs + iqs + j/qr + y_offset]
|
||||||
|
});
|
||||||
|
#else
|
||||||
|
tmp += v.x * y[iybs + iqs + j/qr + 0];
|
||||||
|
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
|
if (tid == 0) {
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
dst[row] = tmp.x + tmp.y;
|
||||||
|
#else
|
||||||
|
dst[row] = tmp;
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||||
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
|
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
|
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||||
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
|
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||||
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
|
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||||
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
|
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||||
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
|
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % QK_K == 0);
|
||||||
|
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
|
||||||
|
const int block_num_y = (nrows + ny - 1) / ny;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(32, ny, 1);
|
||||||
|
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % QK_K == 0);
|
||||||
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||||
|
const int block_num_y = (nrows + ny - 1) / ny;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(32, ny, 1);
|
||||||
|
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % QK_K == 0);
|
||||||
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||||
|
const int block_num_y = (nrows + ny - 1) / ny;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(32, ny, 1);
|
||||||
|
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % QK_K == 0);
|
||||||
|
const dim3 block_dims(32, 1, 1);
|
||||||
|
dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % QK_K == 0);
|
||||||
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||||
|
const int block_num_y = (nrows + ny - 1) / ny;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(32, ny, 1);
|
||||||
|
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||||
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
|
const dim3 block_nums(block_num_y, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
|
dequantize_mul_mat_vec<1, 1, convert_f16>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_dequantize_mul_mat_vec(
|
||||||
|
ggml_backend_cuda_context & ctx,
|
||||||
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||||
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||||
|
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
||||||
|
GGML_UNUSED(ctx);
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t row_diff = row_high - row_low;
|
||||||
|
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
|
||||||
|
#ifdef GGML_CUDA_F16
|
||||||
|
ggml_cuda_pool_alloc<half> src1_dfloat_a(ctx.pool());
|
||||||
|
half * src1_dfloat = nullptr; // dfloat == half
|
||||||
|
|
||||||
|
bool src1_convert_f16 =
|
||||||
|
src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
|
||||||
|
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
|
||||||
|
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
|
||||||
|
|
||||||
|
if (src1_convert_f16) {
|
||||||
|
src1_dfloat = src1_dfloat_a.alloc(ne00);
|
||||||
|
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
||||||
|
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||||
|
to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
|
||||||
|
#endif // GGML_CUDA_F16
|
||||||
|
|
||||||
|
switch (src0->type) {
|
||||||
|
case GGML_TYPE_Q4_0:
|
||||||
|
dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q4_1:
|
||||||
|
dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_0:
|
||||||
|
dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_1:
|
||||||
|
dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q8_0:
|
||||||
|
dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q2_K:
|
||||||
|
dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q3_K:
|
||||||
|
dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q4_K:
|
||||||
|
dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_K:
|
||||||
|
dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q6_K:
|
||||||
|
dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_F16:
|
||||||
|
convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_UNUSED(src1);
|
||||||
|
GGML_UNUSED(dst);
|
||||||
|
GGML_UNUSED(src1_ddq_i);
|
||||||
|
GGML_UNUSED(src1_ncols);
|
||||||
|
GGML_UNUSED(src1_padded_row_size);
|
||||||
|
}
|
7
ggml-cuda/dmmv.cuh
Normal file
7
ggml-cuda/dmmv.cuh
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_dequantize_mul_mat_vec(
|
||||||
|
ggml_backend_cuda_context & ctx,
|
||||||
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||||
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||||
|
const int64_t src1_padded_row_size, cudaStream_t stream);
|
178
ggml-cuda/getrows.cu
Normal file
178
ggml-cuda/getrows.cu
Normal file
@ -0,0 +1,178 @@
|
|||||||
|
#include "getrows.cuh"
|
||||||
|
#include "dequantize.cuh"
|
||||||
|
|
||||||
|
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||||
|
static __global__ void k_get_rows(
|
||||||
|
const void * src0, const int32_t * src1, dst_t * dst,
|
||||||
|
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||||
|
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||||
|
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||||
|
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||||
|
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||||
|
|
||||||
|
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
|
||||||
|
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
|
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||||
|
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||||
|
|
||||||
|
if (i00 >= ne00) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||||
|
|
||||||
|
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||||
|
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||||||
|
|
||||||
|
const int ib = i00/qk; // block index
|
||||||
|
const int iqs = (i00%qk)/qr; // quant index
|
||||||
|
const int iybs = i00 - i00%qk; // dst block start index
|
||||||
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||||
|
|
||||||
|
// dequantize
|
||||||
|
dfloat2 v;
|
||||||
|
dequantize_kernel(src0_row, ib, iqs, v);
|
||||||
|
|
||||||
|
dst_row[iybs + iqs + 0] = v.x;
|
||||||
|
dst_row[iybs + iqs + y_offset] = v.y;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename src0_t, typename dst_t>
|
||||||
|
static __global__ void k_get_rows_float(
|
||||||
|
const src0_t * src0, const int32_t * src1, dst_t * dst,
|
||||||
|
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||||
|
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||||
|
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||||
|
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||||
|
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||||
|
|
||||||
|
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
|
||||||
|
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
|
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||||
|
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||||
|
|
||||||
|
if (i00 >= ne00) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||||
|
|
||||||
|
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||||
|
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||||
|
|
||||||
|
dst_row[i00] = src0_row[i00];
|
||||||
|
}
|
||||||
|
|
||||||
|
template<int qk, int qr, dequantize_kernel_t dq>
|
||||||
|
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||||
|
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||||||
|
|
||||||
|
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||||
|
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
|
||||||
|
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||||
|
|
||||||
|
// strides in elements
|
||||||
|
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||||||
|
const size_t s1 = nb1 / ggml_element_size(dst);
|
||||||
|
const size_t s2 = nb2 / ggml_element_size(dst);
|
||||||
|
const size_t s3 = nb3 / ggml_element_size(dst);
|
||||||
|
|
||||||
|
const size_t s10 = nb10 / ggml_element_size(src1);
|
||||||
|
const size_t s11 = nb11 / ggml_element_size(src1);
|
||||||
|
const size_t s12 = nb12 / ggml_element_size(src1);
|
||||||
|
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||||
|
|
||||||
|
GGML_ASSERT(ne00 % 2 == 0);
|
||||||
|
|
||||||
|
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
src0_dd, src1_dd, dst_dd,
|
||||||
|
ne00, /*ne01, ne02, ne03,*/
|
||||||
|
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||||
|
/* s0,*/ s1, s2, s3,
|
||||||
|
/* nb00,*/ nb01, nb02, nb03,
|
||||||
|
s10, s11, s12/*, s13*/);
|
||||||
|
|
||||||
|
GGML_UNUSED(dst);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename src0_t>
|
||||||
|
static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||||
|
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||||||
|
|
||||||
|
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||||
|
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
||||||
|
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||||
|
|
||||||
|
// strides in elements
|
||||||
|
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||||||
|
const size_t s1 = nb1 / ggml_element_size(dst);
|
||||||
|
const size_t s2 = nb2 / ggml_element_size(dst);
|
||||||
|
const size_t s3 = nb3 / ggml_element_size(dst);
|
||||||
|
|
||||||
|
const size_t s10 = nb10 / ggml_element_size(src1);
|
||||||
|
const size_t s11 = nb11 / ggml_element_size(src1);
|
||||||
|
const size_t s12 = nb12 / ggml_element_size(src1);
|
||||||
|
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||||
|
|
||||||
|
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
src0_dd, src1_dd, dst_dd,
|
||||||
|
ne00, /*ne01, ne02, ne03,*/
|
||||||
|
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||||
|
/* s0,*/ s1, s2, s3,
|
||||||
|
/* nb00,*/ nb01, nb02, nb03,
|
||||||
|
s10, s11, s12/*, s13*/);
|
||||||
|
|
||||||
|
GGML_UNUSED(dst);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
const float * src1_d = (const float *)src1->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||||||
|
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
|
||||||
|
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
|
||||||
|
|
||||||
|
const int32_t * src1_i32 = (const int32_t *) src1_d;
|
||||||
|
|
||||||
|
switch (src0->type) {
|
||||||
|
case GGML_TYPE_F16:
|
||||||
|
get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_F32:
|
||||||
|
get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q4_0:
|
||||||
|
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q4_1:
|
||||||
|
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_0:
|
||||||
|
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_1:
|
||||||
|
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q8_0:
|
||||||
|
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
// TODO: k-quants
|
||||||
|
fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
5
ggml-cuda/getrows.cuh
Normal file
5
ggml-cuda/getrows.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_GET_ROWS_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
104
ggml-cuda/im2col.cu
Normal file
104
ggml-cuda/im2col.cu
Normal file
@ -0,0 +1,104 @@
|
|||||||
|
#include "im2col.cuh"
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static __global__ void im2col_kernel(
|
||||||
|
const float * x, T * dst, int64_t batch_offset,
|
||||||
|
int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
|
||||||
|
int s0, int s1, int p0, int p1, int d0, int d1) {
|
||||||
|
const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (i >= pelements) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int64_t ksize = OW * (KH > 1 ? KW : 1);
|
||||||
|
const int64_t kx = i / ksize;
|
||||||
|
const int64_t kd = kx * ksize;
|
||||||
|
const int64_t ky = (i - kd) / OW;
|
||||||
|
const int64_t ix = i % OW;
|
||||||
|
|
||||||
|
const int64_t oh = blockIdx.y;
|
||||||
|
const int64_t batch = blockIdx.z / IC;
|
||||||
|
const int64_t ic = blockIdx.z % IC;
|
||||||
|
|
||||||
|
const int64_t iiw = ix * s0 + kx * d0 - p0;
|
||||||
|
const int64_t iih = oh * s1 + ky * d1 - p1;
|
||||||
|
|
||||||
|
const int64_t offset_dst =
|
||||||
|
((batch * OH + oh) * OW + ix) * CHW +
|
||||||
|
(ic * (KW * KH) + ky * KW + kx);
|
||||||
|
|
||||||
|
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||||
|
dst[offset_dst] = 0.0f;
|
||||||
|
} else {
|
||||||
|
const int64_t offset_src = ic * offset_delta + batch * batch_offset;
|
||||||
|
dst[offset_dst] = x[offset_src + iih * IW + iiw];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static void im2col_cuda(const float * x, T* dst,
|
||||||
|
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
|
||||||
|
int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
||||||
|
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
||||||
|
const int parallel_elements = OW * KW * KH;
|
||||||
|
const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
|
||||||
|
dim3 block_nums(num_blocks, OH, batch * IC);
|
||||||
|
im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void im2col_cuda_f16(const float * x, half * dst,
|
||||||
|
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
|
||||||
|
int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
||||||
|
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
||||||
|
|
||||||
|
im2col_cuda<half>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void im2col_cuda_f32(const float * x, float * dst,
|
||||||
|
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
|
||||||
|
int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
||||||
|
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
||||||
|
|
||||||
|
im2col_cuda<float>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
const float * src1_d = (const float *)src1->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
||||||
|
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
|
||||||
|
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
|
||||||
|
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
|
||||||
|
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
|
||||||
|
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
|
||||||
|
|
||||||
|
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
|
||||||
|
|
||||||
|
const int64_t IC = src1->ne[is_2D ? 2 : 1];
|
||||||
|
const int64_t IH = is_2D ? src1->ne[1] : 1;
|
||||||
|
const int64_t IW = src1->ne[0];
|
||||||
|
|
||||||
|
const int64_t KH = is_2D ? src0->ne[1] : 1;
|
||||||
|
const int64_t KW = src0->ne[0];
|
||||||
|
|
||||||
|
const int64_t OH = is_2D ? dst->ne[2] : 1;
|
||||||
|
const int64_t OW = dst->ne[1];
|
||||||
|
|
||||||
|
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
|
||||||
|
const int64_t batch = src1->ne[3];
|
||||||
|
const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
|
||||||
|
|
||||||
|
if(dst->type == GGML_TYPE_F16) {
|
||||||
|
im2col_cuda_f16(src1_d, (half *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
|
||||||
|
} else {
|
||||||
|
im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
|
||||||
|
}
|
||||||
|
}
|
5
ggml-cuda/im2col.cuh
Normal file
5
ggml-cuda/im2col.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_IM2COL_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
2265
ggml-cuda/mmq.cu
Normal file
2265
ggml-cuda/mmq.cu
Normal file
File diff suppressed because it is too large
Load Diff
9
ggml-cuda/mmq.cuh
Normal file
9
ggml-cuda/mmq.cuh
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_mul_mat_q(
|
||||||
|
ggml_backend_cuda_context & ctx,
|
||||||
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||||
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||||
|
const int64_t src1_padded_row_size, cudaStream_t stream);
|
||||||
|
|
||||||
|
bool ggml_cuda_supports_mmq(enum ggml_type type);
|
406
ggml-cuda/mmvq.cu
Normal file
406
ggml-cuda/mmvq.cu
Normal file
@ -0,0 +1,406 @@
|
|||||||
|
#include "mmvq.cuh"
|
||||||
|
#include "vecdotq.cuh"
|
||||||
|
|
||||||
|
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
|
||||||
|
|
||||||
|
template <int ncols_y, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
|
||||||
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
// tell the compiler to use as many registers as it wants, see nwarps definition below
|
||||||
|
__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
|
||||||
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
static __global__ void mul_mat_vec_q(
|
||||||
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
||||||
|
constexpr int nwarps = 1;
|
||||||
|
constexpr int rows_per_cuda_block = 1;
|
||||||
|
#else
|
||||||
|
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
|
||||||
|
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
|
||||||
|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
||||||
|
|
||||||
|
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||||
|
const int row0 = rows_per_cuda_block*blockIdx.x;
|
||||||
|
const int blocks_per_row_x = ncols_x / qk;
|
||||||
|
const int blocks_per_col_y = nrows_y / QK8_1;
|
||||||
|
constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
|
||||||
|
|
||||||
|
// partial sum for each thread
|
||||||
|
float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
|
||||||
|
|
||||||
|
const block_q_t * x = (const block_q_t *) vx;
|
||||||
|
const block_q8_1 * y = (const block_q8_1 *) vy;
|
||||||
|
|
||||||
|
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
|
||||||
|
const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
|
||||||
|
|
||||||
|
// x block quant index when casting the quants to int
|
||||||
|
const int kqs = vdr * (tid % (qi/vdr));
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols_y; ++j) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
||||||
|
tmp[j][i] += vec_dot_q_cuda(
|
||||||
|
&x[kbx + (row0 + i)*blocks_per_row_x], &y[j*blocks_per_col_y + kby], kqs);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
|
||||||
|
if (threadIdx.y > 0) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols_y; ++j) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
||||||
|
tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
if (threadIdx.y > 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// sum up partial sums and write back result
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols_y; ++j) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int l = 0; l < nwarps-1; ++l) {
|
||||||
|
tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
|
||||||
|
}
|
||||||
|
tmp[j][i] = warp_reduce_sum(tmp[j][i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (threadIdx.x < rows_per_cuda_block) {
|
||||||
|
dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot>
|
||||||
|
static void mul_mat_vec_q_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
GGML_ASSERT(ncols_x % qk == 0);
|
||||||
|
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
|
||||||
|
|
||||||
|
int id;
|
||||||
|
CUDA_CHECK(cudaGetDevice(&id));
|
||||||
|
|
||||||
|
int64_t nwarps = 1;
|
||||||
|
int64_t rows_per_cuda_block = 1;
|
||||||
|
|
||||||
|
if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
|
||||||
|
switch(ncols_y) {
|
||||||
|
case 1:
|
||||||
|
nwarps = 4;
|
||||||
|
rows_per_cuda_block = 1;
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
case 3:
|
||||||
|
case 4:
|
||||||
|
nwarps = 4;
|
||||||
|
rows_per_cuda_block = 2;
|
||||||
|
break;
|
||||||
|
case 5:
|
||||||
|
case 6:
|
||||||
|
case 7:
|
||||||
|
case 8:
|
||||||
|
nwarps = 2;
|
||||||
|
rows_per_cuda_block = 2;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
|
||||||
|
const dim3 block_nums(nblocks, 1, 1);
|
||||||
|
const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
||||||
|
|
||||||
|
switch (ncols_y) {
|
||||||
|
case 1:
|
||||||
|
mul_mat_vec_q<1, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
mul_mat_vec_q<2, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
mul_mat_vec_q<3, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 4:
|
||||||
|
mul_mat_vec_q<4, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 5:
|
||||||
|
mul_mat_vec_q<5, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 6:
|
||||||
|
mul_mat_vec_q<6, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 7:
|
||||||
|
mul_mat_vec_q<7, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
case 8:
|
||||||
|
mul_mat_vec_q<8, qk, qi, block_q_t, vdr, vec_dot>
|
||||||
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q4_0_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q4_1_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q5_0_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q5_1_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q8_0_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q2_K_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q3_K_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q4_K_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q5_K_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_q6_K_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq2_xxs_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI2_XXS, block_iq2_xxs, 1, vec_dot_iq2_xxs_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq2_xs_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq2_s_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI2_S, block_iq2_s, 1, vec_dot_iq2_s_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq3_xxs_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq1_s_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_s, 1, vec_dot_iq1_s_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq1_m_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_m, 1, vec_dot_iq1_m_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq4_nl_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq4_xs_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, 1, vec_dot_iq4_xs_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void mul_mat_vec_iq3_s_q8_1_cuda(
|
||||||
|
const void * vx, const void * vy, float * dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
|
mul_mat_vec_q_cuda<QK_K, QI3_XS, block_iq3_s, 1, vec_dot_iq3_s_q8_1>
|
||||||
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_mul_mat_vec_q(
|
||||||
|
ggml_backend_cuda_context & ctx,
|
||||||
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||||
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||||
|
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t row_diff = row_high - row_low;
|
||||||
|
|
||||||
|
const int64_t ne10 = src1->ne[0];
|
||||||
|
GGML_ASSERT(ne10 % QK8_1 == 0);
|
||||||
|
|
||||||
|
const int64_t ne0 = dst->ne[0];
|
||||||
|
|
||||||
|
int id;
|
||||||
|
CUDA_CHECK(cudaGetDevice(&id));
|
||||||
|
|
||||||
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||||
|
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||||
|
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
||||||
|
|
||||||
|
switch (src0->type) {
|
||||||
|
case GGML_TYPE_Q4_0:
|
||||||
|
mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q4_1:
|
||||||
|
mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_0:
|
||||||
|
mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_1:
|
||||||
|
mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q8_0:
|
||||||
|
mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q2_K:
|
||||||
|
mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q3_K:
|
||||||
|
mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q4_K:
|
||||||
|
mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q5_K:
|
||||||
|
mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_Q6_K:
|
||||||
|
mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ2_XXS:
|
||||||
|
mul_mat_vec_iq2_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ2_XS:
|
||||||
|
mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ2_S:
|
||||||
|
mul_mat_vec_iq2_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ3_XXS:
|
||||||
|
mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ1_S:
|
||||||
|
mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
|
mul_mat_vec_iq1_m_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ4_NL:
|
||||||
|
mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ4_XS:
|
||||||
|
mul_mat_vec_iq4_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
case GGML_TYPE_IQ3_S:
|
||||||
|
mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_UNUSED(src1);
|
||||||
|
GGML_UNUSED(dst);
|
||||||
|
GGML_UNUSED(src1_ddf_i);
|
||||||
|
GGML_UNUSED(src1_ncols);
|
||||||
|
GGML_UNUSED(src1_padded_row_size);
|
||||||
|
}
|
7
ggml-cuda/mmvq.cuh
Normal file
7
ggml-cuda/mmvq.cuh
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_mul_mat_vec_q(
|
||||||
|
ggml_backend_cuda_context & ctx,
|
||||||
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||||
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||||
|
const int64_t src1_padded_row_size, cudaStream_t stream);
|
215
ggml-cuda/norm.cu
Normal file
215
ggml-cuda/norm.cu
Normal file
@ -0,0 +1,215 @@
|
|||||||
|
#include "norm.cuh"
|
||||||
