mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-04-10 04:40:29 +00:00
CUDA: use arch list for compatibility check (llama/11775)
* CUDA: use arch list for feature availability check --------- Co-authored-by: Diego Devesa <slarengh@gmail.com>
This commit is contained in:
parent
14d7c0368d
commit
1b67d72f87
@ -473,7 +473,6 @@ GGML_TABLE_BEGIN(uint8_t, ksigns_iq2xs, 128)
|
||||
240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
|
||||
GGML_TABLE_END()
|
||||
|
||||
//#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
GGML_TABLE_BEGIN(uint64_t, ksigns64, 128)
|
||||
0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff,
|
||||
0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff,
|
||||
@ -508,7 +507,6 @@ GGML_TABLE_BEGIN(uint64_t, ksigns64, 128)
|
||||
0x00ffffffff000000, 0xffffffffff0000ff, 0xffffffffff00ff00, 0x00ffffffff00ffff,
|
||||
0xffffffffffff0000, 0x00ffffffffff00ff, 0x00ffffffffffff00, 0xffffffffffffffff,
|
||||
GGML_TABLE_END()
|
||||
//#endif
|
||||
|
||||
|
||||
GGML_TABLE_BEGIN(uint64_t, iq2xxs_grid, 256)
|
||||
|
@ -71,6 +71,47 @@
|
||||
#define GGML_CUDA_CC_QY1 210
|
||||
#define GGML_CUDA_CC_QY2 220
|
||||
|
||||
#ifdef __CUDA_ARCH_LIST__
|
||||
constexpr bool ggml_cuda_has_arch_impl(int) {
|
||||
return false;
|
||||
}
|
||||
|
||||
template<class ... Archs>
|
||||
constexpr bool ggml_cuda_has_arch_impl(const int arch, const int first, Archs... rest) {
|
||||
return arch == first || ggml_cuda_has_arch_impl(arch, rest...);
|
||||
}
|
||||
|
||||
constexpr bool ggml_cuda_has_arch(const int arch) {
|
||||
return ggml_cuda_has_arch_impl(arch, __CUDA_ARCH_LIST__);
|
||||
}
|
||||
|
||||
constexpr int ggml_cuda_highest_compiled_arch_impl(const int arch, const int cur) {
|
||||
if (cur == 0) {
|
||||
GGML_ABORT("ggml was not compiled with any CUDA arch <= %d", arch);
|
||||
}
|
||||
return cur;
|
||||
}
|
||||
|
||||
template<class ... Archs>
|
||||
constexpr int ggml_cuda_highest_compiled_arch_impl(const int arch, const int cur, const int first, Archs... rest) {
|
||||
if (first <= arch && first > cur) {
|
||||
return ggml_cuda_highest_compiled_arch_impl(arch, first, rest...);
|
||||
} else {
|
||||
return ggml_cuda_highest_compiled_arch_impl(arch, cur, rest...);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr int ggml_cuda_highest_compiled_arch(const int arch) {
|
||||
return ggml_cuda_highest_compiled_arch_impl(arch, 0, __CUDA_ARCH_LIST__);
|
||||
}
|
||||
#else
|
||||
static int ggml_cuda_highest_compiled_arch(const int arch) {
|
||||
return arch;
|
||||
}
|
||||
#endif // __CUDA_ARCH_LIST__
|
||||
|
||||
// ---------------------------------------------------------------------------------------------------------
|
||||
|
||||
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
@ -162,18 +203,32 @@ typedef float2 dfloat2;
|
||||
#define FLASH_ATTN_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
|
||||
|
||||
static constexpr bool fast_fp16_available(const int cc) {
|
||||
static bool fp16_available(const int cc) {
|
||||
return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL;
|
||||
}
|
||||
|
||||
static bool fast_fp16_available(const int cc) {
|
||||
return fp16_available(cc) && cc != 610;
|
||||
}
|
||||
|
||||
// To be used for feature selection of external libraries, e.g. cuBLAS.
|
||||
static bool fast_fp16_hardware_available(const int cc) {
|
||||
return cc >= GGML_CUDA_CC_PASCAL && cc != 610;
|
||||
}
|
||||
|
||||
// Any FP16 tensor cores are available.
|
||||
static constexpr bool fp16_mma_available(const int cc) {
|
||||
// Any FP16 tensor core instructions are available for ggml code.
|
||||
static bool fp16_mma_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA;
|
||||
}
|
||||
|
||||
// To be used for feature selection of external libraries, e.g. cuBLAS.