|
|
||||||
|
template <int block_size>
|
||||||
|
static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
|
||||||
|
float2 mean_var = make_float2(0.f, 0.f);
|
||||||
|
|
||||||
|
for (int col = tid; col < ncols; col += block_size) {
|
||||||
|
const float xi = x[row*ncols + col];
|
||||||
|
mean_var.x += xi;
|
||||||
|
mean_var.y += xi * xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
// sum up partial sums
|
||||||
|
mean_var = warp_reduce_sum(mean_var);
|
||||||
|
if (block_size > WARP_SIZE) {
|
||||||
|
__shared__ float2 s_sum[32];
|
||||||
|
int warp_id = threadIdx.x / WARP_SIZE;
|
||||||
|
int lane_id = threadIdx.x % WARP_SIZE;
|
||||||
|
if (lane_id == 0) {
|
||||||
|
s_sum[warp_id] = mean_var;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
mean_var = s_sum[lane_id];
|
||||||
|
mean_var = warp_reduce_sum(mean_var);
|
||||||
|
}
|
||||||
|
|
||||||
|
const float mean = mean_var.x / ncols;
|
||||||
|
const float var = mean_var.y / ncols - mean * mean;
|
||||||
|
const float inv_std = rsqrtf(var + eps);
|
||||||
|
|
||||||
|
for (int col = tid; col < ncols; col += block_size) {
|
||||||
|
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int block_size>
|
||||||
|
static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
|
||||||
|
// blockIdx.x: num_groups idx
|
||||||
|
// threadIdx.x: block_size idx
|
||||||
|
int start = blockIdx.x * group_size;
|
||||||
|
int end = start + group_size;
|
||||||
|
|
||||||
|
start += threadIdx.x;
|
||||||
|
|
||||||
|
if (end >= ne_elements) {
|
||||||
|
end = ne_elements;
|
||||||
|
}
|
||||||
|
|
||||||
|
float tmp = 0.0f; // partial sum for thread in warp
|
||||||
|
|
||||||
|
for (int j = start; j < end; j += block_size) {
|
||||||
|
tmp += x[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
if (block_size > WARP_SIZE) {
|
||||||
|
__shared__ float s_sum[32];
|
||||||
|
int warp_id = threadIdx.x / WARP_SIZE;
|
||||||
|
int lane_id = threadIdx.x % WARP_SIZE;
|
||||||
|
if (lane_id == 0) {
|
||||||
|
s_sum[warp_id] = tmp;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
tmp = s_sum[lane_id];
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
float mean = tmp / group_size;
|
||||||
|
tmp = 0.0f;
|
||||||
|
|
||||||
|
for (int j = start; j < end; j += block_size) {
|
||||||
|
float xi = x[j] - mean;
|
||||||
|
dst[j] = xi;
|
||||||
|
tmp += xi * xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
if (block_size > WARP_SIZE) {
|
||||||
|
__shared__ float s_sum[32];
|
||||||
|
int warp_id = threadIdx.x / WARP_SIZE;
|
||||||
|
int lane_id = threadIdx.x % WARP_SIZE;
|
||||||
|
if (lane_id == 0) {
|
||||||
|
s_sum[warp_id] = tmp;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
tmp = s_sum[lane_id];
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
float variance = tmp / group_size;
|
||||||
|
float scale = rsqrtf(variance + eps);
|
||||||
|
for (int j = start; j < end; j += block_size) {
|
||||||
|
dst[j] *= scale;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int block_size>
|
||||||
|
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
||||||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
|
||||||
|
float tmp = 0.0f; // partial sum for thread in warp
|
||||||
|
|
||||||
|
for (int col = tid; col < ncols; col += block_size) {
|
||||||
|
const float xi = x[row*ncols + col];
|
||||||
|
tmp += xi * xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
// sum up partial sums
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
if (block_size > WARP_SIZE) {
|
||||||
|
__shared__ float s_sum[32];
|
||||||
|
int warp_id = threadIdx.x / WARP_SIZE;
|
||||||
|
int lane_id = threadIdx.x % WARP_SIZE;
|
||||||
|
if (lane_id == 0) {
|
||||||
|
s_sum[warp_id] = tmp;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
tmp = s_sum[lane_id];
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
const float mean = tmp / ncols;
|
||||||
|
const float scale = rsqrtf(mean + eps);
|
||||||
|
|
||||||
|
for (int col = tid; col < ncols; col += block_size) {
|
||||||
|
dst[row*ncols + col] = scale * x[row*ncols + col];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||||||
|
if (ncols < 1024) {
|
||||||
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||||
|
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||||
|
} else {
|
||||||
|
const dim3 block_dims(1024, 1, 1);
|
||||||
|
norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
|
||||||
|
static const float eps = 1e-6f;
|
||||||
|
if (group_size < 1024) {
|
||||||
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||||
|
group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
|
||||||
|
} else {
|
||||||
|
const dim3 block_dims(1024, 1, 1);
|
||||||
|
group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||||||
|
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||||||
|
if (ncols < 1024) {
|
||||||
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||||
|
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||||
|
} else {
|
||||||
|
const dim3 block_dims(1024, 1, 1);
|
||||||
|
rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
float eps;
|
||||||
|
memcpy(&eps, dst->op_params, sizeof(float));
|
||||||
|
|
||||||
|
norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
int num_groups = dst->op_params[0];
|
||||||
|
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
|
||||||
|
group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
float eps;
|
||||||
|
memcpy(&eps, dst->op_params, sizeof(float));
|
||||||
|
|
||||||
|
rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
|
||||||
|
}
|
7
ggml-cuda/norm.cuh
Normal file
7
ggml-cuda/norm.cuh
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
49
ggml-cuda/pad.cu
Normal file
49
ggml-cuda/pad.cu
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
#include "pad.cuh"
|
||||||
|
|
||||||
|
static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
|
||||||
|
// blockIdx.z: idx of ne2*ne3, aka ne02*ne03
|
||||||
|
// blockIdx.y: idx of ne1
|
||||||
|
// blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||||
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (nidx >= ne0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// operation
|
||||||
|
int offset_dst =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne0 +
|
||||||
|
blockIdx.z * ne0 * gridDim.y;
|
||||||
|
if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
|
||||||
|
int offset_src =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne00 +
|
||||||
|
blockIdx.z * ne00 * ne01;
|
||||||
|
dst[offset_dst] = x[offset_src];
|
||||||
|
} else {
|
||||||
|
dst[offset_dst] = 0.0f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void pad_f32_cuda(const float * x, float * dst,
|
||||||
|
const int ne00, const int ne01, const int ne02, const int ne03,
|
||||||
|
const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
|
||||||
|
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
|
||||||
|
dim3 gridDim(num_blocks, ne1, ne2*ne3);
|
||||||
|
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||||
|
|
||||||
|
pad_f32_cuda(src0_d, dst_d,
|
||||||
|
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||||
|
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||||
|
}
|
5
ggml-cuda/pad.cuh
Normal file
5
ggml-cuda/pad.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_PAD_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
94
ggml-cuda/pool2d.cu
Normal file
94
ggml-cuda/pool2d.cu
Normal file
@ -0,0 +1,94 @@
|
|||||||
|
#include "pool2d.cuh"
|
||||||
|
|
||||||
|
template <typename Ti, typename To>
|
||||||
|
static __global__ void pool2d_nchw_kernel(
|
||||||
|
const int ih, const int iw, const int oh, const int ow,
|
||||||
|
const int kh, const int kw, const int sh, const int sw,
|
||||||
|
const int ph, const int pw, const int parallel_elements,
|
||||||
|
const Ti* src, To* dst, const enum ggml_op_pool op) {
|
||||||
|
int idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (idx >= parallel_elements) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int I_HW = ih * iw;
|
||||||
|
const int O_HW = oh * ow;
|
||||||
|
const int nc = idx / O_HW;
|
||||||
|
const int cur_oh = idx % O_HW / ow;
|
||||||
|
const int cur_ow = idx % O_HW % ow;
|
||||||
|
const Ti* i_ptr = src + nc * I_HW;
|
||||||
|
To* o_ptr = dst + nc * O_HW;
|
||||||
|
const int start_h = cur_oh * sh - ph;
|
||||||
|
const int bh = max(0, start_h);
|
||||||
|
const int eh = min(ih, start_h + kh);
|
||||||
|
const int start_w = cur_ow * sw - pw;
|
||||||
|
const int bw = max(0, start_w);
|
||||||
|
const int ew = min(iw, start_w + kw);
|
||||||
|
const To scale = 1. / (kh * kw);
|
||||||
|
To res = 0;
|
||||||
|
|
||||||
|
switch (op) {
|
||||||
|
case GGML_OP_POOL_AVG: res = 0; break;
|
||||||
|
case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
|
||||||
|
default: assert(false);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = bh; i < eh; i += 1) {
|
||||||
|
for (int j = bw; j < ew; j += 1) {
|
||||||
|
#if __CUDA_ARCH__ >= 350
|
||||||
|
Ti cur = __ldg(i_ptr + i * iw + j);
|
||||||
|
#else
|
||||||
|
Ti cur = i_ptr[i * iw + j];
|
||||||
|
#endif
|
||||||
|
switch (op) {
|
||||||
|
case GGML_OP_POOL_AVG: res += cur * scale; break;
|
||||||
|
case GGML_OP_POOL_MAX: res = max(res, (To)cur); break;
|
||||||
|
default: assert(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
o_ptr[cur_oh * ow + cur_ow] = res;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void pool2d_nchw_kernel_f32_f32_cuda(
|
||||||
|
const int ih, const int iw, const int oh, const int ow,
|
||||||
|
const int kh, const int kw, const int sh, const int sw,
|
||||||
|
const int ph, const int pw, const int parallel_elements,
|
||||||
|
const float * src, float * dst, const enum ggml_op_pool op,
|
||||||
|
cudaStream_t stream) {
|
||||||
|
|
||||||
|
const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE;
|
||||||
|
dim3 block_nums(num_blocks);
|
||||||
|
pool2d_nchw_kernel<<<block_nums, CUDA_POOL2D_BLOCK_SIZE, 0, stream>>>(ih, iw, oh, ow, kh, kw, sh, sw, ph, pw, parallel_elements, src, dst, op);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int32_t * opts = (const int32_t *)dst->op_params;
|
||||||
|
enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
|
||||||
|
const int k0 = opts[1];
|
||||||
|
const int k1 = opts[2];
|
||||||
|
const int s0 = opts[3];
|
||||||
|
const int s1 = opts[4];
|
||||||
|
const int p0 = opts[5];
|
||||||
|
const int p1 = opts[6];
|
||||||
|
|
||||||
|
const int64_t IH = src0->ne[1];
|
||||||
|
const int64_t IW = src0->ne[0];
|
||||||
|
|
||||||
|
const int64_t N = dst->ne[3];
|
||||||
|
const int64_t OC = dst->ne[2];
|
||||||
|
const int64_t OH = dst->ne[1];
|
||||||
|
const int64_t OW = dst->ne[0];
|
||||||
|
|
||||||
|
const int parallel_elements = N * OC * OH * OW;
|
||||||
|
|
||||||
|
pool2d_nchw_kernel_f32_f32_cuda(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_d, dst_d, op, stream);
|
||||||
|
}
|
5
ggml-cuda/pool2d.cuh
Normal file
5
ggml-cuda/pool2d.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_POOL2D_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
45
ggml-cuda/quantize.cu
Normal file
45
ggml-cuda/quantize.cu
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
#include "quantize.cuh"
|
||||||
|
|
||||||
|
static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
|
||||||
|
const int ix = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (ix >= kx_padded) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int iy = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
|
|
||||||
|
const int i_padded = iy*kx_padded + ix;
|
||||||
|
|
||||||
|
block_q8_1 * y = (block_q8_1 *) vy;
|
||||||
|
|
||||||
|
const int ib = i_padded / QK8_1; // block index
|
||||||
|
const int iqs = i_padded % QK8_1; // quant index
|
||||||
|
|
||||||
|
const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
|
||||||
|
float amax = fabsf(xi);
|
||||||
|
float sum = xi;
|
||||||
|
|
||||||
|
amax = warp_reduce_max(amax);
|
||||||
|
sum = warp_reduce_sum(sum);
|
||||||
|
|
||||||
|
const float d = amax / 127;
|
||||||
|
const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
|
||||||
|
|
||||||
|
y[ib].qs[iqs] = q;
|
||||||
|
|
||||||
|
if (iqs > 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
reinterpret_cast<half&>(y[ib].ds.x) = d;
|
||||||
|
reinterpret_cast<half&>(y[ib].ds.y) = sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
|
||||||
|
const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
|
||||||
|
const dim3 num_blocks(block_num_x, ky, 1);
|
||||||
|
const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1);
|
||||||
|
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
|
||||||
|
}
|
||||||
|
|
5
ggml-cuda/quantize.cuh
Normal file
5
ggml-cuda/quantize.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_QUANTIZE_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream);
|
308
ggml-cuda/rope.cu
Normal file
308
ggml-cuda/rope.cu
Normal file
@ -0,0 +1,308 @@
|
|||||||
|
#include "rope.cuh"
|
||||||
|
|
||||||
|
struct rope_corr_dims {
|
||||||
|
float v[4];
|
||||||
|
};
|
||||||
|
|
||||||
|
static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
|
||||||
|
const float y = (i0 / 2 - low) / max(0.001f, high - low);
|
||||||
|
return 1.0f - min(1.0f, max(0.0f, y));
|
||||||
|
}
|
||||||
|
|
||||||
|
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
||||||
|
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||||||
|
static __device__ void rope_yarn(
|
||||||
|
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
|
||||||
|
float * cos_theta, float * sin_theta
|
||||||
|
) {
|
||||||
|
// Get n-d rotational scaling corrected for extrapolation
|
||||||
|
float theta_interp = freq_scale * theta_extrap;
|
||||||
|
float theta = theta_interp;
|
||||||
|
if (ext_factor != 0.0f) {
|
||||||
|
float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
|
||||||
|
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||||
|
|
||||||
|
// Get n-d magnitude scaling corrected for interpolation
|
||||||
|
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
|
||||||
|
}
|
||||||
|
*cos_theta = cosf(theta) * mscale;
|
||||||
|
*sin_theta = sinf(theta) * mscale;
|
||||||
|
}
|
||||||
|
|
||||||
|
// rope == RoPE == rotary positional embedding
|
||||||
|
template<typename T, bool has_pos>
|
||||||
|
static __global__ void rope(
|
||||||
|
const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
|
||||||
|
float ext_factor, float attn_factor, rope_corr_dims corr_dims
|
||||||
|
) {
|
||||||
|
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||||
|
|
||||||
|
if (col >= ncols) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
const int i = row*ncols + col;
|
||||||
|
const int i2 = row/p_delta_rows;
|
||||||
|
|
||||||
|
const int p = has_pos ? pos[i2] : 0;
|
||||||
|
const float theta_base = p*powf(freq_base, -float(col)/ncols);
|
||||||
|
|
||||||
|
float cos_theta, sin_theta;
|
||||||
|
rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||||
|
|
||||||
|
const float x0 = x[i + 0];
|
||||||
|
const float x1 = x[i + 1];
|
||||||
|
|
||||||
|
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||||
|
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T, bool has_pos>
|
||||||
|
static __global__ void rope_neox(
|
||||||
|
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
|
||||||
|
) {
|
||||||
|
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||||
|
|
||||||
|
if (col >= ncols) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
const int ib = col / n_dims;
|
||||||
|
const int ic = col % n_dims;
|
||||||
|
|
||||||
|
if (ib > 0) {
|
||||||
|
const int i = row*ncols + ib*n_dims + ic;
|
||||||
|
|
||||||
|
dst[i + 0] = x[i + 0];
|
||||||
|
dst[i + 1] = x[i + 1];
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i = row*ncols + ib*n_dims + ic/2;
|
||||||
|
const int i2 = row/p_delta_rows;
|
||||||
|
|
||||||
|
float cur_rot = inv_ndims * ic - ib;
|
||||||
|
|
||||||
|
const int p = has_pos ? pos[i2] : 0;
|
||||||
|
const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);
|
||||||
|
|
||||||
|
float cos_theta, sin_theta;
|
||||||
|
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||||
|
|
||||||
|
const float x0 = x[i + 0];
|
||||||
|
const float x1 = x[i + n_dims/2];
|
||||||
|
|
||||||
|
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||||
|
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void rope_glm_f32(
|
||||||
|
const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
|
||||||
|
int n_ctx
|
||||||
|
) {
|
||||||
|
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
const int half_n_dims = ncols/4;
|
||||||
|
|
||||||
|
if (col >= half_n_dims) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
|
const int i = row*ncols + col;
|
||||||
|
const int i2 = row/p_delta_rows;
|
||||||
|
|
||||||
|
const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
|
||||||
|
// FIXME: this is likely wrong
|
||||||
|
const int p = pos != nullptr ? pos[i2] : 0;
|
||||||
|
|
||||||
|
const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
|
||||||
|
const float sin_theta = sinf(theta);
|
||||||
|
const float cos_theta = cosf(theta);
|
||||||
|
|
||||||
|
const float x0 = x[i + 0];
|
||||||
|
const float x1 = x[i + half_n_dims];
|
||||||
|
|
||||||
|
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||||
|
dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
|
||||||
|
|
||||||
|
const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
|
||||||
|
const float sin_block_theta = sinf(block_theta);
|
||||||
|
const float cos_block_theta = cosf(block_theta);
|
||||||
|
|
||||||
|
const float x2 = x[i + half_n_dims * 2];
|
||||||
|
const float x3 = x[i + half_n_dims * 3];
|
||||||
|
|
||||||
|
dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
|
||||||
|
dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
static void rope_cuda(
|
||||||
|
const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
|
||||||
|
) {
|
||||||
|
GGML_ASSERT(ncols % 2 == 0);
|
||||||
|
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||||
|
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||||
|
const dim3 block_nums(nrows, num_blocks_x, 1);
|
||||||
|
if (pos == nullptr) {
|
||||||
|
rope<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
|
||||||
|
);
|
||||||
|
} else {
|
||||||
|
rope<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
static void rope_neox_cuda(
|
||||||
|
const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
|
||||||
|
) {
|
||||||
|
GGML_ASSERT(ncols % 2 == 0);
|
||||||
|
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||||
|
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||||
|
const dim3 block_nums(nrows, num_blocks_x, 1);
|
||||||
|
|
||||||
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
|
const float inv_ndims = -1.0f / n_dims;
|
||||||
|
|
||||||
|
if (pos == nullptr) {
|
||||||
|
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||||
|
theta_scale, inv_ndims
|
||||||
|
);
|
||||||
|
} else {
|
||||||
|
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||||
|
theta_scale, inv_ndims
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void rope_glm_f32_cuda(
|
||||||
|
const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, int n_ctx, cudaStream_t stream
|
||||||
|
) {
|
||||||
|
GGML_ASSERT(ncols % 4 == 0);
|
||||||
|
const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
|
||||||
|
const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
|
||||||
|
const dim3 block_nums(num_blocks_x, nrows, 1);
|
||||||
|
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void rope_cuda_f16(
|
||||||
|
const half * x, half * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
|
||||||
|
|
||||||
|
rope_cuda<half>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void rope_cuda_f32(
|
||||||
|
const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
|
||||||
|
|
||||||
|
rope_cuda<float>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void rope_neox_cuda_f16(
|
||||||
|
const half * x, half * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
|
||||||
|
|
||||||
|
rope_neox_cuda<half>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void rope_neox_cuda_f32(
|
||||||
|
const float * x, float * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
|
||||||
|
) {
|
||||||
|
|
||||||
|
rope_neox_cuda<float>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
const float * src1_d = (const float *)src1->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||||
|
GGML_ASSERT(src0->type == dst->type);
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t ne01 = src0->ne[1];
|
||||||
|
const int64_t ne2 = dst->ne[2];
|
||||||
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||||
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||||
|
const int mode = ((int32_t *) dst->op_params)[2];
|
||||||
|
const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||||||
|
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
|
||||||
|
|
||||||
|
// RoPE alteration for extended context
|
||||||
|
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||||
|
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||||
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||||||
|
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||||||
|
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||||||
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||||
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||||
|
|
||||||
|
const int32_t * pos = nullptr;
|
||||||
|
if ((mode & 1) == 0) {
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||||
|
GGML_ASSERT(src1->ne[0] == ne2);
|
||||||
|
pos = (const int32_t *) src1_d;
|
||||||
|
}
|
||||||
|
|
||||||
|
const bool is_neox = mode & 2;
|
||||||
|
const bool is_glm = mode & 4;
|
||||||
|
|
||||||
|
rope_corr_dims corr_dims;
|
||||||
|
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
|
||||||
|
|
||||||
|
// compute
|
||||||
|
if (is_glm) {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
rope_glm_f32_cuda(src0_d, dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, stream);
|
||||||
|
} else if (is_neox) {
|
||||||
|
if (src0->type == GGML_TYPE_F32) {
|
||||||
|
rope_neox_cuda_f32(
|
||||||
|
(const float *)src0_d, (float *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||||
|
attn_factor, corr_dims, stream
|
||||||
|
);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16) {
|
||||||
|
rope_neox_cuda_f16(
|
||||||
|
(const half *)src0_d, (half *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||||
|
attn_factor, corr_dims, stream
|
||||||
|
);
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (src0->type == GGML_TYPE_F32) {
|
||||||
|
rope_cuda_f32(
|
||||||
|
(const float *)src0_d, (float *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||||
|
attn_factor, corr_dims, stream
|
||||||
|
);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16) {
|
||||||
|
rope_cuda_f16(
|
||||||
|
(const half *)src0_d, (half *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||||
|
attn_factor, corr_dims, stream
|
||||||
|
);
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
5
ggml-cuda/rope.cuh
Normal file
5
ggml-cuda/rope.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_ROPE_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
32
ggml-cuda/scale.cu
Normal file
32
ggml-cuda/scale.cu
Normal file
@ -0,0 +1,32 @@
|
|||||||
|
#include "scale.cuh"
|
||||||
|
|
||||||
|
static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
dst[i] = scale * x[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
|
||||||
|
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
float scale;
|
||||||
|
memcpy(&scale, dst->op_params, sizeof(float));
|
||||||
|
|
||||||
|
scale_f32_cuda(src0_d, dst_d, scale, ggml_nelements(src0), stream);
|
||||||
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
}
|
5
ggml-cuda/scale.cuh
Normal file
5
ggml-cuda/scale.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_SCALE_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
201
ggml-cuda/softmax.cu
Normal file
201
ggml-cuda/softmax.cu
Normal file
@ -0,0 +1,201 @@
|
|||||||
|
#include "softmax.cuh"
|
||||||
|
|
||||||
|
template <bool vals_smem, int ncols_template, int block_size_template>
|
||||||
|
static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
|
||||||
|
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
|
||||||
|
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int rowx = blockIdx.x;
|
||||||
|
const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
|
||||||
|
|
||||||
|
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
|
||||||
|
|
||||||
|
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||||
|
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||||
|
|
||||||
|
float slope = 0.0f;
|
||||||
|
|
||||||
|
// ALiBi
|
||||||
|
if (max_bias > 0.0f) {
|
||||||
|
const int h = rowx/nrows_y; // head index
|
||||||
|
|
||||||
|
const float base = h < n_head_log2 ? m0 : m1;
|
||||||
|
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||||
|
|
||||||
|
slope = powf(base, exp);
|
||||||
|
}
|
||||||
|
|
||||||
|
extern __shared__ float data_soft_max_f32[];
|
||||||
|
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
|
||||||
|
// shared memory buffer to cache values between iterations:
|
||||||
|
float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + rowx*ncols;
|
||||||
|
|
||||||
|
float max_val = -INFINITY;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||||||
|
const int col = col0 + tid;
|
||||||
|
|
||||||
|
if (ncols_template == 0 && col >= ncols) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int ix = rowx*ncols + col;
|
||||||
|
const int iy = rowy*ncols + col;
|
||||||
|
|
||||||
|
const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
|
||||||
|
|
||||||
|
vals[col] = val;
|
||||||
|
max_val = max(max_val, val);
|
||||||
|
}
|
||||||
|
|
||||||
|
// find the max value in the block
|
||||||
|
max_val = warp_reduce_max(max_val);
|
||||||
|
if (block_size > WARP_SIZE) {
|
||||||
|
if (warp_id == 0) {
|
||||||
|
buf_iw[lane_id] = -INFINITY;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
if (lane_id == 0) {
|
||||||
|
buf_iw[warp_id] = max_val;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
max_val = buf_iw[lane_id];
|
||||||
|
max_val = warp_reduce_max(max_val);
|
||||||
|
}
|
||||||
|
|
||||||
|
float tmp = 0.0f; // partial sum
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||||||
|
const int col = col0 + tid;
|
||||||
|
|
||||||
|
if (ncols_template == 0 && col >= ncols) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float val = expf(vals[col] - max_val);
|
||||||
|
tmp += val;
|
||||||
|
vals[col] = val;
|
||||||
|
}
|
||||||
|
|
||||||
|
// find the sum of exps in the block
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
if (block_size > WARP_SIZE) {
|
||||||
|
__syncthreads();
|
||||||
|
if (warp_id == 0) {
|
||||||
|
buf_iw[lane_id] = 0.0f;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
if (lane_id == 0) {
|
||||||
|
buf_iw[warp_id] = tmp;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
tmp = buf_iw[lane_id];
|
||||||
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
const float inv_sum = 1.0f / tmp;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||||||
|
const int col = col0 + tid;
|
||||||
|
|
||||||
|
if (ncols_template == 0 && col >= ncols) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int idst = rowx*ncols + col;
|
||||||
|
dst[idst] = vals[col] * inv_sum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
|
||||||
|
int nth = WARP_SIZE;
|
||||||
|
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
|
||||||
|
const dim3 block_dims(nth, 1, 1);
|
||||||
|
const dim3 block_nums(nrows_x, 1, 1);
|
||||||
|
const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
|
||||||
|
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
|
||||||
|
|
||||||
|
const uint32_t n_head_kv = nrows_x/nrows_y;
|
||||||
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
|
||||||
|
|
||||||
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||||
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||||
|
|
||||||
|
if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
|
||||||
|
switch (ncols_x) {
|
||||||
|
case 32:
|
||||||
|
soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 64:
|
||||||
|
soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 128:
|
||||||
|
soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 256:
|
||||||
|
soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 512:
|
||||||
|
soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 1024:
|
||||||
|
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 2048:
|
||||||
|
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
case 4096:
|
||||||
|
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
const size_t shmem_low = WARP_SIZE*sizeof(float);
|
||||||
|
soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
const float * src1_d = src1 ? (const float *)src1->data : nullptr;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
|
||||||
|
|
||||||
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t nrows_x = ggml_nrows(src0);
|
||||||
|
const int64_t nrows_y = src0->ne[1];
|
||||||
|
|
||||||
|
float scale = 1.0f;
|
||||||
|
float max_bias = 0.0f;
|
||||||
|
|
||||||
|
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
|
||||||
|
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
|
||||||
|
|
||||||
|
// positions tensor
|
||||||
|
float * src2_dd = nullptr;
|
||||||
|
|
||||||
|
ggml_tensor * src2 = dst->src[2];
|
||||||
|
const bool use_src2 = src2 != nullptr;
|
||||||
|
|
||||||
|
if (use_src2) {
|
||||||
|
src2_dd = (float *)src2->data;
|
||||||
|
}
|
||||||
|
|
||||||
|
soft_max_f32_cuda(src0_d, src1_d, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
|
||||||
|
}
|
5
ggml-cuda/softmax.cuh
Normal file
5
ggml-cuda/softmax.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_SOFT_MAX_BLOCK_SIZE 1024
|
||||||
|
|
||||||
|
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
40
ggml-cuda/sumrows.cu
Normal file
40
ggml-cuda/sumrows.cu
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
#include "sumrows.cuh"
|
||||||
|
|
||||||
|
static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
|
||||||
|
const int row = blockIdx.x;
|
||||||
|
const int col = threadIdx.x;
|
||||||
|
|
||||||
|
float sum = 0.0f;
|
||||||
|
for (int i = col; i < ncols; i += blockDim.x) {
|
||||||
|
sum += x[row * ncols + i];
|
||||||
|
}
|
||||||
|
|
||||||
|
sum = warp_reduce_sum(sum);
|
||||||
|
|
||||||
|
if (col == 0) {
|
||||||
|
dst[row] = sum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||||
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||||
|
const dim3 block_nums(nrows, 1, 1);
|
||||||
|
k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
|
||||||
|
|
||||||
|
const int64_t ncols = src0->ne[0];
|
||||||
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream);
|
||||||
|
}
|
3
ggml-cuda/sumrows.cuh
Normal file
3
ggml-cuda/sumrows.cuh
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
47
ggml-cuda/tsembd.cu
Normal file
47
ggml-cuda/tsembd.cu
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
#include "tsembd.cuh"
|
||||||
|
|
||||||
|
static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) {
|
||||||
|
// blockIDx.y: idx of timesteps->ne[0]
|
||||||
|
// blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE
|
||||||
|
int i = blockIdx.y;
|
||||||
|
int j = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
float * embed_data = (float *)((char *)dst + i*nb1);
|
||||||
|
|
||||||
|
if (dim % 2 != 0 && j == ((dim + 1) / 2)) {
|
||||||
|
embed_data[dim] = 0.f;
|
||||||
|
}
|
||||||
|
|
||||||
|
int half = dim / 2;
|
||||||
|
if (j >= half) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
float timestep = timesteps[i];
|
||||||
|
float freq = (float)expf(-logf(max_period) * j / half);
|
||||||
|
float arg = timestep * freq;
|
||||||
|
embed_data[j] = cosf(arg);
|
||||||
|
embed_data[j + half] = sinf(arg);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1,
|
||||||
|
const int dim, const int max_period, cudaStream_t stream) {
|
||||||
|
int half_ceil = (dim + 1) / 2;
|
||||||
|
int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE;
|
||||||
|
dim3 gridDim(num_blocks, ne00, 1);
|
||||||
|
timestep_embedding_f32<<<gridDim, CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE, 0, stream>>>(x, dst, nb1, dim, max_period);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const int dim = dst->op_params[0];
|
||||||
|
const int max_period = dst->op_params[1];
|
||||||
|
|
||||||
|
timestep_embedding_f32_cuda(src0_d, dst_d, src0->ne[0], dst->nb[1], dim, max_period, stream);
|
||||||
|
}
|
5
ggml-cuda/tsembd.cuh
Normal file
5
ggml-cuda/tsembd.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
240
ggml-cuda/unary.cu
Normal file
240
ggml-cuda/unary.cu
Normal file
@ -0,0 +1,240 @@
|
|||||||
|
#include "unary.cuh"
|
||||||
|
|
||||||
|
static __global__ void gelu_f32(const float * x, float * dst, const int k) {
|
||||||
|
const float GELU_COEF_A = 0.044715f;
|
||||||
|
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
float xi = x[i];
|
||||||
|
dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
|
||||||
|
const float GELU_QUICK_COEF = -1.702f;
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void silu_f32(const float * x, float * dst, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = x[i] / (1.0f + expf(-x[i]));
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void tanh_f32(const float * x, float * dst, int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = tanhf(x[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void relu_f32(const float * x, float * dst, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = fmaxf(x[i], 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void sqr_f32(const float * x, float * dst, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = x[i] * x[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
||||||
|
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
||||||
|
gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
|
||||||
|
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
|
||||||
|
tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
|
||||||
|
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
|
||||||
|
hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
|
||||||
|
hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
|
||||||
|
leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
|
||||||
|
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
gelu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
gelu_quick_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
tanh_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
hardsigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
float negative_slope;
|
||||||
|
memcpy(&negative_slope, dst->op_params, sizeof(float));
|
||||||
|
|
||||||
|
leaky_relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), negative_slope, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
27
ggml-cuda/unary.cuh
Normal file
27
ggml-cuda/unary.cuh
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_GELU_BLOCK_SIZE 256
|
||||||
|
#define CUDA_SILU_BLOCK_SIZE 256
|
||||||
|
#define CUDA_TANH_BLOCK_SIZE 256
|
||||||
|
#define CUDA_RELU_BLOCK_SIZE 256
|
||||||
|
#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
|
||||||
|
#define CUDA_HARDSWISH_BLOCK_SIZE 256
|
||||||
|
#define CUDA_SQR_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
48
ggml-cuda/upscale.cu
Normal file
48
ggml-cuda/upscale.cu
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
#include "upscale.cuh"
|
||||||
|
|
||||||
|
static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
|
||||||
|
// blockIdx.z: idx of ne02*ne03
|
||||||
|
// blockIdx.y: idx of ne01*scale_factor, aka ne1
|
||||||
|
// blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
|
||||||
|
// ne00xne01: ne00 * ne01
|
||||||
|
int ne0 = ne00 * scale_factor;
|
||||||
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (nidx >= ne0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
// operation
|
||||||
|
int i00 = nidx / scale_factor;
|
||||||
|
int i01 = blockIdx.y / scale_factor;
|
||||||
|
int offset_src =
|
||||||
|
i00 +
|
||||||
|
i01 * ne00 +
|
||||||
|
blockIdx.z * ne00xne01;
|
||||||
|
int offset_dst =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne0 +
|
||||||
|
blockIdx.z * ne0 * gridDim.y;
|
||||||
|
dst[offset_dst] = x[offset_src];
|
||||||
|
}
|
||||||
|
|
||||||
|
static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
|
||||||
|
const int scale_factor, cudaStream_t stream) {
|
||||||
|
int ne0 = (ne00 * scale_factor);
|
||||||
|
int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
|
||||||
|
dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
|
||||||
|
upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||||
|
|
||||||
|
const int scale_factor = dst->op_params[0];
|
||||||
|
|
||||||
|
upscale_f32_cuda(src0_d, dst_d, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, stream);
|
||||||
|
}
|
5
ggml-cuda/upscale.cuh
Normal file
5
ggml-cuda/upscale.cuh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_UPSCALE_BLOCK_SIZE 256
|
||||||
|
|
||||||
|
void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
1280
ggml-cuda/vecdotq.cuh
Normal file
1280
ggml-cuda/vecdotq.cuh
Normal file
File diff suppressed because it is too large
Load Diff
@ -1430,6 +1430,10 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
|||||||
struct ggml_tensor * dst = gf->nodes[i];
|
struct ggml_tensor * dst = gf->nodes[i];
|
||||||
GGML_ASSERT(dst->data != nullptr);
|
GGML_ASSERT(dst->data != nullptr);
|
||||||
|
|
||||||
|
if (ggml_is_empty(dst)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
switch (dst->op) {
|
switch (dst->op) {
|
||||||
case GGML_OP_NONE:
|
case GGML_OP_NONE:
|
||||||
case GGML_OP_RESHAPE:
|
case GGML_OP_RESHAPE:
|
||||||
@ -1951,6 +1955,7 @@ static struct ggml_backend_i kompute_backend_i = {
|
|||||||
/* .graph_plan_compute = */ NULL,
|
/* .graph_plan_compute = */ NULL,
|
||||||
/* .graph_compute = */ ggml_backend_kompute_graph_compute,
|
/* .graph_compute = */ ggml_backend_kompute_graph_compute,
|
||||||
/* .supports_op = */ ggml_backend_kompute_supports_op,
|
/* .supports_op = */ ggml_backend_kompute_supports_op,
|
||||||
|
/* .offload_op = */ NULL,
|
||||||
/* .event_new = */ NULL,
|
/* .event_new = */ NULL,
|
||||||
/* .event_free = */ NULL,
|
/* .event_free = */ NULL,
|
||||||
/* .event_record = */ NULL,
|
/* .event_record = */ NULL,
|
||||||
|
86
ggml-metal.m
86
ggml-metal.m
@ -64,6 +64,7 @@ enum ggml_metal_kernel_type {
|
|||||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S,
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S,
|
||||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S,
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S,
|
||||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S,
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S,
|
||||||
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M,
|
||||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL,
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL,
|
||||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS,
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS,
|
||||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
|
||||||
@ -91,6 +92,7 @@ enum ggml_metal_kernel_type {
|
|||||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32,
|
||||||
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
|
||||||
@ -114,6 +116,7 @@ enum ggml_metal_kernel_type {
|
|||||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32,
|
||||||
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
|
||||||
@ -134,6 +137,7 @@ enum ggml_metal_kernel_type {
|
|||||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32,
|
||||||
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
|
||||||
@ -154,6 +158,7 @@ enum ggml_metal_kernel_type {
|
|||||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32,
|
||||||
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32,
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_ROPE_F32,
|
GGML_METAL_KERNEL_TYPE_ROPE_F32,
|
||||||
@ -173,8 +178,9 @@ enum ggml_metal_kernel_type {
|
|||||||
GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
|
GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
|
||||||
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,
|
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,
|
||||||
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,
|
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,
|
||||||
//GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,
|
GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,
|
||||||
//GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,
|
GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,
|
||||||
|
GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL,
|
||||||
GGML_METAL_KERNEL_TYPE_CPY_F16_F16,
|
GGML_METAL_KERNEL_TYPE_CPY_F16_F16,
|
||||||
GGML_METAL_KERNEL_TYPE_CPY_F16_F32,
|
GGML_METAL_KERNEL_TYPE_CPY_F16_F32,
|
||||||
GGML_METAL_KERNEL_TYPE_CONCAT,
|
GGML_METAL_KERNEL_TYPE_CONCAT,
|
||||||
@ -489,6 +495,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true);
|
||||||
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, get_rows_iq1_m, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
|
||||||
@ -516,6 +523,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, ctx->support_simdgroup_reduction);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, ctx->support_simdgroup_reduction);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, ctx->support_simdgroup_reduction);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, ctx->support_simdgroup_reduction);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction);
|
||||||
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, mul_mv_iq1_m_f32, ctx->support_simdgroup_reduction);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction);
|
||||||
@ -539,6 +547,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, ctx->support_simdgroup_reduction);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, ctx->support_simdgroup_reduction);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, ctx->support_simdgroup_reduction);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, ctx->support_simdgroup_reduction);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction);
|
||||||
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, mul_mv_id_iq1_m_f32, ctx->support_simdgroup_reduction);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm);
|
||||||
@ -559,6 +568,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, ctx->support_simdgroup_mm);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, ctx->support_simdgroup_mm);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, ctx->support_simdgroup_mm);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, ctx->support_simdgroup_mm);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm);
|
||||||
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, ctx->support_simdgroup_mm);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm);
|
||||||
@ -579,6 +589,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, ctx->support_simdgroup_mm);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, ctx->support_simdgroup_mm);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, ctx->support_simdgroup_mm);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, ctx->support_simdgroup_mm);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm);
|
||||||
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, ctx->support_simdgroup_mm);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true);
|
||||||
@ -598,8 +609,9 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true);
|
||||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true);
|
||||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true);
|
||||||
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, cpy_f32_iq4_nl, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true);
|
||||||
@ -739,6 +751,9 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
|
|||||||
case GGML_TYPE_Q8_0:
|
case GGML_TYPE_Q8_0:
|
||||||
case GGML_TYPE_Q4_0:
|
case GGML_TYPE_Q4_0:
|
||||||
case GGML_TYPE_Q4_1:
|
case GGML_TYPE_Q4_1:
|
||||||
|
case GGML_TYPE_Q5_0:
|
||||||
|
case GGML_TYPE_Q5_1:
|
||||||
|
case GGML_TYPE_IQ4_NL:
|
||||||
return true;
|
return true;
|
||||||
default:
|
default:
|
||||||
return false;
|
return false;
|
||||||
@ -832,6 +847,10 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
struct ggml_tensor * src2 = gf->nodes[i]->src[2];
|
struct ggml_tensor * src2 = gf->nodes[i]->src[2];
|
||||||
struct ggml_tensor * dst = gf->nodes[i];
|
struct ggml_tensor * dst = gf->nodes[i];
|
||||||
|
|
||||||
|
if (ggml_is_empty(dst)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
switch (dst->op) {
|
switch (dst->op) {
|
||||||
case GGML_OP_NONE:
|
case GGML_OP_NONE:
|
||||||
case GGML_OP_RESHAPE:
|
case GGML_OP_RESHAPE:
|
||||||
@ -1387,6 +1406,14 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
(ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) {
|
(ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) {
|
||||||
//printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
|
//printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
|
||||||
|
|
||||||
|
// some Metal matrix data types require aligned pointers
|
||||||
|
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
|
||||||
|
switch (src0->type) {
|
||||||
|
case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
|
||||||
|
case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
|
||||||
|
default: break;
|
||||||
|
}
|
||||||
|
|
||||||
id<MTLComputePipelineState> pipeline = nil;
|
id<MTLComputePipelineState> pipeline = nil;
|
||||||
|
|
||||||
switch (src0->type) {
|
switch (src0->type) {
|
||||||
@ -1408,6 +1435,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32 ].pipeline; break;
|
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32 ].pipeline; break;
|
||||||
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32 ].pipeline; break;
|
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32 ].pipeline; break;
|
||||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break;
|
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break;
|
||||||
|
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32 ].pipeline; break;
|
||||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break;
|
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break;
|
||||||
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break;
|
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break;
|
||||||
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
||||||
@ -1562,6 +1590,12 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
nth1 = 16;
|
nth1 = 16;
|
||||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline;
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline;
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
|
{
|
||||||
|
nth0 = 4;
|
||||||
|
nth1 = 16;
|
||||||
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32].pipeline;
|
||||||
|
} break;
|
||||||
case GGML_TYPE_IQ4_NL:
|
case GGML_TYPE_IQ4_NL:
|
||||||
{
|
{
|
||||||
nth0 = 4;
|
nth0 = 4;
|
||||||
@ -1606,9 +1640,9 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:17];
|
[encoder setBytes:&r2 length:sizeof(r2) atIndex:17];
|
||||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:18];
|
[encoder setBytes:&r3 length:sizeof(r3) atIndex:18];
|
||||||
|
|
||||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 ||
|
||||||
src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
|
src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K ||
|
||||||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ2_S) {
|
src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
|
else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
|
||||||
@ -1701,6 +1735,14 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
ne20 % 32 == 0 && ne20 >= 64 &&
|
ne20 % 32 == 0 && ne20 >= 64 &&
|
||||||
ne11 > ne11_mm_min) {
|
ne11 > ne11_mm_min) {
|
||||||
|
|
||||||
|
// some Metal matrix data types require aligned pointers
|
||||||
|
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
|
||||||
|
switch (src0->type) {
|
||||||
|
case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
|
||||||
|
case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
|
||||||
|
default: break;
|
||||||
|
}
|
||||||
|
|
||||||
id<MTLComputePipelineState> pipeline = nil;
|
id<MTLComputePipelineState> pipeline = nil;
|
||||||
|
|
||||||
switch (src2->type) {
|
switch (src2->type) {
|
||||||
@ -1722,6 +1764,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32 ].pipeline; break;
|
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32 ].pipeline; break;
|
||||||
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32 ].pipeline; break;
|
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32 ].pipeline; break;
|
||||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32 ].pipeline; break;
|
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32 ].pipeline; break;
|
||||||
|
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32 ].pipeline; break;
|
||||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break;
|
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break;
|
||||||
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break;
|
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break;
|
||||||
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
|
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
|
||||||
@ -1879,6 +1922,12 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
nth1 = 16;
|
nth1 = 16;
|
||||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline;
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline;
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
|
{
|
||||||
|
nth0 = 4;
|
||||||
|
nth1 = 16;
|
||||||
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32].pipeline;
|
||||||
|
} break;
|
||||||
case GGML_TYPE_IQ4_NL:
|
case GGML_TYPE_IQ4_NL:
|
||||||
{
|
{
|
||||||
nth0 = 4;
|
nth0 = 4;
|
||||||
@ -1939,9 +1988,9 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j];
|
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j];
|
||||||
}
|
}
|
||||||
|
|
||||||
if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 ||