|
||||
static bool fp16_mma_hardware_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA;
|
||||
}
|
||||
|
||||
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
|
||||
static constexpr bool new_mma_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_TURING;
|
||||
static bool new_mma_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_TURING;
|
||||
}
|
||||
|
||||
static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
|
||||
|
@ -599,7 +599,7 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
||||
case GGML_TYPE_Q5_1:
|
||||
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
||||
case GGML_TYPE_Q8_0:
|
||||
if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= GGML_CUDA_CC_PASCAL) {
|
||||
if (fp16_available(ggml_cuda_info().devices[ggml_cuda_get_device()].cc)) {
|
||||
return dequantize_block_q8_0_f16_cuda;
|
||||
}
|
||||
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
||||
|
@ -1867,14 +1867,14 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
||||
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
|
||||
any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_available(cc);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
|
||||
any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_hardware_available(cc);
|
||||
}
|
||||
} else {
|
||||
const int cc = ggml_cuda_info().devices[ctx.device].cc;
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
|
||||
any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_available(cc);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
|
||||
any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_hardware_available(cc);
|
||||
}
|
||||
|
||||
// debug helpers
|
||||
@ -3205,8 +3205,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) {
|
||||
return true;
|
||||
}
|
||||
const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
|
||||
return cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
|
||||
return fp16_mma_available(ggml_cuda_info().devices[dev_ctx->device].cc) &&
|
||||
op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
|
||||
}
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||||
|
@ -18,7 +18,7 @@ void ggml_cuda_op_mul_mat_q(
|
||||
const int64_t stride00 = ne00 / ggml_blck_size(src0->type);
|
||||
|
||||
int id = ggml_cuda_get_device();
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||
@ -27,7 +27,8 @@ void ggml_cuda_op_mul_mat_q(
|
||||
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
|
||||
// Also its fixup needs to allocate a temporary buffer in the memory pool.
|
||||
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
|
||||
const bool use_stream_k = compute_capability >= GGML_CUDA_CC_VOLTA && compute_capability < GGML_CUDA_CC_OFFSET_AMD && src1_ncols == ne11;
|
||||
const bool use_stream_k = ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA &&
|
||||
cc < GGML_CUDA_CC_OFFSET_AMD && src1_ncols == ne11;
|
||||
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k};
|
||||
|
||||
switch (src0->type) {
|
||||
@ -136,7 +137,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (cc < GGML_CUDA_CC_DP4A) {
|
||||
if (ggml_cuda_highest_compiled_arch(cc) < GGML_CUDA_CC_DP4A) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -145,7 +146,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
#endif //GGML_CUDA_FORCE_MMQ
|
||||
|
||||
if (cc < GGML_CUDA_CC_OFFSET_AMD) {
|
||||
return cc < GGML_CUDA_CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
||||
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc) && !GGML_CUDA_CC_IS_GCN(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
|
@ -86,12 +86,13 @@ struct tile_x_sizes {
|
||||
int sc;
|
||||
};
|
||||
|
||||
static constexpr int get_mmq_x_max_host(const int cc) {
|
||||
static int get_mmq_x_max_host(const int cc) {
|
||||
return new_mma_available(cc) ? 128 :
|
||||
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ?
|
||||
#ifdef GGML_CUDA_FORCE_MMQ
|
||||
cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ? 128 : 64;
|
||||
128 : 64;
|
||||
#else
|
||||
cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ? MMQ_DP4A_MAX_BATCH_SIZE : 64;
|
||||
MMQ_DP4A_MAX_BATCH_SIZE : 64;
|
||||
#endif // GGML_CUDA_FORCE_MMQ
|
||||
}
|
||||
|
||||
@ -119,8 +120,9 @@ static constexpr __device__ int get_mmq_x_max_device() {
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
static constexpr int get_mmq_y_host(const int cc) {
|
||||
return cc >= GGML_CUDA_CC_OFFSET_AMD ? (GGML_CUDA_CC_IS_RDNA1(cc) ? 64 : 128) : (cc >= GGML_CUDA_CC_VOLTA ? 128 : 64);
|
||||
static int get_mmq_y_host(const int cc) {
|
||||
return cc >= GGML_CUDA_CC_OFFSET_AMD ? (GGML_CUDA_CC_IS_RDNA1(cc) ? 64 : 128) :
|
||||
(ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA ? 128 : 64);
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_mmq_y_device() {
|
||||
@ -2828,7 +2830,7 @@ void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cuda
|
||||
const int mmq_x_max = get_mmq_x_max_host(cc);
|
||||
const int mmq_y = get_mmq_y_host(cc);
|
||||
const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y;
|
||||
const bool use_stream_k = cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD;
|
||||
const bool use_stream_k = ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD;
|
||||
|
||||
int mmq_x_best = 0;
|
||||
int nparts_best = INT_MAX;
|
||||
|
Loading…
x
Reference in New Issue
Block a user