|
if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 || src2t == GGML_TYPE_Q5_0 ||
|
||||||
src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 ||
|
src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 || src2t == GGML_TYPE_Q2_K ||
|
||||||
src2t == GGML_TYPE_Q2_K || src2t == GGML_TYPE_IQ1_S || src2t == GGML_TYPE_IQ2_S) {
|
src2t == GGML_TYPE_IQ1_S || src2t == GGML_TYPE_IQ1_M || src2t == GGML_TYPE_IQ2_S) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
else if (src2t == GGML_TYPE_IQ2_XXS || src2t == GGML_TYPE_IQ2_XS) {
|
else if (src2t == GGML_TYPE_IQ2_XXS || src2t == GGML_TYPE_IQ2_XS) {
|
||||||
@ -2003,6 +2052,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S ].pipeline; break;
|
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S ].pipeline; break;
|
||||||
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S ].pipeline; break;
|
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S ].pipeline; break;
|
||||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S ].pipeline; break;
|
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S ].pipeline; break;
|
||||||
|
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M ].pipeline; break;
|
||||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break;
|
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break;
|
||||||
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break;
|
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break;
|
||||||
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
|
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
|
||||||
@ -2431,13 +2481,14 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0);
|
GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0);
|
||||||
|
|
||||||
switch (dstt) {
|
switch (dstt) {
|
||||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break;
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break;
|
||||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break;
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break;
|
||||||
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break;
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break;
|
||||||
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break;
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break;
|
||||||
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break;
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break;
|
||||||
//case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break;
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break;
|
||||||
//case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break;
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break;
|
||||||
|
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL].pipeline; break;
|
||||||
default: GGML_ASSERT(false && "not implemented");
|
default: GGML_ASSERT(false && "not implemented");
|
||||||
};
|
};
|
||||||
} break;
|
} break;
|
||||||
@ -2837,6 +2888,7 @@ static struct ggml_backend_i ggml_backend_metal_i = {
|
|||||||
/* .graph_plan_compute = */ NULL,
|
/* .graph_plan_compute = */ NULL,
|
||||||
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
||||||
/* .supports_op = */ ggml_backend_metal_supports_op,
|
/* .supports_op = */ ggml_backend_metal_supports_op,
|
||||||
|
/* .offload_op = */ NULL,
|
||||||
/* .event_new = */ NULL,
|
/* .event_new = */ NULL,
|
||||||
/* .event_free = */ NULL,
|
/* .event_free = */ NULL,
|
||||||
/* .event_record = */ NULL,
|
/* .event_record = */ NULL,
|
||||||
|
520
ggml-metal.metal
520
ggml-metal.metal
@ -2388,6 +2388,242 @@ kernel void kernel_cpy_f32_q4_1(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
kernel void kernel_cpy_f32_q5_0(
|
||||||
|
device const float * src0,
|
||||||
|
device void * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne01,
|
||||||
|
constant int64_t & ne02,
|
||||||
|
constant int64_t & ne03,
|
||||||
|
constant uint64_t & nb00,
|
||||||
|
constant uint64_t & nb01,
|
||||||
|
constant uint64_t & nb02,
|
||||||
|
constant uint64_t & nb03,
|
||||||
|
constant int64_t & ne0,
|
||||||
|
constant int64_t & ne1,
|
||||||
|
constant int64_t & ne2,
|
||||||
|
constant int64_t & ne3,
|
||||||
|
constant uint64_t & nb0,
|
||||||
|
constant uint64_t & nb1,
|
||||||
|
constant uint64_t & nb2,
|
||||||
|
constant uint64_t & nb3,
|
||||||
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||||
|
uint3 ntg[[threads_per_threadgroup]]) {
|
||||||
|
const int64_t i03 = tgpig[2];
|
||||||
|
const int64_t i02 = tgpig[1];
|
||||||
|
const int64_t i01 = tgpig[0];
|
||||||
|
|
||||||
|
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||||
|
|
||||||
|
const int64_t i3 = n / (ne2*ne1*ne0);
|
||||||
|
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
||||||
|
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
||||||
|
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_0;
|
||||||
|
|
||||||
|
device block_q5_0 * dst_data = (device block_q5_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||||
|
|
||||||
|
for (int64_t i00 = tpitg.x*QK5_0; i00 < ne00; i00 += ntg.x*QK5_0) {
|
||||||
|
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||||
|
|
||||||
|
float amax = 0.0f; // absolute max
|
||||||
|
float max = 0.0f;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK5_0; j++) {
|
||||||
|
const float v = src[j];
|
||||||
|
if (amax < fabs(v)) {
|
||||||
|
amax = fabs(v);
|
||||||
|
max = v;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = max / -16;
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
dst_data[i00/QK5_0].d = d;
|
||||||
|
|
||||||
|
uint32_t qh = 0;
|
||||||
|
for (int j = 0; j < QK5_0/2; ++j) {
|
||||||
|
const float x0 = src[0 + j]*id;
|
||||||
|
const float x1 = src[QK5_0/2 + j]*id;
|
||||||
|
|
||||||
|
const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
|
||||||
|
const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
|
||||||
|
|
||||||
|
dst_data[i00/QK5_0].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||||
|
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||||
|
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
|
||||||
|
}
|
||||||
|
thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
|
||||||
|
for (int j = 0; j < 4; ++j) {
|
||||||
|
dst_data[i00/QK5_0].qh[j] = qh8[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
kernel void kernel_cpy_f32_q5_1(
|
||||||
|
device const float * src0,
|
||||||
|
device void * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne01,
|
||||||
|
constant int64_t & ne02,
|
||||||
|
constant int64_t & ne03,
|
||||||
|
constant uint64_t & nb00,
|
||||||
|
constant uint64_t & nb01,
|
||||||
|
constant uint64_t & nb02,
|
||||||
|
constant uint64_t & nb03,
|
||||||
|
constant int64_t & ne0,
|
||||||
|
constant int64_t & ne1,
|
||||||
|
constant int64_t & ne2,
|
||||||
|
constant int64_t & ne3,
|
||||||
|
constant uint64_t & nb0,
|
||||||
|
constant uint64_t & nb1,
|
||||||
|
constant uint64_t & nb2,
|
||||||
|
constant uint64_t & nb3,
|
||||||
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||||
|
uint3 ntg[[threads_per_threadgroup]]) {
|
||||||
|
const int64_t i03 = tgpig[2];
|
||||||
|
const int64_t i02 = tgpig[1];
|
||||||
|
const int64_t i01 = tgpig[0];
|
||||||
|
|
||||||
|
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||||
|
|
||||||
|
const int64_t i3 = n / (ne2*ne1*ne0);
|
||||||
|
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
||||||
|
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
||||||
|
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_1;
|
||||||
|
|
||||||
|
device block_q5_1 * dst_data = (device block_q5_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||||
|
|
||||||
|
for (int64_t i00 = tpitg.x*QK5_1; i00 < ne00; i00 += ntg.x*QK5_1) {
|
||||||
|
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||||
|
|
||||||
|
float max = src[0];
|
||||||
|
float min = src[0];
|
||||||
|
|
||||||
|
for (int j = 1; j < QK5_1; j++) {
|
||||||
|
const float v = src[j];
|
||||||
|
min = v < min ? v : min;
|
||||||
|
max = v > max ? v : max;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = (max - min) / 31;
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
dst_data[i00/QK5_1].d = d;
|
||||||
|
dst_data[i00/QK5_1].m = min;
|
||||||
|
|
||||||
|
uint32_t qh = 0;
|
||||||
|
for (int j = 0; j < QK5_1/2; ++j) {
|
||||||
|
const float x0 = (src[0 + j] - min)*id;
|
||||||
|
const float x1 = (src[QK5_1/2 + j] - min)*id;
|
||||||
|
|
||||||
|
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
|
||||||
|
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
|
||||||
|
|
||||||
|
dst_data[i00/QK5_1].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||||
|
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||||
|
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
|
||||||
|
}
|
||||||
|
thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
|
||||||
|
for (int j = 0; j < 4; ++j) {
|
||||||
|
dst_data[i00/QK5_1].qh[j] = qh8[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline int best_index_int8(int n, constant float * val, float x) {
|
||||||
|
if (x <= val[0]) return 0;
|
||||||
|
if (x >= val[n-1]) return n-1;
|
||||||
|
int ml = 0, mu = n-1;
|
||||||
|
while (mu-ml > 1) {
|
||||||
|
int mav = (ml+mu)/2;
|
||||||
|
if (x < val[mav]) mu = mav; else ml = mav;
|
||||||
|
}
|
||||||
|
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr constant static float kvalues_iq4nl_f[16] = {
|
||||||
|
-127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
|
||||||
|
};
|
||||||
|
|
||||||
|
kernel void kernel_cpy_f32_iq4_nl(
|
||||||
|
device const float * src0,
|
||||||
|
device void * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne01,
|
||||||
|
constant int64_t & ne02,
|
||||||
|
constant int64_t & ne03,
|
||||||
|
constant uint64_t & nb00,
|
||||||
|
constant uint64_t & nb01,
|
||||||
|
constant uint64_t & nb02,
|
||||||
|
constant uint64_t & nb03,
|
||||||
|
constant int64_t & ne0,
|
||||||
|
constant int64_t & ne1,
|
||||||
|
constant int64_t & ne2,
|
||||||
|
constant int64_t & ne3,
|
||||||
|
constant uint64_t & nb0,
|
||||||
|
constant uint64_t & nb1,
|
||||||
|
constant uint64_t & nb2,
|
||||||
|
constant uint64_t & nb3,
|
||||||
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||||
|
uint3 ntg[[threads_per_threadgroup]]) {
|
||||||
|
const int64_t i03 = tgpig[2];
|
||||||
|
const int64_t i02 = tgpig[1];
|
||||||
|
const int64_t i01 = tgpig[0];
|
||||||
|
|
||||||
|
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||||
|
|
||||||
|
const int64_t i3 = n / (ne2*ne1*ne0);
|
||||||
|
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
||||||
|
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
||||||
|
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_NL;
|
||||||
|
|
||||||
|
device block_iq4_nl * dst_data = (device block_iq4_nl *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||||
|
|
||||||
|
for (int64_t i00 = tpitg.x*QK4_NL; i00 < ne00; i00 += ntg.x*QK4_NL) {
|
||||||
|
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||||
|
|
||||||
|
float amax = 0.0f; // absolute max
|
||||||
|
float max = 0.0f;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK4_0; j++) {
|
||||||
|
const float v = src[j];
|
||||||
|
if (amax < fabs(v)) {
|
||||||
|
amax = fabs(v);
|
||||||
|
max = v;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = max / kvalues_iq4nl_f[0];
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
float sumqx = 0, sumq2 = 0;
|
||||||
|
for (int j = 0; j < QK4_NL/2; ++j) {
|
||||||
|
const float x0 = src[0 + j]*id;
|
||||||
|
const float x1 = src[QK4_NL/2 + j]*id;
|
||||||
|
|
||||||
|
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl_f, x0);
|
||||||
|
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl_f, x1);
|
||||||
|
|
||||||
|
dst_data[i00/QK4_NL].qs[j] = xi0 | (xi1 << 4);
|
||||||
|
|
||||||
|
const float v0 = kvalues_iq4nl_f[xi0];
|
||||||
|
const float v1 = kvalues_iq4nl_f[xi1];
|
||||||
|
const float w0 = src[0 + j]*src[0 + j];
|
||||||
|
const float w1 = src[QK4_NL/2 + j]*src[QK4_NL/2 + j];
|
||||||
|
sumqx += w0*v0*src[j] + w1*v1*src[QK4_NL/2 + j];
|
||||||
|
sumq2 += w0*v0*v0 + w1*v1*v1;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_data[i00/QK4_NL].d = sumq2 > 0 ? sumqx/sumq2 : d;
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
kernel void kernel_concat(
|
kernel void kernel_concat(
|
||||||
device const char * src0,
|
device const char * src0,
|
||||||
device const char * src1,
|
device const char * src1,
|
||||||
@ -4220,9 +4456,113 @@ void kernel_mul_mv_iq1_s_f32_impl(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
constexpr constant static float kvalues_iq4nl_f[16] = {
|
void kernel_mul_mv_iq1_m_f32_impl(
|
||||||
-127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
|
device const void * src0,
|
||||||
};
|
device const float * src1,
|
||||||
|
device float * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne01,
|
||||||
|
constant int64_t & ne02,
|
||||||
|
constant int64_t & ne10,
|
||||||
|
constant int64_t & ne12,
|
||||||
|
constant int64_t & ne0,
|
||||||
|
constant int64_t & ne1,
|
||||||
|
constant uint & r2,
|
||||||
|
constant uint & r3,
|
||||||
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
|
|
||||||
|
const int nb = ne00/QK_K;
|
||||||
|
const int r0 = tgpig.x;
|
||||||
|
const int r1 = tgpig.y;
|
||||||
|
const int im = tgpig.z;
|
||||||
|
|
||||||
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
||||||
|
const int ib_row = first_row * nb;
|
||||||
|
|
||||||
|
const uint i12 = im%ne12;
|
||||||
|
const uint i13 = im/ne12;
|
||||||
|
|
||||||
|
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||||
|
device const block_iq1_m * x = (device const block_iq1_m *) src0 + ib_row + offset0;
|
||||||
|
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||||
|
|
||||||
|
float yl[32];
|
||||||
|
float sumf[N_DST]={0.f}, all_sum;
|
||||||
|
|
||||||
|
const int nb32 = nb * (QK_K / 32);
|
||||||
|
|
||||||
|
const int ix = tiisg;
|
||||||
|
|
||||||
|
device const float * y4 = y + 32 * ix;
|
||||||
|
|
||||||
|
#if QK_K != 64
|
||||||
|
iq1m_scale_t scale;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
||||||
|
|
||||||
|
float4 sumy = {0.f};
|
||||||
|
for (int i = 0; i < 8; ++i) {
|
||||||
|
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
|
||||||
|
yl[i+ 8] = y4[i+ 8]; sumy[1] += yl[i+ 8];
|
||||||
|
yl[i+16] = y4[i+16]; sumy[2] += yl[i+16];
|
||||||
|
yl[i+24] = y4[i+24]; sumy[3] += yl[i+24];
|
||||||
|
}
|
||||||
|
|
||||||
|
const int ibl = ib32 / (QK_K / 32);
|
||||||
|
const int ib = ib32 % (QK_K / 32);
|
||||||
|
|
||||||
|
device const block_iq1_m * xr = x + ibl;
|
||||||
|
device const uint8_t * qs = xr->qs + 4 * ib;
|
||||||
|
device const uint8_t * qh = xr->qh + 2 * ib;
|
||||||
|
device const uint16_t * sc = (device const uint16_t *)xr->scales;
|
||||||
|
|
||||||
|
for (int row = 0; row < N_DST; row++) {
|
||||||
|
|
||||||
|
#if QK_K != 64
|
||||||
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
|
||||||
|
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
|
||||||
|
constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[1] << 8) & 0x700)));
|
||||||
|
constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[1] << 4) & 0x700)));
|
||||||
|
|
||||||
|
float2 sum = {0.f};
|
||||||
|
for (int j = 0; j < 4; ++j) {
|
||||||
|
sum[0] += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4)
|
||||||
|
+ yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4);
|
||||||
|
sum[1] += yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4)
|
||||||
|
+ yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4);
|
||||||
|
}
|
||||||
|
const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
||||||
|
const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
||||||
|
#if QK_K == 64
|
||||||
|
const float d = (float) *((device const half *)(sc - 1));
|
||||||
|
sumf[row] += d * ((sum[0] + delta1) * (2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1) +
|
||||||
|
(sum[1] + delta2) * (2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1));
|
||||||
|
#else
|
||||||
|
sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) +
|
||||||
|
(sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1));
|
||||||
|
#endif
|
||||||
|
|
||||||
|
sc += nb*sizeof(block_iq1_m)/2;
|
||||||
|
qs += nb*sizeof(block_iq1_m);
|
||||||
|
qh += nb*sizeof(block_iq1_m);
|
||||||
|
}
|
||||||
|
|
||||||
|
y4 += 32 * 32;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int row = 0; row < N_DST; ++row) {
|
||||||
|
all_sum = simd_sum(sumf[row]);
|
||||||
|
if (tiisg == 0) {
|
||||||
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void kernel_mul_mv_iq4_nl_f32_impl(
|
void kernel_mul_mv_iq4_nl_f32_impl(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
@ -4441,6 +4781,34 @@ kernel void kernel_mul_mv_iq1_s_f32(
|
|||||||
kernel_mul_mv_iq1_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
|
kernel_mul_mv_iq1_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
[[host_name("kernel_mul_mv_iq1_m_f32")]]
|
||||||
|
kernel void kernel_mul_mv_iq1_m_f32(
|
||||||
|
device const void * src0,
|
||||||
|
device const float * src1,
|
||||||
|
device float * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne01,
|
||||||
|
constant int64_t & ne02,
|
||||||
|
constant uint64_t & nb00,
|
||||||
|
constant uint64_t & nb01,
|
||||||
|
constant uint64_t & nb02,
|
||||||
|
constant int64_t & ne10,
|
||||||
|
constant int64_t & ne11,
|
||||||
|
constant int64_t & ne12,
|
||||||
|
constant uint64_t & nb10,
|
||||||
|
constant uint64_t & nb11,
|
||||||
|
constant uint64_t & nb12,
|
||||||
|
constant int64_t & ne0,
|
||||||
|
constant int64_t & ne1,
|
||||||
|
constant uint & r2,
|
||||||
|
constant uint & r3,
|
||||||
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
|
|
||||||
|
kernel_mul_mv_iq1_m_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
|
||||||
|
}
|
||||||
|
|
||||||
[[host_name("kernel_mul_mv_iq4_nl_f32")]]
|
[[host_name("kernel_mul_mv_iq4_nl_f32")]]
|
||||||
kernel void kernel_mul_mv_iq4_nl_f32(
|
kernel void kernel_mul_mv_iq4_nl_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
@ -4914,6 +5282,38 @@ void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 &
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename type4x4>
|
||||||
|
void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 & reg) {
|
||||||
|
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
||||||
|
const int ib32 = il/2;
|
||||||
|
il = il%2;
|
||||||
|
device const uint16_t * sc = (device const uint16_t *)xb->scales;
|
||||||
|
#if QK_K == 64
|
||||||
|
const float d = xb->d;
|
||||||
|
#else
|
||||||
|
iq1m_scale_t scale;
|
||||||
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||||
|
const float d = scale.f16;
|
||||||
|
#endif
|
||||||
|
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
|
||||||
|
device const uint8_t * qh = xb->qh + 2*ib32 + il;
|
||||||
|
#if QK_K == 64
|
||||||
|
const float dl = d * (2*((sc[ib32/2] >> (8*(ib32%2)+4*il)) & 0xf) + 1);
|
||||||
|
#else
|
||||||
|
const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1);
|
||||||
|
#endif
|
||||||
|
const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
||||||
|
const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
||||||
|
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
|
||||||
|
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
|
||||||
|
for (int i = 0; i < 4; ++i) {
|
||||||
|
reg[0][i] = dl * (grid1[i] & 0xf) + ml1;
|
||||||
|
reg[1][i] = dl * (grid1[i] >> 4) + ml1;
|
||||||
|
reg[2][i] = dl * (grid2[i] & 0xf) + ml2;
|
||||||
|
reg[3][i] = dl * (grid2[i] >> 4) + ml2;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
template <typename type4x4>
|
template <typename type4x4>
|
||||||
void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) {
|
void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) {
|
||||||
device const uint16_t * q4 = (device const uint16_t *)xb->qs;
|
device const uint16_t * q4 = (device const uint16_t *)xb->qs;
|
||||||
@ -5498,6 +5898,7 @@ template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_t kernel_get_r
|
|||||||
template [[host_name("kernel_get_rows_iq3_s")]] kernel get_rows_t kernel_get_rows<block_iq3_s, QK_NL, dequantize_iq3_s>;
|
template [[host_name("kernel_get_rows_iq3_s")]] kernel get_rows_t kernel_get_rows<block_iq3_s, QK_NL, dequantize_iq3_s>;
|
||||||
template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_t kernel_get_rows<block_iq2_s, QK_NL, dequantize_iq2_s>;
|
template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_t kernel_get_rows<block_iq2_s, QK_NL, dequantize_iq2_s>;
|
||||||
template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_t kernel_get_rows<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_t kernel_get_rows<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||||
|
template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_t kernel_get_rows<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
||||||
template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_t kernel_get_rows<block_iq4_nl, 2, dequantize_iq4_nl>;
|
template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_t kernel_get_rows<block_iq4_nl, 2, dequantize_iq4_nl>;
|
||||||
#if QK_K == 64
|
#if QK_K == 64
|
||||||
template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows<block_iq4_xs, 2, dequantize_iq4_xs>;
|
template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows<block_iq4_xs, 2, dequantize_iq4_xs>;
|
||||||
@ -5528,24 +5929,25 @@ typedef void (mat_mm_t)(
|
|||||||
threadgroup uchar *,
|
threadgroup uchar *,
|
||||||
uint3, uint, uint);
|
uint3, uint, uint);
|
||||||
|
|
||||||
template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<float4x4, 1, dequantize_f32>;
|
template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<float4x4, 1, dequantize_f32>;
|
||||||
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
|
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
|
||||||
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
|
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
|
||||||
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
|
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
|
||||||
template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_0, 2, dequantize_q5_0>;
|
template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_0, 2, dequantize_q5_0>;
|
||||||
template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_1, 2, dequantize_q5_1>;
|
template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_1, 2, dequantize_q5_1>;
|
||||||
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
|
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
|
||||||
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
|
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
|
||||||
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
|
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
|
||||||
template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;
|
template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;
|
||||||
template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_K, QK_NL, dequantize_q5_K>;
|
template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_K, QK_NL, dequantize_q5_K>;
|
||||||
template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;
|
template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;
|
||||||
template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
||||||
template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||||
template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||||
template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq3_s, QK_NL, dequantize_iq3_s>;
|
template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq3_s, QK_NL, dequantize_iq3_s>;
|
||||||
template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_s, QK_NL, dequantize_iq2_s>;
|
template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_s, QK_NL, dequantize_iq2_s>;
|
||||||
template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||||
|
template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
||||||
template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_nl>;
|
template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_nl>;
|
||||||
#if QK_K == 64
|
#if QK_K == 64
|
||||||
template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_xs>;
|
template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_xs>;
|
||||||
@ -5588,24 +5990,25 @@ typedef void (mat_mm_id_t)(
|
|||||||
threadgroup uchar *,
|
threadgroup uchar *,
|
||||||
uint3, uint, uint);
|
uint3, uint, uint);
|
||||||
|
|
||||||
template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<float4x4, 1, dequantize_f32>;
|
template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<float4x4, 1, dequantize_f32>;
|
||||||
template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<half4x4, 1, dequantize_f16>;
|
template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<half4x4, 1, dequantize_f16>;
|
||||||
template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2, dequantize_q4_0>;
|
template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2, dequantize_q4_0>;
|
||||||
template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2, dequantize_q4_1>;
|
template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2, dequantize_q4_1>;
|
||||||
template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2, dequantize_q5_0>;
|
template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2, dequantize_q5_0>;
|
||||||
template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2, dequantize_q5_1>;
|
template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2, dequantize_q5_1>;
|
||||||
template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2, dequantize_q8_0>;
|
template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2, dequantize_q8_0>;
|
||||||
template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>;
|
template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>;
|
||||||
template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>;
|
template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>;
|
||||||
template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>;
|
template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>;
|
||||||
template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>;
|
template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>;
|
||||||
template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
|
template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
|
||||||
template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
||||||
template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||||
template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||||
template [[host_name("kernel_mul_mm_id_iq3_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_s, QK_NL, dequantize_iq3_s>;
|
template [[host_name("kernel_mul_mm_id_iq3_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_s, QK_NL, dequantize_iq3_s>;
|
||||||
template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_s, QK_NL, dequantize_iq2_s>;
|
template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_s, QK_NL, dequantize_iq2_s>;
|
||||||
template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||||
|
template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
||||||
template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_nl, 2, dequantize_iq4_nl>;
|
template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_nl, 2, dequantize_iq4_nl>;
|
||||||
#if QK_K == 64
|
#if QK_K == 64
|
||||||
template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, 2, dequantize_iq4_xs>;
|
template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, 2, dequantize_iq4_xs>;
|
||||||
@ -6773,6 +7176,69 @@ kernel void kernel_mul_mv_id_iq1_s_f32(
|
|||||||
sgitg);
|
sgitg);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
[[host_name("kernel_mul_mv_id_iq1_m_f32")]]
|
||||||
|
kernel void kernel_mul_mv_id_iq1_m_f32(
|
||||||
|
device const char * ids,
|
||||||
|
device const char * src1,
|
||||||
|
device float * dst,
|
||||||
|
constant uint64_t & nbi1,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne01,
|
||||||
|
constant int64_t & ne02,
|
||||||
|
constant uint64_t & nb00,
|
||||||
|
constant uint64_t & nb01,
|
||||||
|
constant uint64_t & nb02,
|
||||||
|
constant int64_t & ne10,
|
||||||
|
constant int64_t & ne11,
|
||||||
|
constant int64_t & ne12,
|
||||||
|
constant int64_t & ne13,
|
||||||
|
constant uint64_t & nb10,
|
||||||
|
constant uint64_t & nb11,
|
||||||
|
constant uint64_t & nb12,
|
||||||
|
constant int64_t & ne0,
|
||||||
|
constant int64_t & ne1,
|
||||||
|
constant uint64_t & nb1,
|
||||||
|
constant uint & r2,
|
||||||
|
constant uint & r3,
|
||||||
|
constant int & idx,
|
||||||
|
device const char * src00,
|
||||||
|
device const char * src01,
|
||||||
|
device const char * src02,
|
||||||
|
device const char * src03,
|
||||||
|
device const char * src04,
|
||||||
|
device const char * src05,
|
||||||
|
device const char * src06,
|
||||||
|
device const char * src07,
|
||||||
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint tiitg[[thread_index_in_threadgroup]],
|
||||||
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
|
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
|
||||||
|
|
||||||
|
const int64_t bid = tgpig.z/(ne12*ne13);
|
||||||
|
|
||||||
|
tgpig.z = tgpig.z%(ne12*ne13);
|
||||||
|
|
||||||
|
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
|
||||||
|
|
||||||
|
kernel_mul_mv_iq1_m_f32_impl(
|
||||||
|
src0[id],
|
||||||
|
(device const float *) (src1 + bid*nb11),
|
||||||
|
dst + bid*ne0,
|
||||||
|
ne00,
|
||||||
|
ne01,
|
||||||
|
ne02,
|
||||||
|
ne10,
|
||||||
|
ne12,
|
||||||
|
ne0,
|
||||||
|
ne1,
|
||||||
|
r2,
|
||||||
|
r3,
|
||||||
|
tgpig,
|
||||||
|
tiisg,
|
||||||
|
sgitg);
|
||||||
|
}
|
||||||
|
|
||||||
[[host_name("kernel_mul_mv_id_iq4_nl_f32")]]
|
[[host_name("kernel_mul_mv_id_iq4_nl_f32")]]
|
||||||
kernel void kernel_mul_mv_id_iq4_nl_f32(
|
kernel void kernel_mul_mv_id_iq4_nl_f32(
|
||||||
device const char * ids,
|
device const char * ids,
|
||||||
|
@ -2234,6 +2234,11 @@ static ggml_backend_buffer_type_t ggml_backend_opencl_get_default_buffer_type(gg
|
|||||||
static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) {
|
static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) {
|
||||||
for (int i = 0; i < graph->n_nodes; ++i) {
|
for (int i = 0; i < graph->n_nodes; ++i) {
|
||||||
ggml_tensor * node = graph->nodes[i];
|
ggml_tensor * node = graph->nodes[i];
|
||||||
|
|
||||||
|
if (ggml_is_empty(node)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
switch (node->op) {
|
switch (node->op) {
|
||||||
case GGML_OP_MUL_MAT:
|
case GGML_OP_MUL_MAT:
|
||||||
ggml_cl_mul_mat(node->src[0], node->src[1], node, nullptr, 0);
|
ggml_cl_mul_mat(node->src[0], node->src[1], node, nullptr, 0);
|
||||||
|
719
ggml-quants.c
719
ggml-quants.c
@ -132,7 +132,7 @@ static inline __m256 sum_i16_pairs_float(const __m256i x) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
|
static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
|
||||||
#if __AVXVNNI__
|
#if defined(__AVXVNNI__) || defined(__AVX512VNNI__)
|
||||||
const __m256i zero = _mm256_setzero_si256();
|
const __m256i zero = _mm256_setzero_si256();
|
||||||
const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
|
const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
|
||||||
return _mm256_cvtepi32_ps(summed_pairs);
|
return _mm256_cvtepi32_ps(summed_pairs);
|
||||||
@ -3474,6 +3474,65 @@ void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, in
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, int k) {
|
||||||
|
assert(k % QK_K == 0);
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
|
||||||
|
float delta[4];
|
||||||
|
uint16_t idx[4];
|
||||||
|
|
||||||
|
#if QK_K != 64
|
||||||
|
iq1m_scale_t scale;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; i++) {
|
||||||
|
|
||||||
|
const uint16_t * sc = (const uint16_t *)x[i].scales;
|
||||||
|
#if QK_K == 64
|
||||||
|
const float d = GGML_FP16_TO_FP32(x[i].d);
|
||||||
|
#else
|
||||||
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||||
|
const float d = GGML_FP16_TO_FP32(scale.f16);
|
||||||
|
#endif
|
||||||
|
const uint8_t * qs = x[i].qs;
|
||||||
|
const uint8_t * qh = x[i].qh;
|
||||||
|
|
||||||
|
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||||
|
#if QK_K == 64
|
||||||
|
const float dl1 = d * (2*((sc[ib/2] >> (8*(ib%2)+0)) & 0xf) + 1);
|
||||||
|
const float dl2 = d * (2*((sc[ib/2] >> (8*(ib%2)+4)) & 0xf) + 1);
|
||||||
|
#else
|
||||||
|
const float dl1 = d * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1);
|
||||||
|
const float dl2 = d * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1);
|
||||||
|
#endif
|
||||||
|
idx[0] = qs[0] | ((qh[0] << 8) & 0x700);
|
||||||
|
idx[1] = qs[1] | ((qh[0] << 4) & 0x700);
|
||||||
|
idx[2] = qs[2] | ((qh[1] << 8) & 0x700);
|
||||||
|
idx[3] = qs[3] | ((qh[1] << 4) & 0x700);
|
||||||
|
delta[0] = qh[0] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
|
||||||
|
delta[1] = qh[0] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
|
||||||
|
delta[2] = qh[1] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
|
||||||
|
delta[3] = qh[1] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
|
||||||
|
for (int l = 0; l < 2; ++l) {
|
||||||
|
const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
|
||||||
|
for (int j = 0; j < 8; ++j) {
|
||||||
|
y[j] = dl1 * (grid[j] + delta[l]);
|
||||||
|
}
|
||||||
|
y += 8;
|
||||||
|
}
|
||||||
|
for (int l = 2; l < 4; ++l) {
|
||||||
|
const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
|
||||||
|
for (int j = 0; j < 8; ++j) {
|
||||||
|
y[j] = dl2 * (grid[j] + delta[l]);
|
||||||
|
}
|
||||||
|
y += 8;
|
||||||
|
}
|
||||||
|
qs += 4;
|
||||||
|
qh += 2;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||||
|
|
||||||
void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int k) {
|
void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int k) {
|
||||||
@ -9695,6 +9754,248 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
|
||||||
|
assert(n % QK_K == 0);
|
||||||
|
assert(nrc == 1);
|
||||||
|
UNUSED(nrc);
|
||||||
|
UNUSED(bx);
|
||||||
|
UNUSED(by);
|
||||||
|
UNUSED(bs);
|
||||||
|
|
||||||
|
const block_iq1_m * restrict x = vx;
|
||||||
|
const block_q8_K * restrict y = vy;
|
||||||
|
|
||||||
|
const int nb = n / QK_K;
|
||||||
|
|
||||||
|
#if QK_K != 64
|
||||||
|
iq1m_scale_t scale;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined __ARM_NEON
|
||||||
|
|
||||||
|
#if QK_K == 64
|
||||||
|
const int32x4_t mask = vdupq_n_s32(0xf);
|
||||||
|
#else
|
||||||
|
const int32x4_t mask = vdupq_n_s32(0x7);
|
||||||
|
#endif
|
||||||
|
const int32x4_t mone = vdupq_n_s32(1);
|
||||||
|
const int32x4_t mzero = vdupq_n_s32(0);
|
||||||
|
|
||||||
|
ggml_int8x16x4_t deltas;
|
||||||
|
deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1));
|
||||||
|
deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1));
|
||||||
|
deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1));
|
||||||
|
deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1));
|
||||||
|
|
||||||
|
ggml_int8x16x4_t q1b;
|
||||||
|
ggml_int8x16x4_t q8b;
|
||||||
|
|
||||||
|
uint32_t aux32;
|
||||||
|
const uint8_t * aux8 = (const uint8_t *)&aux32;
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const int8_t * q8 = y[i].qs;
|
||||||
|
const uint8_t * qs = x[i].qs;
|
||||||
|
const uint8_t * qh = x[i].qh;
|
||||||
|
const uint16_t * sc = (const uint16_t *)x[i].scales;
|
||||||
|
|
||||||
|
#if QK_K != 64
|
||||||
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
int32x4_t sumi1 = mzero;
|
||||||
|
int32x4_t sumi2 = mzero;
|
||||||
|
|
||||||
|
for (int ib = 0; ib < QK_K/32; ib += 2) {
|
||||||
|
|
||||||
|
q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))),
|
||||||
|
vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700)))));
|
||||||
|
q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))),
|
||||||
|
vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700)))));
|
||||||
|
q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))),
|
||||||
|
vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700)))));
|
||||||
|
q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))),
|
||||||
|
vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700)))));
|
||||||
|
|
||||||
|
q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
|
||||||
|
|
||||||
|
const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1]));
|
||||||
|
const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3]));
|
||||||
|
const int32x4_t p12 = vpaddq_s32(p1, p2);
|
||||||
|
|
||||||
|
const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that
|
||||||
|
aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202);
|
||||||
|
|
||||||
|
const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1]));
|
||||||
|
const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3]));
|
||||||
|
const int32x4_t p34 = vpaddq_s32(p3, p4);
|
||||||
|
|
||||||
|
#if QK_K == 64
|
||||||
|
int32x4_t scales_4 = ggml_vld1q_u32(sc[0] >> 0, sc[0] >> 4, sc[0] >> 8, sc[0] >> 12);
|
||||||
|
#else
|
||||||
|
int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9);
|
||||||
|
#endif
|
||||||
|
scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone);
|
||||||
|
|
||||||
|
sumi1 = vmlaq_s32(sumi1, scales_4, p12);
|
||||||
|
sumi2 = vmlaq_s32(sumi2, scales_4, p34);
|
||||||
|
|
||||||
|
qs += 8; qh += 4;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#if QK_K == 64
|
||||||
|
sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
|
||||||
|
#else
|
||||||
|
sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = sumf;
|
||||||
|
|
||||||
|
#elif defined __AVX2__
|
||||||
|
|
||||||
|
#if QK_K == 64
|
||||||
|
const __m256i mask = _mm256_set1_epi16(0xf);
|
||||||
|
#else
|
||||||
|
const __m256i mask = _mm256_set1_epi16(0x7);
|
||||||
|
#endif
|
||||||
|
const __m256i mone = _mm256_set1_epi16(1);
|
||||||
|
|
||||||
|
__m256 accum1 = _mm256_setzero_ps();
|
||||||
|
__m256 accum2 = _mm256_setzero_ps();
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const int8_t * q8 = y[i].qs;
|
||||||
|
const uint8_t * qs = x[i].qs;
|
||||||
|
const uint8_t * qh = x[i].qh;
|
||||||
|
const uint16_t * sc = (const uint16_t *)x[i].scales;
|
||||||
|
|
||||||
|
#if QK_K != 64
|
||||||
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
__m256i sumi1 = _mm256_setzero_si256();
|
||||||
|
__m256i sumi2 = _mm256_setzero_si256();
|
||||||
|
for (int ib = 0; ib < QK_K/32; ib += 2) {
|
||||||
|
const __m256i q1b_1 = _mm256_set_epi64x(
|
||||||
|
iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)],
|
||||||
|
iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]
|
||||||
|
);
|
||||||
|
const __m256i q1b_2 = _mm256_set_epi64x(
|
||||||
|
iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)],
|
||||||
|
iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]
|
||||||
|
);
|
||||||
|
const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
|
||||||
|
const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
|
||||||
|
|
||||||
|
const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
|
||||||
|
const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
|
||||||
|
|
||||||
|
const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
|
||||||
|
qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
|
||||||
|
qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
|
||||||
|
qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
|
||||||
|
const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
|
||||||
|
qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
|
||||||
|
qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
|
||||||
|
qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
|
||||||
|
|
||||||
|
const __m256i dot3 = mul_add_epi8(delta1, q8b_1);
|
||||||
|
const __m256i dot4 = mul_add_epi8(delta2, q8b_2);
|
||||||
|
#if QK_K == 64
|
||||||
|
__m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[0] >> 4), _mm_set1_epi16(sc[0] >> 0));
|
||||||
|
__m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[0] >> 12), _mm_set1_epi16(sc[0] >> 8));
|
||||||
|
#else
|
||||||
|
__m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0));
|
||||||
|
__m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6));
|
||||||
|
#endif
|
||||||
|
scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone);
|
||||||
|
scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone);
|
||||||
|
const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
|
||||||
|
const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
|
||||||
|
const __m256i p3 = _mm256_madd_epi16(dot3, scale1);
|
||||||
|
const __m256i p4 = _mm256_madd_epi16(dot4, scale2);
|
||||||
|
|
||||||
|
sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2));
|
||||||
|
sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4));
|
||||||
|
|
||||||
|
qs += 8; qh += 4;
|
||||||
|
}
|
||||||
|
|
||||||
|
#if QK_K == 64
|
||||||
|
const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
|
||||||
|
#else
|
||||||
|
const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
|
||||||
|
#endif
|
||||||
|
accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1);
|
||||||
|
accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
|
||||||
|
|
||||||
|
#else
|
||||||
|
|
||||||
|
int sum1[2], sum2[2], delta[4];
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
for (int i = 0; i < nb; i++) {
|
||||||
|
|
||||||
|
const int8_t * q8 = y[i].qs;
|
||||||
|
const uint8_t * qs = x[i].qs;
|
||||||
|
const uint8_t * qh = x[i].qh;
|
||||||
|
const uint16_t * sc = (const uint16_t *)x[i].scales;
|
||||||
|
|
||||||
|
#if QK_K != 64
|
||||||
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
int sumi1 = 0, sumi2 = 0;
|
||||||
|
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||||
|
delta[0] = qh[0] & 0x08 ? -1 : 1;
|
||||||
|
delta[1] = qh[0] & 0x80 ? -1 : 1;
|
||||||
|
delta[2] = qh[1] & 0x08 ? -1 : 1;
|
||||||
|
delta[3] = qh[1] & 0x80 ? -1 : 1;
|
||||||
|
sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
|
||||||
|
for (int l = 0; l < 4; ++l) {
|
||||||
|
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
|
||||||
|
int lsum1 = 0, lsum2 = 0;
|
||||||
|
for (int j = 0; j < 8; ++j) {
|
||||||
|
lsum1 += q8[j] * grid[j];
|
||||||
|
lsum2 += q8[j];
|
||||||
|
}
|
||||||
|
q8 += 8;
|
||||||
|
sum1[l/2] += lsum1;
|
||||||
|
sum2[l/2] += lsum2*delta[l];
|
||||||
|
}
|
||||||
|
#if QK_K == 64
|
||||||
|
const int ls1 = 2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1;
|
||||||
|
const int ls2 = 2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1;
|
||||||
|
#else
|
||||||
|
const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
|
||||||
|
const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
|
||||||
|
#endif
|
||||||
|
sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
|
||||||
|
sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
|
||||||
|
qs += 4;
|
||||||
|
qh += 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
#if QK_K == 64
|
||||||
|
sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
|
||||||
|
#else
|
||||||
|
sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = sumf;
|
||||||
|
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
|
void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
|
||||||
assert(nrc == 1);
|
assert(nrc == 1);
|
||||||
UNUSED(nrc);
|
UNUSED(nrc);
|
||||||
@ -9938,17 +10239,17 @@ static iq2_entry_t iq2_data[4] = {
|
|||||||
};
|
};
|
||||||
|
|
||||||
static inline int iq2_data_index(enum ggml_type type) {
|
static inline int iq2_data_index(enum ggml_type type) {
|
||||||
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
|
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
|
||||||
return type == GGML_TYPE_IQ2_XXS ? 0 :
|
return type == GGML_TYPE_IQ2_XXS ? 0 :
|
||||||
type == GGML_TYPE_IQ2_XS ? 1 :
|
type == GGML_TYPE_IQ2_XS ? 1 :
|
||||||
type == GGML_TYPE_IQ1_S ? 2 : 3;
|
type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 2 : 3;
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline int iq2_grid_size(enum ggml_type type) {
|
static inline int iq2_grid_size(enum ggml_type type) {
|
||||||
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
|
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
|
||||||
return type == GGML_TYPE_IQ2_XXS ? 256 :
|
return type == GGML_TYPE_IQ2_XXS ? 256 :
|
||||||
type == GGML_TYPE_IQ2_XS ? 512 :
|
type == GGML_TYPE_IQ2_XS ? 512 :
|
||||||
type == GGML_TYPE_IQ1_S ? NGRID_IQ1S : 1024;
|
type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? NGRID_IQ1S : 1024;
|
||||||
}
|
}
|
||||||
|
|
||||||
static int iq2_compare_func(const void * left, const void * right) {
|
static int iq2_compare_func(const void * left, const void * right) {
|
||||||
@ -10214,10 +10515,10 @@ void iq2xs_init_impl(enum ggml_type type) {
|
|||||||
|
|
||||||
const int kmap_size = 43692;
|
const int kmap_size = 43692;
|
||||||
//const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
|
//const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
|
||||||
const int nwant = type == GGML_TYPE_IQ1_S ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
|
const int nwant = type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
|
||||||
const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
|
const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
|
||||||
type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
|
type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
|
||||||
type == GGML_TYPE_IQ1_S ? kgrid_1bit_2048 : kgrid_2bit_1024;
|
type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? kgrid_1bit_2048 : kgrid_2bit_1024;
|
||||||
uint64_t * kgrid_q2xs;
|
uint64_t * kgrid_q2xs;
|
||||||
int * kmap_q2xs;
|
int * kmap_q2xs;
|
||||||
uint16_t * kneighbors_q2xs;
|
uint16_t * kneighbors_q2xs;
|
||||||
@ -10314,7 +10615,7 @@ void iq2xs_init_impl(enum ggml_type type) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void iq2xs_free_impl(enum ggml_type type) {
|
void iq2xs_free_impl(enum ggml_type type) {
|
||||||
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
|
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
|
||||||
const int gindex = iq2_data_index(type);
|
const int gindex = iq2_data_index(type);
|
||||||
if (iq2_data[gindex].grid) {
|
if (iq2_data[gindex].grid) {
|
||||||
free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
|
free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
|
||||||
@ -11520,7 +11821,16 @@ static int iq1_sort_helper(const void * left, const void * right) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
#define IQ1S_BLOCK_SIZE 32
|
#define IQ1S_BLOCK_SIZE 32
|
||||||
static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
|
#define IQ1M_BLOCK_SIZE 16
|
||||||
|
static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights,
|
||||||
|
float * scales,
|
||||||
|
float * weight,
|
||||||
|
float * sumx,
|
||||||
|
float * sumw,
|
||||||
|
float * pairs,
|
||||||
|
int8_t * L,
|
||||||
|
uint16_t * index,
|
||||||
|
int8_t * shifts) {
|
||||||
|
|
||||||
const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
|
const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
|
||||||
|
|
||||||
@ -11534,22 +11844,17 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||||||
GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
|
GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
|
||||||
GGML_ASSERT(n%QK_K == 0);
|
GGML_ASSERT(n%QK_K == 0);
|
||||||
|
|
||||||
|
block_iq1_s * y = vy;
|
||||||
|
|
||||||
const int nbl = n/QK_K;
|
const int nbl = n/QK_K;
|
||||||
|
|
||||||
block_iq1_s * y = vy;
|
const int block_size = IQ1S_BLOCK_SIZE;
|
||||||
|
|
||||||
const float x_p[3] = {-1 + IQ1S_DELTA, IQ1S_DELTA, 1 + IQ1S_DELTA};
|
const float x_p[3] = {-1 + IQ1S_DELTA, IQ1S_DELTA, 1 + IQ1S_DELTA};
|
||||||
const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA};
|
const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA};
|
||||||
|
|
||||||
float scales[QK_K/IQ1S_BLOCK_SIZE];
|
|
||||||
float weight[IQ1S_BLOCK_SIZE];
|
|
||||||
int8_t L[IQ1S_BLOCK_SIZE];
|
|
||||||
float sumx[IQ1S_BLOCK_SIZE+1];
|
|
||||||
float sumw[IQ1S_BLOCK_SIZE+1];
|
|
||||||
float pairs[2*IQ1S_BLOCK_SIZE];
|
|
||||||
int * idx = (int *)(pairs + 1);
|
int * idx = (int *)(pairs + 1);
|
||||||
uint16_t index[IQ1S_BLOCK_SIZE/8];
|
|
||||||
int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
|
|
||||||
|
|
||||||
for (int ibl = 0; ibl < nbl; ++ibl) {
|
for (int ibl = 0; ibl < nbl; ++ibl) {
|
||||||
|
|
||||||
@ -11564,15 +11869,15 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||||||
for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
|
for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
|
||||||
float sigma2 = 2*sumx2/QK_K;
|
float sigma2 = 2*sumx2/QK_K;
|
||||||
|
|
||||||
for (int ib = 0; ib < QK_K/IQ1S_BLOCK_SIZE; ++ib) {
|
for (int ib = 0; ib < QK_K/block_size; ++ib) {
|
||||||
const float * xb = xbl + IQ1S_BLOCK_SIZE*ib;
|
const float * xb = xbl + block_size*ib;
|
||||||
const float * qw = quant_weights + QK_K*ibl + IQ1S_BLOCK_SIZE*ib;
|
const float * qw = quant_weights + QK_K*ibl + block_size*ib;
|
||||||
for (int i = 0; i < IQ1S_BLOCK_SIZE; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
|
for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
|
||||||
float max = fabsf(xb[0]);
|
float max = fabsf(xb[0]);
|
||||||
for (int i = 1; i < IQ1S_BLOCK_SIZE; ++i) max = MAX(max, fabsf(xb[i]));
|
for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
|
||||||
if (!max) {
|
if (!max) {
|
||||||
scales[ib] = 0;
|
scales[ib] = 0;
|
||||||
memset(L, 1, IQ1S_BLOCK_SIZE);
|
memset(L, 1, block_size);
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
// Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
|
// Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
|
||||||
@ -11581,14 +11886,14 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||||||
// in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
|
// in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
|
||||||
// Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
|
// Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
|
||||||
// for each possible and score for each split.
|
// for each possible and score for each split.
|
||||||
for (int j = 0; j < IQ1S_BLOCK_SIZE; ++j) {
|
for (int j = 0; j < block_size; ++j) {
|
||||||
pairs[2*j] = xb[j];
|
pairs[2*j] = xb[j];
|
||||||
idx[2*j] = j;
|
idx[2*j] = j;
|
||||||
}
|
}
|
||||||
qsort(pairs, IQ1S_BLOCK_SIZE, 2*sizeof(float), iq1_sort_helper);
|
qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
|
||||||
{
|
{
|
||||||
sumx[0] = sumw[0] = 0;
|
sumx[0] = sumw[0] = 0;
|
||||||
for (int j = 0; j < IQ1S_BLOCK_SIZE; ++j) {
|
for (int j = 0; j < block_size; ++j) {
|
||||||
int i = idx[2*j];
|
int i = idx[2*j];
|
||||||
sumx[j+1] = sumx[j] + weight[i]*xb[i];
|
sumx[j+1] = sumx[j] + weight[i]*xb[i];
|
||||||
sumw[j+1] = sumw[j] + weight[i];
|
sumw[j+1] = sumw[j] + weight[i];
|
||||||
@ -11596,16 +11901,16 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||||||
}
|
}
|
||||||
float best_score = 0, scale = max;
|
float best_score = 0, scale = max;
|
||||||
int besti1 = -1, besti2 = -1, best_shift = 0;
|
int besti1 = -1, besti2 = -1, best_shift = 0;
|
||||||
for (int i1 = 0; i1 <= IQ1S_BLOCK_SIZE; ++i1) {
|
for (int i1 = 0; i1 <= block_size; ++i1) {
|
||||||
for (int i2 = i1; i2 <= IQ1S_BLOCK_SIZE; ++i2) {
|
for (int i2 = i1; i2 <= block_size; ++i2) {
|
||||||
float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[IQ1S_BLOCK_SIZE] - sumx[i2])*x_p[2];
|
float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[block_size] - sumx[i2])*x_p[2];
|
||||||
float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[IQ1S_BLOCK_SIZE] - sumw[i2])*x_p[2]*x_p[2];
|
float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[block_size] - sumw[i2])*x_p[2]*x_p[2];
|
||||||
if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
|
if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
|
||||||
scale = sumqx/sumq2; best_score = scale*sumqx;
|
scale = sumqx/sumq2; best_score = scale*sumqx;
|
||||||
besti1 = i1; besti2 = i2; best_shift = 1;
|
besti1 = i1; besti2 = i2; best_shift = 1;
|
||||||
}
|
}
|
||||||
sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[IQ1S_BLOCK_SIZE] - sumx[i2])*x_m[2];
|
sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[block_size] - sumx[i2])*x_m[2];
|
||||||
sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[IQ1S_BLOCK_SIZE] - sumw[i2])*x_m[2]*x_m[2];
|
sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[block_size] - sumw[i2])*x_m[2]*x_m[2];
|
||||||
if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
|
if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
|
||||||
scale = sumqx/sumq2; best_score = scale*sumqx;
|
scale = sumqx/sumq2; best_score = scale*sumqx;
|
||||||
besti1 = i1; besti2 = i2; best_shift = -1;
|
besti1 = i1; besti2 = i2; best_shift = -1;
|
||||||
@ -11615,14 +11920,14 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||||||
GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0);
|
GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0);
|
||||||
for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
|
for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
|
||||||
for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
|
for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
|
||||||
for (int j = besti2; j < IQ1S_BLOCK_SIZE; ++j) L[idx[2*j]] = 2;
|
for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
|
||||||
if (scale < 0) {
|
if (scale < 0) {
|
||||||
for (int j = 0; j < IQ1S_BLOCK_SIZE; ++j) L[j] = 2 - L[j];
|
for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
|
||||||
scale = -scale; best_shift = -best_shift;
|
scale = -scale; best_shift = -best_shift;
|
||||||
}
|
}
|
||||||
bool all_on_grid = true;
|
bool all_on_grid = true;
|
||||||
const float * xx = best_shift == 1 ? x_p : x_m;
|
const float * xx = best_shift == 1 ? x_p : x_m;
|
||||||
for (int k = 0; k < IQ1S_BLOCK_SIZE/8; ++k) {
|
for (int k = 0; k < block_size/8; ++k) {
|
||||||
uint16_t u = 0;
|
uint16_t u = 0;
|
||||||
for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
|
for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
|
||||||
int grid_index = kmap_q2xs[u];
|
int grid_index = kmap_q2xs[u];
|
||||||
@ -11636,7 +11941,7 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||||||
}
|
}
|
||||||
if (!all_on_grid) {
|
if (!all_on_grid) {
|
||||||
float sumqx = 0, sumq2 = 0;
|
float sumqx = 0, sumq2 = 0;
|
||||||
for (int k = 0; k < IQ1S_BLOCK_SIZE/8; ++k) {
|
for (int k = 0; k < block_size/8; ++k) {
|
||||||
const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
|
const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
|
||||||
for (int j = 0; j < 8; ++j) {
|
for (int j = 0; j < 8; ++j) {
|
||||||
float w = weight[8*k + j];
|
float w = weight[8*k + j];
|
||||||
@ -11648,8 +11953,8 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||||||
if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2;
|
if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2;
|
||||||
}
|
}
|
||||||
uint16_t h = 0;
|
uint16_t h = 0;
|
||||||
for (int k = 0; k < IQ1S_BLOCK_SIZE/8; ++k) {
|
for (int k = 0; k < block_size/8; ++k) {
|
||||||
y[ibl].qs[(IQ1S_BLOCK_SIZE/8)*ib + k] = index[k] & 255;
|
y[ibl].qs[(block_size/8)*ib + k] = index[k] & 255;
|
||||||
h |= (index[k] >> 8) << 3*k;
|
h |= (index[k] >> 8) << 3*k;
|
||||||
}
|
}
|
||||||
y[ibl].qh[ib] = h;
|
y[ibl].qh[ib] = h;
|
||||||
@ -11660,14 +11965,13 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (!max_scale) {
|
if (!max_scale) {
|
||||||
memset(y[ibl].qs, 0, QK_K/8);
|
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
float d = max_scale/15;
|
float d = max_scale/15;
|
||||||
y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.085f is another fudge factor. Don't ask me why it is needed.
|
y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed.
|
||||||
float id = 1/d;
|
float id = 1/d;
|
||||||
for (int ib = 0; ib < QK_K/IQ1S_BLOCK_SIZE; ++ib) {
|
for (int ib = 0; ib < QK_K/block_size; ++ib) {
|
||||||
int l = nearest_int(0.5f*(id*scales[ib]-1));
|
int l = nearest_int(0.5f*(id*scales[ib]-1));
|
||||||
l = MAX(0, MIN(7, l));
|
l = MAX(0, MIN(7, l));
|
||||||
if (shifts[ib] == -1) l |= 8;
|
if (shifts[ib] == -1) l |= 8;
|
||||||
@ -11678,16 +11982,307 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||||||
|
|
||||||
size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||||
GGML_ASSERT(n_per_row%QK_K == 0);
|
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||||
|
float scales[QK_K/IQ1S_BLOCK_SIZE];
|
||||||
|
float weight[IQ1S_BLOCK_SIZE];
|
||||||
|
int8_t L[IQ1S_BLOCK_SIZE];
|
||||||
|
float sumx[IQ1S_BLOCK_SIZE+1];
|
||||||
|
float sumw[IQ1S_BLOCK_SIZE+1];
|
||||||
|
float pairs[2*IQ1S_BLOCK_SIZE];
|
||||||
|
uint16_t index[IQ1S_BLOCK_SIZE/8];
|
||||||
|
int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
|
||||||
int nblock = n_per_row/QK_K;
|
int nblock = n_per_row/QK_K;
|
||||||
char * qrow = (char *)dst;
|
char * qrow = (char *)dst;
|
||||||
for (int row = 0; row < nrow; ++row) {
|
for (int row = 0; row < nrow; ++row) {
|
||||||
quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights);
|
quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts);
|
||||||
src += n_per_row;
|
src += n_per_row;
|
||||||
qrow += nblock*sizeof(block_iq1_s);
|
qrow += nblock*sizeof(block_iq1_s);
|
||||||
}
|
}
|
||||||
return nrow * nblock * sizeof(block_iq1_s);
|
return nrow * nblock * sizeof(block_iq1_s);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights,
|
||||||
|
float * scales,
|
||||||
|
float * weight,
|
||||||
|
float * pairs,
|
||||||
|
int8_t * L,
|
||||||
|
uint16_t * index,
|
||||||
|
int8_t * shifts) {
|
||||||
|
|
||||||
|
const int gindex = iq2_data_index(GGML_TYPE_IQ1_M);
|
||||||
|
|
||||||
|
const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
|
||||||
|
const int * kmap_q2xs = iq2_data[gindex].map;
|
||||||
|
const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
|
||||||
|
|
||||||
|
//GGML_ASSERT(quant_weights && "missing quantization weights");
|
||||||
|
GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
|
||||||
|
GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
|
||||||
|
GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
|
||||||
|
GGML_ASSERT(n%QK_K == 0);
|
||||||
|
|
||||||
|
block_iq1_m * y = vy;
|
||||||
|
|
||||||
|
const int nbl = n/QK_K;
|
||||||
|
|
||||||
|
const int block_size = IQ1M_BLOCK_SIZE;
|
||||||
|
|
||||||
|
const float x_p[3] = {-1 + IQ1M_DELTA, IQ1M_DELTA, 1 + IQ1M_DELTA};
|
||||||
|
const float x_m[3] = {-1 - IQ1M_DELTA, -IQ1M_DELTA, 1 - IQ1M_DELTA};
|
||||||
|
const uint8_t masks[4] = {0x00, 0x80, 0x08, 0x88};
|
||||||
|
|
||||||
|
int * idx = (int *)(pairs + 1);
|
||||||
|
|
||||||
|
float sumqx[4], sumq2[4];
|
||||||
|
|
||||||
|
iq1m_scale_t s;
|
||||||
|
const float * xx;
|
||||||
|
|
||||||
|
for (int ibl = 0; ibl < nbl; ++ibl) {
|
||||||
|
|
||||||
|
#if QK_K == 64
|
||||||
|
y[ibl].d = GGML_FP32_TO_FP16(0.f);
|
||||||
|
#endif
|
||||||
|
memset(y[ibl].qs, 0, QK_K/8);
|
||||||
|
memset(y[ibl].qh, 0, QK_K/16);
|
||||||
|
memset(y[ibl].scales, 0, QK_K/32);
|
||||||
|
|
||||||
|
float max_scale = 0;
|
||||||
|
|
||||||
|
const float * xbl = x + QK_K*ibl;
|
||||||
|
float sumx2 = 0;
|
||||||
|
for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
|
||||||
|
float sigma2 = 2*sumx2/QK_K;
|
||||||
|
|
||||||
|
for (int ib = 0; ib < QK_K/block_size; ++ib) {
|
||||||
|
const float * xb = xbl + block_size*ib;
|
||||||
|
if (quant_weights) {
|
||||||
|
const float * qw = quant_weights + QK_K*ibl + block_size*ib;
|
||||||
|
for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
|
||||||
|
} else {
|
||||||
|
for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
|
||||||
|
}
|
||||||
|
float max = fabsf(xb[0]);
|
||||||
|
for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
|
||||||
|
if (!max) {
|
||||||
|
scales[ib] = 0;
|
||||||
|
memset(L, 1, block_size);
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
// Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
|
||||||
|
// With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
|
||||||
|
// boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
|
||||||
|
// in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
|
||||||
|
// Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
|
||||||
|
// for each possible and score for each split.
|
||||||
|
for (int j = 0; j < block_size; ++j) {
|
||||||
|
pairs[2*j] = xb[j];
|
||||||
|
idx[2*j] = j;
|
||||||
|
}
|
||||||
|
qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
|
||||||
|
float best_score = 0, scale = max;
|
||||||
|
int besti1 = -1, besti2 = -1, best_k = -1;
|
||||||
|
// 0: +, +
|
||||||
|
// 1: +, -
|
||||||
|
// 2: -, +
|
||||||
|
// 3: -, -
|
||||||
|
for (int i1 = 0; i1 <= block_size; ++i1) {
|
||||||
|
for (int i2 = i1; i2 <= block_size; ++i2) {
|
||||||
|
memset(sumqx, 0, 4*sizeof(float));
|
||||||
|
memset(sumq2, 0, 4*sizeof(float));
|
||||||
|
for (int j = 0; j < i1; ++j) {
|
||||||
|
int i = idx[2*j];
|
||||||
|
if (i < block_size/2) {
|
||||||
|
sumqx[0] += weight[i]*x_p[0]*xb[i];
|
||||||
|
sumqx[1] += weight[i]*x_p[0]*xb[i];
|
||||||
|
sumqx[2] += weight[i]*x_m[0]*xb[i];
|
||||||
|
sumqx[3] += weight[i]*x_m[0]*xb[i];
|
||||||
|
sumq2[0] += weight[i]*x_p[0]*x_p[0];
|
||||||
|
sumq2[1] += weight[i]*x_p[0]*x_p[0];
|
||||||
|
sumq2[2] += weight[i]*x_m[0]*x_m[0];
|
||||||
|
sumq2[3] += weight[i]*x_m[0]*x_m[0];
|
||||||
|
} else {
|
||||||
|
sumqx[0] += weight[i]*x_p[0]*xb[i];
|
||||||
|
sumqx[2] += weight[i]*x_p[0]*xb[i];
|
||||||
|
sumqx[1] += weight[i]*x_m[0]*xb[i];
|
||||||
|
sumqx[3] += weight[i]*x_m[0]*xb[i];
|
||||||
|
sumq2[0] += weight[i]*x_p[0]*x_p[0];
|
||||||
|
sumq2[2] += weight[i]*x_p[0]*x_p[0];
|
||||||
|
sumq2[1] += weight[i]*x_m[0]*x_m[0];
|
||||||
|
sumq2[3] += weight[i]*x_m[0]*x_m[0];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (int j = i1; j < i2; ++j) {
|
||||||
|
int i = idx[2*j];
|
||||||
|
if (i < block_size/2) {
|
||||||
|
sumqx[0] += weight[i]*x_p[1]*xb[i];
|
||||||
|
sumqx[1] += weight[i]*x_p[1]*xb[i];
|
||||||
|
sumqx[2] += weight[i]*x_m[1]*xb[i];
|
||||||
|
sumqx[3] += weight[i]*x_m[1]*xb[i];
|
||||||
|
sumq2[0] += weight[i]*x_p[1]*x_p[1];
|
||||||
|
sumq2[1] += weight[i]*x_p[1]*x_p[1];
|
||||||
|
sumq2[2] += weight[i]*x_m[1]*x_m[1];
|
||||||
|
sumq2[3] += weight[i]*x_m[1]*x_m[1];
|
||||||
|
} else {
|
||||||
|
sumqx[0] += weight[i]*x_p[1]*xb[i];
|
||||||
|
sumqx[2] += weight[i]*x_p[1]*xb[i];
|
||||||
|
sumqx[1] += weight[i]*x_m[1]*xb[i];
|
||||||
|
sumqx[3] += weight[i]*x_m[1]*xb[i];
|
||||||
|
sumq2[0] += weight[i]*x_p[1]*x_p[1];
|
||||||
|
sumq2[2] += weight[i]*x_p[1]*x_p[1];
|
||||||
|
sumq2[1] += weight[i]*x_m[1]*x_m[1];
|
||||||
|
sumq2[3] += weight[i]*x_m[1]*x_m[1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (int j = i2; j < block_size; ++j) {
|
||||||
|
int i = idx[2*j];
|
||||||
|
if (i < block_size/2) {
|
||||||
|
sumqx[0] += weight[i]*x_p[2]*xb[i];
|
||||||
|
sumqx[1] += weight[i]*x_p[2]*xb[i];
|
||||||
|
sumqx[2] += weight[i]*x_m[2]*xb[i];
|
||||||
|
sumqx[3] += weight[i]*x_m[2]*xb[i];
|
||||||
|
sumq2[0] += weight[i]*x_p[2]*x_p[2];
|
||||||
|
sumq2[1] += weight[i]*x_p[2]*x_p[2];
|
||||||
|
sumq2[2] += weight[i]*x_m[2]*x_m[2];
|
||||||
|
sumq2[3] += weight[i]*x_m[2]*x_m[2];
|
||||||
|
} else {
|
||||||
|
sumqx[0] += weight[i]*x_p[2]*xb[i];
|
||||||
|
sumqx[2] += weight[i]*x_p[2]*xb[i];
|
||||||
|
sumqx[1] += weight[i]*x_m[2]*xb[i];
|
||||||
|
sumqx[3] += weight[i]*x_m[2]*xb[i];
|
||||||
|
sumq2[0] += weight[i]*x_p[2]*x_p[2];
|
||||||
|
sumq2[2] += weight[i]*x_p[2]*x_p[2];
|
||||||
|
sumq2[1] += weight[i]*x_m[2]*x_m[2];
|
||||||
|
sumq2[3] += weight[i]*x_m[2]*x_m[2];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (int k = 0; k < 4; ++k) {
|
||||||
|
if (sumq2[k] > 0 && sumqx[k]*sumqx[k] > best_score*sumq2[k]) {
|
||||||
|
scale = sumqx[k]/sumq2[k]; best_score = scale*sumqx[k];
|
||||||
|
besti1 = i1; besti2 = i2; best_k = k;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k >= 0);
|
||||||
|
for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
|
||||||
|
for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
|
||||||
|
for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
|
||||||
|
if (scale < 0) {
|
||||||
|
for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
|
||||||
|
scale = -scale;
|
||||||
|
best_k = best_k == 0 ? 3 : best_k == 1 ? 2 : best_k == 2 ? 1 : 0;
|
||||||
|
}
|
||||||
|
bool all_on_grid = true;
|
||||||
|
for (int k = 0; k < block_size/8; ++k) {
|
||||||
|
if (k == 0) xx = best_k < 2 ? x_p : x_m;
|
||||||
|
else xx = best_k%2 == 0 ? x_p : x_m;
|
||||||
|
uint16_t u = 0;
|
||||||
|
for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
|
||||||
|
int grid_index = kmap_q2xs[u];
|
||||||
|
if (grid_index < 0) {
|
||||||
|
all_on_grid = false;
|
||||||
|
const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
|
||||||
|
grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
|
||||||
|
GGML_ASSERT(grid_index >= 0);
|
||||||
|
}
|
||||||
|
index[k] = grid_index;
|
||||||
|
}
|
||||||
|
if (!all_on_grid) {
|
||||||
|
float sumqx_f = 0, sumq2_f = 0;
|
||||||
|
for (int k = 0; k < block_size/8; ++k) {
|
||||||
|
if (k == 0) xx = best_k < 2 ? x_p : x_m;
|
||||||
|
else xx = best_k%2 == 0 ? x_p : x_m;
|
||||||
|
const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
|
||||||
|
for (int j = 0; j < 8; ++j) {
|
||||||
|
float w = weight[8*k + j];
|
||||||
|
float q = xx[(pg[j] - 1)/2];
|
||||||
|
sumqx_f += w*q*xb[8*k+j];
|
||||||
|
sumq2_f += w*q*q;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (sumqx_f > 0 && sumq2_f > 0) scale = sumqx_f/sumq2_f;
|
||||||
|
}
|
||||||
|
y[ibl].qs[2*ib + 0] = index[0] & 255;
|
||||||
|
y[ibl].qs[2*ib + 1] = index[1] & 255;
|
||||||
|
y[ibl].qh[ib] = (index[0] >> 8) | ((index[1] >> 8) << 4);
|
||||||
|
GGML_ASSERT(scale >= 0);
|
||||||
|
scales[ib] = scale;
|
||||||
|
shifts[ib] = best_k;
|
||||||
|
max_scale = MAX(max_scale, scale);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!max_scale) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
uint16_t * sc = (uint16_t *)y[ibl].scales;
|
||||||
|
#if QK_K == 64
|
||||||
|
float d = max_scale/31;
|
||||||
|
#else
|
||||||
|
float d = max_scale/15;
|
||||||
|
#endif
|
||||||
|
float id = 1/d;
|
||||||
|
float sumqx_f = 0, sumq2_f = 0;
|
||||||
|
for (int ib = 0; ib < QK_K/block_size; ++ib) {
|
||||||
|
int l = nearest_int(0.5f*(id*scales[ib+0]-1));
|
||||||
|
#if QK_K == 64
|
||||||
|
l = MAX(0, MIN(15, l));
|
||||||
|
sc[ib/4] |= (l << 4*(ib%4));
|
||||||
|
#else
|
||||||
|
l = MAX(0, MIN(7, l));
|
||||||
|
sc[ib/4] |= (l << 3*(ib%4));
|
||||||
|
#endif
|
||||||
|
y[ibl].qh[ib] |= masks[shifts[ib]];
|
||||||
|
const float * xb = xbl + block_size*ib;
|
||||||
|
if (quant_weights) {
|
||||||
|
const float * qw = quant_weights + QK_K*ibl + block_size*ib;
|
||||||
|
for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
|
||||||
|
} else {
|
||||||
|
for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
|
||||||
|
}
|
||||||
|
for (int k = 0; k < block_size/8; ++k) {
|
||||||
|
if (k == 0) xx = shifts[ib] < 2 ? x_p : x_m;
|
||||||
|
else xx = shifts[ib]%2 == 0 ? x_p : x_m;
|
||||||
|
const int8_t * pg = (const int8_t *)(kgrid_q2xs + y[ibl].qs[2*ib+k] + ((y[ibl].qh[ib] << (8 - 4*k)) & 0x700));
|
||||||
|
for (int j = 0; j < 8; ++j) {
|
||||||
|
float w = weight[8*k + j];
|
||||||
|
float q = xx[(pg[j] - 1)/2]*(2*l+1);
|
||||||
|
sumqx_f += w*q*xb[8*k+j];
|
||||||
|
sumq2_f += w*q*q;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (sumq2_f > 0) d = sumqx_f/sumq2_f;
|
||||||
|
s.f16 = GGML_FP32_TO_FP16(d*1.1125f); // 1.1125f is another fudge factor. Don't ask me why it is needed.
|
||||||
|
#if QK_K == 64
|
||||||
|
y[ibl].d = s.f16;
|
||||||
|
#else
|
||||||
|
sc[0] |= ((s.u16 & 0x000f) << 12);
|
||||||
|
sc[1] |= ((s.u16 & 0x00f0) << 8);
|
||||||
|
sc[2] |= ((s.u16 & 0x0f00) << 4);
|
||||||
|
sc[3] |= ((s.u16 & 0xf000) << 0);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t quantize_iq1_m(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||||
|
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||||
|
float scales[QK_K/IQ1M_BLOCK_SIZE];
|
||||||
|
float weight[IQ1M_BLOCK_SIZE];
|
||||||
|
int8_t L[IQ1M_BLOCK_SIZE];
|
||||||
|
float pairs[2*IQ1M_BLOCK_SIZE];
|
||||||
|
uint16_t index[IQ1M_BLOCK_SIZE/8];
|
||||||
|
int8_t shifts[QK_K/IQ1M_BLOCK_SIZE];
|
||||||
|
int nblock = n_per_row/QK_K;
|
||||||
|
char * qrow = (char *)dst;
|
||||||
|
for (int row = 0; row < nrow; ++row) {
|
||||||
|
quantize_row_iq1_m_impl(src, qrow, n_per_row, quant_weights, scales, weight, pairs, L, index, shifts);
|
||||||
|
src += n_per_row;
|
||||||
|
qrow += nblock*sizeof(block_iq1_m);
|
||||||
|
}
|
||||||
|
return nrow * nblock * sizeof(block_iq1_m);
|
||||||
|
}
|
||||||
|
|
||||||
// ============================ 4-bit non-linear quants
|
// ============================ 4-bit non-linear quants
|
||||||
|
|
||||||
static inline int best_index_int8(int n, const int8_t * val, float x) {
|
static inline int best_index_int8(int n, const int8_t * val, float x) {
|
||||||
@ -11705,9 +12300,8 @@ static void quantize_row_iq4_nl_impl(const int super_block_size, const int block
|
|||||||
ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
|
ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
|
||||||
float * scales, float * weight, uint8_t * L,
|
float * scales, float * weight, uint8_t * L,
|
||||||
const int8_t * values,
|
const int8_t * values,
|
||||||
const float * quant_weights) {
|
const float * quant_weights,
|
||||||
|
const int ntry) {
|
||||||
const int ntry = 7;
|
|
||||||
|
|
||||||
float sigma2 = 0;
|
float sigma2 = 0;
|
||||||
for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
|
for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
|
||||||
@ -11719,6 +12313,7 @@ static void quantize_row_iq4_nl_impl(const int super_block_size, const int block
|
|||||||
float max_scale = 0, amax_scale = 0;
|
float max_scale = 0, amax_scale = 0;
|
||||||
for (int ib = 0; ib < super_block_size/block_size; ++ib) {
|
for (int ib = 0; ib < super_block_size/block_size; ++ib) {
|
||||||
const float * xb = x + ib*block_size;
|
const float * xb = x + ib*block_size;
|
||||||
|
uint8_t * Lb = L + ib*block_size;
|
||||||
if (quant_weights) {
|
if (quant_weights) {
|
||||||
const float * qw = quant_weights + ib*block_size;
|
const float * qw = quant_weights + ib*block_size;
|
||||||
for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
|
for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
|
||||||
@ -11736,12 +12331,13 @@ static void quantize_row_iq4_nl_impl(const int super_block_size, const int block
|
|||||||
scales[ib] = 0;
|
scales[ib] = 0;
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
float d = -max/values[0];
|
float d = ntry > 0 ? -max/values[0] : max/values[0];
|
||||||
float id = 1/d;
|
float id = 1/d;
|
||||||
float sumqx = 0, sumq2 = 0;
|
float sumqx = 0, sumq2 = 0;
|
||||||
for (int j = 0; j < block_size; ++j) {
|
for (int j = 0; j < block_size; ++j) {
|
||||||
float al = id*xb[j];
|
float al = id*xb[j];
|
||||||
int l = best_index_int8(16, values, al);
|
int l = best_index_int8(16, values, al);
|
||||||
|
Lb[j] = l;
|
||||||
float q = values[l];
|
float q = values[l];
|
||||||
float w = weight[j];
|
float w = weight[j];
|
||||||
sumqx += w*q*xb[j];
|
sumqx += w*q*xb[j];
|
||||||
@ -11796,9 +12392,11 @@ static void quantize_row_iq4_nl_impl(const int super_block_size, const int block
|
|||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
dh[0] = GGML_FP32_TO_FP16(scales[0]);
|
dh[0] = GGML_FP32_TO_FP16(scales[0]);
|
||||||
float id = scales[0] ? 1/scales[0] : 0;
|
if (ntry > 0) {
|
||||||
for (int j = 0; j < super_block_size; ++j) {
|
float id = scales[0] ? 1/scales[0] : 0;
|
||||||
L[j] = best_index_int8(16, values, id*x[j]);
|
for (int j = 0; j < super_block_size; ++j) {
|
||||||
|
L[j] = best_index_int8(16, values, id*x[j]);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -11823,7 +12421,7 @@ size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int nrow
|
|||||||
for (int ibl = 0; ibl < nblock; ++ibl) {
|
for (int ibl = 0; ibl < nblock; ++ibl) {
|
||||||
const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
|
const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
|
||||||
quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
|
quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
|
||||||
&scale, weight, L, kvalues_iq4nl, qw);
|
&scale, weight, L, kvalues_iq4nl, qw, 7);
|
||||||
}
|
}
|
||||||
src += n_per_row;
|
src += n_per_row;
|
||||||
qrow += nblock*sizeof(block_iq4_nl);
|
qrow += nblock*sizeof(block_iq4_nl);
|
||||||
@ -11832,14 +12430,23 @@ size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int nrow
|
|||||||
}
|
}
|
||||||
|
|
||||||
void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int k) {
|
void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int k) {
|
||||||
assert(k % QK4_NL == 0);
|
GGML_ASSERT(k%QK4_NL == 0);
|
||||||
block_iq4_nl * restrict y = vy;
|
int nblock = k/QK4_NL;
|
||||||
quantize_row_iq4_nl_reference(x, y, k);
|
uint8_t L[QK4_NL];
|
||||||
|
float weight[QK4_NL];
|
||||||
|
uint16_t unused_h;
|
||||||
|
uint8_t * unused_l = NULL;
|
||||||
|
float scale;
|
||||||
|
block_iq4_nl * iq4 = (block_iq4_nl *)vy;
|
||||||
|
for (int ibl = 0; ibl < nblock; ++ibl) {
|
||||||
|
quantize_row_iq4_nl_impl(QK4_NL, 32, x + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
|
||||||
|
&scale, weight, L, kvalues_iq4nl, NULL, -1);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int k) {
|
void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int k) {
|
||||||
assert(k % QK4_NL == 0);
|
assert(k % QK4_NL == 0);
|
||||||
quantize_iq4_nl(x, y, 1, k, NULL);
|
quantize_row_iq4_nl(x, y, k);
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||||
@ -11857,7 +12464,7 @@ size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int nrow
|
|||||||
for (int ibl = 0; ibl < nblock; ++ibl) {
|
for (int ibl = 0; ibl < nblock; ++ibl) {
|
||||||
const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
|
const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
|
||||||
quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
|
quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
|
||||||
scales, weight, L, kvalues_iq4nl, qw);
|
scales, weight, L, kvalues_iq4nl, qw, 7);
|
||||||
}
|
}
|
||||||
src += n_per_row;
|
src += n_per_row;
|
||||||
qrow += nblock*sizeof(block_iq4_xs);
|
qrow += nblock*sizeof(block_iq4_xs);
|
||||||
|
@ -72,6 +72,7 @@ void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_
|
|||||||
void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||||
void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||||
void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||||
|
void dequantize_row_iq1_m (const block_iq1_m * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||||
void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||||
void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||||
void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||||
@ -94,6 +95,7 @@ void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const
|
|||||||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||||
|
void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||||
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||||
@ -104,6 +106,7 @@ size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT ds
|
|||||||
size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||||
size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||||
size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||||
|
size_t quantize_iq1_m (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||||
size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||||
size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||||
size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||||
|
668
ggml-sycl.cpp
668
ggml-sycl.cpp
File diff suppressed because it is too large
Load Diff
23
ggml-sycl.h
23
ggml-sycl.h
@ -13,22 +13,37 @@
|
|||||||
extern "C" {
|
extern "C" {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define GGML_SYCL_MAX_DEVICES 16
|
#define GGML_SYCL_MAX_DEVICES 48
|
||||||
#define GGML_SYCL_NAME "SYCL"
|
#define GGML_SYCL_NAME "SYCL"
|
||||||
|
|
||||||
GGML_API void ggml_init_sycl(void);
|
// backend API
|
||||||
GGML_API bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
|
||||||
GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
|
GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
|
||||||
|
|
||||||
|
// devide buffer
|
||||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
|
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
|
||||||
|
|
||||||
|
// split tensor buffer that splits matrices by rows across multiple devices
|
||||||
|
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
|
||||||
|
|
||||||
|
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
||||||
|
|
||||||
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
|
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
|
||||||
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
|
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
|
||||||
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
|
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
|
||||||
GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
|
GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
|
||||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
|
|
||||||
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
||||||
GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
|
GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
|
||||||
|
|
||||||
|
// TODO: these are temporary
|
||||||
|
// ref: https://github.com/ggerganov/llama.cpp/pull/6022#issuecomment-1992615670
|
||||||
|
GGML_API GGML_CALL int ggml_backend_sycl_get_device_id(int device_index);
|
||||||
|
GGML_API GGML_CALL void ggml_backend_sycl_set_single_device_mode(int main_gpu_id);
|
||||||
|
GGML_API GGML_CALL void ggml_backend_sycl_set_mul_device_mode();
|
||||||
|
|
||||||
|
// SYCL doesn't support registering host memory, keep here for reference
|
||||||
|
// GGML_API GGML_CALL bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
|
||||||
|
// GGML_API GGML_CALL void ggml_backend_sycl_unregister_host_buffer(void * buffer);
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@ -710,6 +710,12 @@ static uint32_t ggml_vk_find_queue_family_index(std::vector<vk::QueueFamilyPrope
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// All commands that are allowed on a queue that supports transfer operations are also allowed on a queue that supports either graphics or compute operations.
|
||||||
|
// Thus, if the capabilities of a queue family include VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, then reporting the VK_QUEUE_TRANSFER_BIT capability separately for that queue family is optional.
|
||||||
|
if (compute_index >= 0) {
|
||||||
|
return compute_index;
|
||||||
|
}
|
||||||
|
|
||||||
std::cerr << "ggml_vulkan: No suitable queue family index found." << std::endl;
|
std::cerr << "ggml_vulkan: No suitable queue family index found." << std::endl;
|
||||||
|
|
||||||
for(auto &q_family : queue_family_props) {
|
for(auto &q_family : queue_family_props) {
|
||||||
@ -5560,7 +5566,7 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen
|
|||||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||||
ggml_tensor * node = cgraph->nodes[i];
|
ggml_tensor * node = cgraph->nodes[i];
|
||||||
|
|
||||||
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -5693,6 +5699,7 @@ static ggml_backend_i ggml_backend_vk_interface = {
|
|||||||
/* .graph_plan_compute = */ NULL,
|
/* .graph_plan_compute = */ NULL,
|
||||||
/* .graph_compute = */ ggml_backend_vk_graph_compute,
|
/* .graph_compute = */ ggml_backend_vk_graph_compute,
|
||||||
/* .supports_op = */ ggml_backend_vk_supports_op,
|
/* .supports_op = */ ggml_backend_vk_supports_op,
|
||||||
|
/* .offload_op = */ NULL,
|
||||||
/* .event_new = */ NULL,
|
/* .event_new = */ NULL,
|
||||||
/* .event_free = */ NULL,
|
/* .event_free = */ NULL,
|
||||||
/* .event_record = */ NULL,
|
/* .event_record = */ NULL,
|
||||||
|
263
ggml.c
263
ggml.c
@ -3,6 +3,7 @@
|
|||||||
|
|
||||||
#include "ggml-impl.h"
|
#include "ggml-impl.h"
|
||||||
#include "ggml-quants.h"
|
#include "ggml-quants.h"
|
||||||
|
#include "ggml.h"
|
||||||
|
|
||||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||||||
@ -43,6 +44,10 @@
|
|||||||
|
|
||||||
#if defined(_WIN32)
|
#if defined(_WIN32)
|
||||||
|
|
||||||
|
#define WIN32_LEAN_AND_MEAN
|
||||||
|
#ifndef NOMINMAX
|
||||||
|
#define NOMINMAX
|
||||||
|
#endif
|
||||||
#include <windows.h>
|
#include <windows.h>
|
||||||
|
|
||||||
typedef volatile LONG atomic_int;
|
typedef volatile LONG atomic_int;
|
||||||
@ -282,14 +287,10 @@ inline static void * ggml_calloc(size_t num, size_t size) {
|
|||||||
#else
|
#else
|
||||||
#include <cblas.h>
|
#include <cblas.h>
|
||||||
#endif
|
#endif
|
||||||
#elif defined(GGML_USE_CUBLAS)
|
|
||||||
#include "ggml-cuda.h"
|
|
||||||
#elif defined(GGML_USE_CLBLAST)
|
#elif defined(GGML_USE_CLBLAST)
|
||||||
#include "ggml-opencl.h"
|
#include "ggml-opencl.h"
|
||||||
#elif defined(GGML_USE_VULKAN)
|
#elif defined(GGML_USE_VULKAN)
|
||||||
#include "ggml-vulkan.h"
|
#include "ggml-vulkan.h"
|
||||||
#elif defined(GGML_USE_SYCL)
|
|
||||||
#include "ggml-sycl.h"
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// floating point type used to accumulate sums
|
// floating point type used to accumulate sums
|
||||||
@ -432,6 +433,57 @@ int64_t ggml_cycles_per_ms(void) {
|
|||||||
#define ggml_perf_cycles_per_ms() 0
|
#define ggml_perf_cycles_per_ms() 0
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
//
|
||||||
|
// cross-platform UTF-8 file paths
|
||||||
|
//
|
||||||
|
|
||||||
|
#ifdef _WIN32
|
||||||
|
static wchar_t * ggml_mbstowcs(const char * mbs) {
|
||||||
|
int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
|
||||||
|
if (!wlen) {
|
||||||
|
errno = EINVAL;
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
|
||||||
|
wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
|
||||||
|
if (!wlen) {
|
||||||
|
GGML_FREE(wbuf);
|
||||||
|
errno = EINVAL;
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
return wbuf;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
FILE * ggml_fopen(const char * fname, const char * mode) {
|
||||||
|
#ifdef _WIN32
|
||||||
|
FILE * file = NULL;
|
||||||
|
|
||||||
|
// convert fname (UTF-8)
|
||||||
|
wchar_t * wfname = ggml_mbstowcs(fname);
|
||||||
|
if (wfname) {
|
||||||
|
// convert mode (ANSI)
|
||||||
|
wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
|
||||||
|
wchar_t * wmode_p = wmode;
|
||||||
|
do {
|
||||||
|
*wmode_p++ = (wchar_t)*mode;
|
||||||
|
} while (*mode++);
|
||||||
|
|
||||||
|
// open file
|
||||||
|
file = _wfopen(wfname, wmode);
|
||||||
|
|
||||||
|
GGML_FREE(wfname);
|
||||||
|
GGML_FREE(wmode);
|
||||||
|
}
|
||||||
|
|
||||||
|
return file;
|
||||||
|
#else
|
||||||
|
return fopen(fname, mode);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
//
|
//
|
||||||
// cache line
|
// cache line
|
||||||
//
|
//
|
||||||
@ -470,6 +522,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
|||||||
.type_size = sizeof(int32_t),
|
.type_size = sizeof(int32_t),
|
||||||
.is_quantized = false,
|
.is_quantized = false,
|
||||||
},
|
},
|
||||||
|
[GGML_TYPE_I64] = {
|
||||||
|
.type_name = "i64",
|
||||||
|
.blck_size = 1,
|
||||||
|
.type_size = sizeof(int64_t),
|
||||||
|
.is_quantized = false,
|
||||||
|
},
|
||||||
|
[GGML_TYPE_F64] = {
|
||||||
|
.type_name = "f64",
|
||||||
|
.blck_size = 1,
|
||||||
|
.type_size = sizeof(double),
|
||||||
|
.is_quantized = false,
|
||||||
|
.nrows = 1,
|
||||||
|
},
|
||||||
[GGML_TYPE_F32] = {
|
[GGML_TYPE_F32] = {
|
||||||
.type_name = "f32",
|
.type_name = "f32",
|
||||||
.blck_size = 1,
|
.blck_size = 1,
|
||||||
@ -729,6 +794,18 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
|||||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||||
.nrows = 1,
|
.nrows = 1,
|
||||||
},
|
},
|
||||||
|
[GGML_TYPE_IQ1_M] = {
|
||||||
|
.type_name = "iq1_m",
|
||||||
|
.blck_size = QK_K,
|
||||||
|
.type_size = sizeof(block_iq1_m),
|
||||||
|
.is_quantized = true,
|
||||||
|
.to_float = (ggml_to_float_t) dequantize_row_iq1_m,
|
||||||
|
.from_float = NULL,
|
||||||
|
.from_float_reference = NULL,
|
||||||
|
.vec_dot = ggml_vec_dot_iq1_m_q8_K,
|
||||||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||||
|
.nrows = 1,
|
||||||
|
},
|
||||||
[GGML_TYPE_IQ4_NL] = {
|
[GGML_TYPE_IQ4_NL] = {
|
||||||
.type_name = "iq4_nl",
|
.type_name = "iq4_nl",
|
||||||
.blck_size = QK4_NL,
|
.blck_size = QK4_NL,
|
||||||
@ -918,6 +995,101 @@ inline static float vaddvq_f32(float32x4_t v) {
|
|||||||
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
|
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#elif defined(__AVX512F__)
|
||||||
|
|
||||||
|
#define GGML_SIMD
|
||||||
|
|
||||||
|
// F32 AVX512
|
||||||
|
|
||||||
|
#define GGML_F32_STEP 64
|
||||||
|
#define GGML_F32_EPR 16
|
||||||
|
|
||||||
|
#define GGML_F32x16 __m512
|
||||||
|
#define GGML_F32x16_ZERO _mm512_setzero_ps()
|
||||||
|
#define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
|
||||||
|
#define GGML_F32x16_LOAD _mm512_loadu_ps
|
||||||
|
#define GGML_F32x16_STORE _mm512_storeu_ps
|
||||||
|
// _mm512_fmadd_ps is defined in AVX512F so no guard is required
|
||||||
|
#define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
|
||||||
|
#define GGML_F32x16_ADD _mm512_add_ps
|
||||||
|
#define GGML_F32x16_MUL _mm512_mul_ps
|
||||||
|
#define GGML_F32x16_REDUCE(res, x) \
|
||||||
|
do { \
|
||||||
|
int offset = GGML_F32_ARR >> 1; \
|
||||||
|
for (int i = 0; i < offset; ++i) { \
|
||||||
|
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||||
|
} \
|
||||||
|
offset >>= 1; \
|
||||||
|
for (int i = 0; i < offset; ++i) { \
|
||||||
|
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||||
|
} \
|
||||||
|
offset >>= 1; \
|
||||||
|
for (int i = 0; i < offset; ++i) { \
|
||||||
|
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||||
|
} \
|
||||||
|
res = _mm512_reduce_add_ps(x[0]); \
|
||||||
|
} while (0)
|
||||||
|
|
||||||
|
// TODO: is this optimal ?
|
||||||
|
|
||||||
|
#define GGML_F32_VEC GGML_F32x16
|
||||||
|
#define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
|
||||||
|
#define GGML_F32_VEC_SET1 GGML_F32x16_SET1
|
||||||
|
#define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
|
||||||
|
#define GGML_F32_VEC_STORE GGML_F32x16_STORE
|
||||||
|
#define GGML_F32_VEC_FMA GGML_F32x16_FMA
|
||||||
|
#define GGML_F32_VEC_ADD GGML_F32x16_ADD
|
||||||
|
#define GGML_F32_VEC_MUL GGML_F32x16_MUL
|
||||||
|
#define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
|
||||||
|
|
||||||
|
// F16 AVX512
|
||||||
|
|
||||||
|
// F16 AVX
|
||||||
|
|
||||||
|
#define GGML_F16_STEP 64
|
||||||
|
#define GGML_F16_EPR 16
|
||||||
|
|
||||||
|
// AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
|
||||||
|
|
||||||
|
#define GGML_F32Cx16 __m512
|
||||||
|
#define GGML_F32Cx16_ZERO _mm512_setzero_ps()
|
||||||
|
#define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
|
||||||
|
|
||||||
|
// unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
|
||||||
|
// so F16C guard isn't required
|
||||||
|
#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
|
||||||
|
#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
|
||||||
|
|
||||||
|
#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
|
||||||
|
#define GGML_F32Cx16_ADD _mm512_add_ps
|
||||||
|
#define GGML_F32Cx16_MUL _mm512_mul_ps
|
||||||
|
#define GGML_F32Cx16_REDUCE(res, x) \
|
||||||
|
do { \
|
||||||
|
int offset = GGML_F32_ARR >> 1; \
|
||||||
|
for (int i = 0; i < offset; ++i) { \
|
||||||
|
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||||
|
} \
|
||||||
|
offset >>= 1; \
|
||||||
|
for (int i = 0; i < offset; ++i) { \
|
||||||
|
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||||
|
} \
|
||||||
|
offset >>= 1; \
|
||||||
|
for (int i = 0; i < offset; ++i) { \
|
||||||
|
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||||
|
} \
|
||||||
|
res = _mm512_reduce_add_ps(x[0]); \
|
||||||
|
} while (0)
|
||||||
|
|
||||||
|
#define GGML_F16_VEC GGML_F32Cx16
|
||||||
|
#define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
|
||||||
|
#define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
|
||||||
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
|
||||||
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
|
||||||
|
#define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
|
||||||
|
#define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
|
||||||
|
#define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
|
||||||
|
#define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
|
||||||
|
|
||||||
#elif defined(__AVX__)
|
#elif defined(__AVX__)
|
||||||
|
|
||||||
#define GGML_SIMD
|
#define GGML_SIMD
|
||||||
@ -2379,6 +2551,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
|
|||||||
case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
|
case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
|
||||||
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
|
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
|
||||||
case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
|
case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
|
||||||
|
case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
|
||||||
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
|
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
|
||||||
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
|
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
|
||||||
case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
|
case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
|
||||||
@ -2434,6 +2607,16 @@ static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
|
|||||||
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
|
||||||
|
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
||||||
|
if (tensor->ne[i] == 0) {
|
||||||
|
// empty if any dimension has no elements
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
||||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||||
|
|
||||||
@ -2448,7 +2631,7 @@ bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor
|
|||||||
static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
||||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||||
|
|
||||||
return
|
return ggml_is_empty(t0) ? ggml_is_empty(t1) :
|
||||||
(t1->ne[0]%t0->ne[0] == 0) &&
|
(t1->ne[0]%t0->ne[0] == 0) &&
|
||||||
(t1->ne[1]%t0->ne[1] == 0) &&
|
(t1->ne[1]%t0->ne[1] == 0) &&
|
||||||
(t1->ne[2]%t0->ne[2] == 0) &&
|
(t1->ne[2]%t0->ne[2] == 0) &&
|
||||||
@ -2532,14 +2715,10 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
|
|||||||
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
|
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
|
||||||
}
|
}
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS)
|
#if defined(GGML_USE_CLBLAST)
|
||||||
ggml_init_cublas();
|
|
||||||
#elif defined(GGML_USE_CLBLAST)
|
|
||||||
ggml_cl_init();
|
ggml_cl_init();
|
||||||
#elif defined(GGML_USE_VULKAN)
|
#elif defined(GGML_USE_VULKAN)
|
||||||
ggml_vk_init_cpu_assist();
|
ggml_vk_init_cpu_assist();
|
||||||
#elif defined(GGML_USE_SYCL)
|
|
||||||
ggml_init_sycl();
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
ggml_setup_op_has_task_pass();
|
ggml_setup_op_has_task_pass();
|
||||||
@ -7979,6 +8158,7 @@ static void ggml_compute_forward_add(
|
|||||||
case GGML_TYPE_IQ2_XS:
|
case GGML_TYPE_IQ2_XS:
|
||||||
case GGML_TYPE_IQ3_XXS:
|
case GGML_TYPE_IQ3_XXS:
|
||||||
case GGML_TYPE_IQ1_S:
|
case GGML_TYPE_IQ1_S:
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
case GGML_TYPE_IQ4_NL:
|
case GGML_TYPE_IQ4_NL:
|
||||||
case GGML_TYPE_IQ4_XS:
|
case GGML_TYPE_IQ4_XS:
|
||||||
case GGML_TYPE_IQ3_S:
|
case GGML_TYPE_IQ3_S:
|
||||||
@ -8261,6 +8441,7 @@ static void ggml_compute_forward_add1(
|
|||||||
case GGML_TYPE_IQ2_XS:
|
case GGML_TYPE_IQ2_XS:
|
||||||
case GGML_TYPE_IQ3_XXS:
|
case GGML_TYPE_IQ3_XXS:
|
||||||
case GGML_TYPE_IQ1_S:
|
case GGML_TYPE_IQ1_S:
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
case GGML_TYPE_IQ4_NL:
|
case GGML_TYPE_IQ4_NL:
|
||||||
case GGML_TYPE_IQ4_XS:
|
case GGML_TYPE_IQ4_XS:
|
||||||
case GGML_TYPE_IQ3_S:
|
case GGML_TYPE_IQ3_S:
|
||||||
@ -8388,6 +8569,7 @@ static void ggml_compute_forward_acc(
|
|||||||
case GGML_TYPE_IQ2_XS:
|
case GGML_TYPE_IQ2_XS:
|
||||||
case GGML_TYPE_IQ3_XXS:
|
case GGML_TYPE_IQ3_XXS:
|
||||||
case GGML_TYPE_IQ1_S:
|
case GGML_TYPE_IQ1_S:
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
case GGML_TYPE_IQ4_NL:
|
case GGML_TYPE_IQ4_NL:
|
||||||
case GGML_TYPE_IQ4_XS:
|
case GGML_TYPE_IQ4_XS:
|
||||||
case GGML_TYPE_IQ3_S:
|
case GGML_TYPE_IQ3_S:
|
||||||
@ -10997,7 +11179,6 @@ static void ggml_compute_forward_out_prod_f32(
|
|||||||
// nb01 >= nb00 - src0 is not transposed
|
// nb01 >= nb00 - src0 is not transposed
|
||||||
// compute by src0 rows
|
// compute by src0 rows
|
||||||
|
|
||||||
// TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
|
|
||||||
// TODO: #if defined(GGML_USE_CLBLAST)
|
// TODO: #if defined(GGML_USE_CLBLAST)
|
||||||
|
|
||||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||||
@ -11197,7 +11378,6 @@ static void ggml_compute_forward_out_prod_q_f32(
|
|||||||
// nb01 >= nb00 - src0 is not transposed
|
// nb01 >= nb00 - src0 is not transposed
|
||||||
// compute by src0 rows
|
// compute by src0 rows
|
||||||
|
|
||||||
// TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
|
|
||||||
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
||||||
|
|
||||||
if (params->type == GGML_TASK_TYPE_INIT) {
|
if (params->type == GGML_TASK_TYPE_INIT) {
|
||||||
@ -11293,6 +11473,7 @@ static void ggml_compute_forward_out_prod(
|
|||||||
case GGML_TYPE_IQ2_XS:
|
case GGML_TYPE_IQ2_XS:
|
||||||
case GGML_TYPE_IQ3_XXS:
|
case GGML_TYPE_IQ3_XXS:
|
||||||
case GGML_TYPE_IQ1_S:
|
case GGML_TYPE_IQ1_S:
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
case GGML_TYPE_IQ4_NL:
|
case GGML_TYPE_IQ4_NL:
|
||||||
case GGML_TYPE_IQ4_XS:
|
case GGML_TYPE_IQ4_XS:
|
||||||
case GGML_TYPE_IQ3_S:
|
case GGML_TYPE_IQ3_S:
|
||||||
@ -11484,6 +11665,7 @@ static void ggml_compute_forward_set(
|
|||||||
case GGML_TYPE_IQ2_XS:
|
case GGML_TYPE_IQ2_XS:
|
||||||
case GGML_TYPE_IQ3_XXS:
|
case GGML_TYPE_IQ3_XXS:
|
||||||
case GGML_TYPE_IQ1_S:
|
case GGML_TYPE_IQ1_S:
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
case GGML_TYPE_IQ4_NL:
|
case GGML_TYPE_IQ4_NL:
|
||||||
case GGML_TYPE_IQ4_XS:
|
case GGML_TYPE_IQ4_XS:
|
||||||
case GGML_TYPE_IQ3_S:
|
case GGML_TYPE_IQ3_S:
|
||||||
@ -11707,6 +11889,7 @@ static void ggml_compute_forward_get_rows(
|
|||||||
case GGML_TYPE_IQ2_XS:
|
case GGML_TYPE_IQ2_XS:
|
||||||
case GGML_TYPE_IQ3_XXS:
|
case GGML_TYPE_IQ3_XXS:
|
||||||
case GGML_TYPE_IQ1_S:
|
case GGML_TYPE_IQ1_S:
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
case GGML_TYPE_IQ4_NL:
|
case GGML_TYPE_IQ4_NL:
|
||||||
case GGML_TYPE_IQ4_XS:
|
case GGML_TYPE_IQ4_XS:
|
||||||
case GGML_TYPE_IQ3_S:
|
case GGML_TYPE_IQ3_S:
|
||||||
@ -12410,6 +12593,7 @@ static void ggml_compute_forward_alibi(
|
|||||||
case GGML_TYPE_IQ2_XS:
|
case GGML_TYPE_IQ2_XS:
|
||||||
case GGML_TYPE_IQ3_XXS:
|
case GGML_TYPE_IQ3_XXS:
|
||||||
case GGML_TYPE_IQ1_S:
|
case GGML_TYPE_IQ1_S:
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
case GGML_TYPE_IQ4_NL:
|
case GGML_TYPE_IQ4_NL:
|
||||||
case GGML_TYPE_IQ4_XS:
|
case GGML_TYPE_IQ4_XS:
|
||||||
case GGML_TYPE_IQ3_S:
|
case GGML_TYPE_IQ3_S:
|
||||||
@ -12418,6 +12602,8 @@ static void ggml_compute_forward_alibi(
|
|||||||
case GGML_TYPE_I8:
|
case GGML_TYPE_I8:
|
||||||
case GGML_TYPE_I16:
|
case GGML_TYPE_I16:
|
||||||
case GGML_TYPE_I32:
|
case GGML_TYPE_I32:
|
||||||
|
case GGML_TYPE_I64:
|
||||||
|
case GGML_TYPE_F64:
|
||||||
case GGML_TYPE_COUNT:
|
case GGML_TYPE_COUNT:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
@ -12496,6 +12682,7 @@ static void ggml_compute_forward_clamp(
|
|||||||
case GGML_TYPE_IQ2_XS:
|
case GGML_TYPE_IQ2_XS:
|
||||||
case GGML_TYPE_IQ3_XXS:
|
case GGML_TYPE_IQ3_XXS:
|
||||||
case GGML_TYPE_IQ1_S:
|
case GGML_TYPE_IQ1_S:
|
||||||
|
case GGML_TYPE_IQ1_M:
|
||||||
case GGML_TYPE_IQ4_NL:
|
case GGML_TYPE_IQ4_NL:
|
||||||
case GGML_TYPE_IQ4_XS:
|
case GGML_TYPE_IQ4_XS:
|
||||||
case GGML_TYPE_IQ3_S:
|
case GGML_TYPE_IQ3_S:
|
||||||
@ -12504,6 +12691,8 @@ static void ggml_compute_forward_clamp(
|
|||||||
case GGML_TYPE_I8:
|
case GGML_TYPE_I8:
|
||||||
case GGML_TYPE_I16:
|
case GGML_TYPE_I16:
|
||||||
case GGML_TYPE_I32:
|
case GGML_TYPE_I32:
|
||||||
|
case GGML_TYPE_I64:
|
||||||
|
case GGML_TYPE_F64:
|
||||||
case GGML_TYPE_COUNT:
|
case GGML_TYPE_COUNT:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
@ -15935,18 +16124,11 @@ static void ggml_compute_forward_cross_entropy_loss_back(
|
|||||||
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
|
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
|
||||||
GGML_ASSERT(params);
|
GGML_ASSERT(params);
|
||||||
|
|
||||||
if (tensor->op == GGML_OP_NONE) {
|
if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef GGML_USE_CUBLAS
|
#if defined(GGML_USE_VULKAN)
|
||||||
bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
|
|
||||||
if (skip_cpu) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
|
|
||||||
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
|
|
||||||
#elif defined(GGML_USE_VULKAN)
|
|
||||||
const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
|
const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
|
||||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||||
if (skip_cpu) {
|
if (skip_cpu) {
|
||||||
@ -15958,14 +16140,8 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||||||
}
|
}
|
||||||
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
|
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
|
||||||
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
|
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_VULKAN
|
||||||
|
|
||||||
#ifdef GGML_USE_SYCL
|
|
||||||
bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
|
|
||||||
if (skip_cpu) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
#endif // GGML_USE_SYCL
|
|
||||||
switch (tensor->op) {
|
switch (tensor->op) {
|
||||||
case GGML_OP_DUP:
|
case GGML_OP_DUP:
|
||||||
{
|
{
|
||||||
@ -17817,6 +17993,12 @@ static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const
|
|||||||
static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
|
static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
|
||||||
int n_tasks = 0;
|
int n_tasks = 0;
|
||||||
|
|
||||||
|
if (ggml_is_empty(node)) {
|
||||||
|
// no need to multi-thread a no-op
|
||||||
|
n_tasks = 1;
|
||||||
|
return n_tasks;
|
||||||
|
}
|
||||||
|
|
||||||
switch (node->op) {
|
switch (node->op) {
|
||||||
case GGML_OP_CPY:
|
case GGML_OP_CPY:
|
||||||
case GGML_OP_DUP:
|
case GGML_OP_DUP:
|
||||||
@ -18640,7 +18822,7 @@ void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
|
|||||||
|
|
||||||
// write binary data
|
// write binary data
|
||||||
{
|
{
|
||||||
FILE * fout = fopen(fname, "wb");
|
FILE * fout = ggml_fopen(fname, "wb");
|
||||||
|
|
||||||
if (!fout) {
|
if (!fout) {
|
||||||
fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
|
fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
|
||||||
@ -18778,7 +18960,7 @@ struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context *
|
|||||||
|
|
||||||
// read file into data
|
// read file into data
|
||||||
{
|
{
|
||||||
FILE * fin = fopen(fname, "rb");
|
FILE * fin = ggml_fopen(fname, "rb");
|
||||||
if (!fin) {
|
if (!fin) {
|
||||||
fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
|
fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
|
||||||
return result;
|
return result;
|
||||||
@ -19114,7 +19296,7 @@ static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node,
|
|||||||
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
|
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
|
||||||
char color[16];
|
char color[16];
|
||||||
|
|
||||||
FILE * fp = fopen(filename, "w");
|
FILE * fp = ggml_fopen(filename, "w");
|
||||||
GGML_ASSERT(fp);
|
GGML_ASSERT(fp);
|
||||||
|
|
||||||
fprintf(fp, "digraph G {\n");
|
fprintf(fp, "digraph G {\n");
|
||||||
@ -20161,7 +20343,8 @@ void ggml_quantize_init(enum ggml_type type) {
|
|||||||
case GGML_TYPE_IQ2_XXS:
|
case GGML_TYPE_IQ2_XXS:
|
||||||
case GGML_TYPE_IQ2_XS:
|
case GGML_TYPE_IQ2_XS:
|
||||||
case GGML_TYPE_IQ2_S:
|
case GGML_TYPE_IQ2_S:
|
||||||
case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
|
case GGML_TYPE_IQ1_S:
|
||||||
|
case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
|
||||||
case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
|
case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
|
||||||
case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
|
case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
|
||||||
default: // nothing
|
default: // nothing
|
||||||
@ -20186,7 +20369,8 @@ bool ggml_quantize_requires_imatrix(enum ggml_type type) {
|
|||||||
return
|
return
|
||||||
type == GGML_TYPE_IQ2_XXS ||
|
type == GGML_TYPE_IQ2_XXS ||
|
||||||
type == GGML_TYPE_IQ2_XS ||
|
type == GGML_TYPE_IQ2_XS ||
|
||||||
type == GGML_TYPE_IQ1_S;
|
type == GGML_TYPE_IQ1_S;// ||
|
||||||
|
//type == GGML_TYPE_IQ1_M;
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t ggml_quantize_chunk(
|
size_t ggml_quantize_chunk(
|
||||||
@ -20230,6 +20414,7 @@ size_t ggml_quantize_chunk(
|
|||||||
case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||||
case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||||
case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||||
|
case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||||
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||||
#if QK_K == 64
|
#if QK_K == 64
|
||||||
case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||||
@ -20432,7 +20617,7 @@ struct gguf_context * gguf_init_empty(void) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
|
struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
|
||||||
FILE * file = fopen(fname, "rb");
|
FILE * file = ggml_fopen(fname, "rb");
|
||||||
if (!file) {
|
if (!file) {
|
||||||
return NULL;
|
return NULL;
|
||||||
}
|
}
|
||||||
@ -21387,7 +21572,7 @@ static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf *
|
|||||||
}
|
}
|
||||||
|
|
||||||
void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
|
void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
|
||||||
FILE * file = fopen(fname, "wb");
|
FILE * file = ggml_fopen(fname, "wb");
|
||||||
if (!file) {
|
if (!file) {
|
||||||
GGML_ASSERT(false && "failed to open file for writing");
|
GGML_ASSERT(false && "failed to open file for writing");
|
||||||
}
|
}
|
||||||
@ -21529,15 +21714,15 @@ int ggml_cpu_has_wasm_simd(void) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
int ggml_cpu_has_blas(void) {
|
int ggml_cpu_has_blas(void) {
|
||||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
|
||||||
return 1;
|
return 1;
|
||||||
#else
|
#else
|
||||||
return 0;
|
return 0;
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
int ggml_cpu_has_cublas(void) {
|
int ggml_cpu_has_cuda(void) {
|
||||||
#if defined(GGML_USE_CUBLAS)
|
#if defined(GGML_USE_CUDA)
|
||||||
return 1;
|
return 1;
|
||||||
#else
|
#else
|
||||||
return 0;
|
return 0;
|
||||||
@ -21577,7 +21762,7 @@ int ggml_cpu_has_sycl(void) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
int ggml_cpu_has_gpublas(void) {
|
int ggml_cpu_has_gpublas(void) {
|
||||||
return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
|
return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
|
||||||
ggml_cpu_has_sycl();
|
ggml_cpu_has_sycl();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
15
ggml.h
15
ggml.h
@ -214,9 +214,10 @@
|
|||||||
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#include <stdint.h>
|
|
||||||
#include <stddef.h>
|
|
||||||
#include <stdbool.h>
|
#include <stdbool.h>
|
||||||
|
#include <stddef.h>
|
||||||
|
#include <stdint.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
|
||||||
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
||||||
#define GGML_FILE_VERSION 1
|
#define GGML_FILE_VERSION 1
|
||||||
@ -366,6 +367,9 @@ extern "C" {
|
|||||||
GGML_TYPE_I8 = 24,
|
GGML_TYPE_I8 = 24,
|
||||||
GGML_TYPE_I16 = 25,
|
GGML_TYPE_I16 = 25,
|
||||||
GGML_TYPE_I32 = 26,
|
GGML_TYPE_I32 = 26,
|
||||||
|
GGML_TYPE_I64 = 27,
|
||||||
|
GGML_TYPE_F64 = 28,
|
||||||
|
GGML_TYPE_IQ1_M = 29,
|
||||||
GGML_TYPE_COUNT,
|
GGML_TYPE_COUNT,
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -405,6 +409,7 @@ extern "C" {
|
|||||||
GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
|
GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
|
||||||
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
|
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
|
||||||
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
|
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
|
||||||
|
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
|
||||||
};
|
};
|
||||||
|
|
||||||
// available tensor operations:
|
// available tensor operations:
|
||||||
@ -706,6 +711,9 @@ extern "C" {
|
|||||||
|
|
||||||
GGML_API void ggml_print_backtrace(void);
|
GGML_API void ggml_print_backtrace(void);
|
||||||
|
|
||||||
|
// accepts a UTF-8 path, even on Windows
|
||||||
|
GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
|
||||||
|
|
||||||
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
|
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
|
||||||
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
||||||
|
|
||||||
@ -742,6 +750,7 @@ extern "C" {
|
|||||||
GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
|
GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
|
||||||
GGML_API GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor);
|
GGML_API GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor);
|
||||||
GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
||||||
|
GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
|
||||||
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
|
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
|
||||||
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
|
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
|
||||||
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
|
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
|
||||||
@ -2348,7 +2357,7 @@ extern "C" {
|
|||||||
GGML_API int ggml_cpu_has_fp16_va (void);
|
GGML_API int ggml_cpu_has_fp16_va (void);
|
||||||
GGML_API int ggml_cpu_has_wasm_simd (void);
|
GGML_API int ggml_cpu_has_wasm_simd (void);
|
||||||
GGML_API int ggml_cpu_has_blas (void);
|
GGML_API int ggml_cpu_has_blas (void);
|
||||||
GGML_API int ggml_cpu_has_cublas (void);
|
GGML_API int ggml_cpu_has_cuda (void);
|
||||||
GGML_API int ggml_cpu_has_clblast (void);
|
GGML_API int ggml_cpu_has_clblast (void);
|
||||||
GGML_API int ggml_cpu_has_vulkan (void);
|
GGML_API int ggml_cpu_has_vulkan (void);
|
||||||
GGML_API int ggml_cpu_has_kompute (void);
|
GGML_API int ggml_cpu_has_kompute (void);
|
||||||
|
@ -8,7 +8,7 @@
|
|||||||
#include "ggml-metal.h"
|
#include "ggml-metal.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef GGML_USE_CUBLAS
|
#ifdef GGML_USE_CUDA
|
||||||
#include "ggml-cuda.h"
|
#include "ggml-cuda.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@ -1198,8 +1198,8 @@ static ggml_backend_t whisper_backend_init(const whisper_context_params & params
|
|||||||
ggml_backend_t backend_gpu = NULL;
|
ggml_backend_t backend_gpu = NULL;
|
||||||
|
|
||||||
// initialize the backends
|
// initialize the backends
|
||||||
#ifdef GGML_USE_CUBLAS
|
#ifdef GGML_USE_CUDA
|
||||||
if (params.use_gpu && ggml_cublas_loaded()) {
|
if (params.use_gpu) {
|
||||||
WHISPER_LOG_INFO("%s: using CUDA backend\n", __func__);
|
WHISPER_LOG_INFO("%s: using CUDA backend\n", __func__);
|
||||||
backend_gpu = ggml_backend_cuda_init(params.gpu_device);
|
backend_gpu = ggml_backend_cuda_init(params.gpu_device);
|
||||||
if (!backend_gpu) {
|
if (!backend_gpu) {
|
||||||
@ -4079,7 +4079,7 @@ const char * whisper_print_system_info(void) {
|
|||||||
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
||||||
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
|
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
|
||||||
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
|
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
|
||||||
s += "CUDA = " + std::to_string(ggml_cpu_has_cublas()) + " | ";
|
s += "CUDA = " + std::to_string(ggml_cpu_has_cuda()) + " | ";
|
||||||
s += "COREML = " + std::to_string(whisper_has_coreml()) + " | ";
|
s += "COREML = " + std::to_string(whisper_has_coreml()) + " | ";
|
||||||
s += "OPENVINO = " + std::to_string(whisper_has_openvino()) ;
|
s += "OPENVINO = " + std::to_string(whisper_has_openvino()) ;
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user