whisper.cpp/models/convert-h5-to-ggml.py

196 lines
6.8 KiB
Python
Raw Normal View History

import io
import os
import sys
import struct
import json
import code
import torch
import numpy as np
from transformers import WhisperForConditionalGeneration
conv_map = {
'self_attn.k_proj' : 'attn.key',
'self_attn.q_proj' : 'attn.query',
'self_attn.v_proj' : 'attn.value',
'self_attn.out_proj' : 'attn.out',
'self_attn_layer_norm' : 'attn_ln',
'encoder_attn.q_proj' : 'cross_attn.query',
'encoder_attn.v_proj' : 'cross_attn.value',
'encoder_attn.out_proj' : 'cross_attn.out',
'encoder_attn_layer_norm' : 'cross_attn_ln',
'fc1' : 'mlp.0',
'fc2' : 'mlp.2',
'final_layer_norm' : 'mlp_ln',
'encoder.layer_norm.bias' : 'encoder.ln_post.bias',
'encoder.layer_norm.weight' : 'encoder.ln_post.weight',
'encoder.embed_positions.weight': 'encoder.positional_embedding',
'decoder.layer_norm.bias' : 'decoder.ln.bias',
'decoder.layer_norm.weight' : 'decoder.ln.weight',
'decoder.embed_positions.weight': 'decoder.positional_embedding',
'decoder.embed_tokens.weight' : 'decoder.token_embedding.weight',
'proj_out.weight' : 'decoder.proj.weight',
}
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if len(sys.argv) < 4:
print("Usage: convert-h5-to-ggml.py dir_model path-to-whisper-repo dir-output [use-f32]\n")
sys.exit(1)
dir_model = sys.argv[1]
dir_whisper = sys.argv[2]
dir_out = sys.argv[3]
with open(dir_model + "/vocab.json", "r") as f:
encoder = json.load(f)
with open(dir_model + "/added_tokens.json", "r") as f:
encoder_added = json.load(f)
with open(dir_model + "/config.json", "r") as f:
hparams = json.load(f)
model = WhisperForConditionalGeneration.from_pretrained(dir_model)
#code.interact(local=locals())
n_mels = hparams["num_mel_bins"]
with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as f:
filters = torch.from_numpy(f[f"mel_{n_mels}"])
dir_tokenizer = dir_model
fname_out = dir_out + "/ggml-model.bin"
with open(dir_tokenizer + "/vocab.json", "r", encoding="utf8") as f:
tokens = json.load(f)
# use 16-bit or 32-bit floats
use_f16 = True
if len(sys.argv) > 4:
use_f16 = False
fname_out = dir_out + "/ggml-model-f32.bin"
fout = open(fname_out, "wb")
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["max_source_positions"]))
fout.write(struct.pack("i", hparams["d_model"]))
fout.write(struct.pack("i", hparams["encoder_attention_heads"]))
fout.write(struct.pack("i", hparams["encoder_layers"]))
fout.write(struct.pack("i", hparams["max_length"]))
fout.write(struct.pack("i", hparams["d_model"]))
fout.write(struct.pack("i", hparams["decoder_attention_heads"]))
fout.write(struct.pack("i", hparams["decoder_layers"]))
fout.write(struct.pack("i", hparams["num_mel_bins"]))
fout.write(struct.pack("i", use_f16))
fout.write(struct.pack("i", filters.shape[0]))
fout.write(struct.pack("i", filters.shape[1]))
for i in range(filters.shape[0]):
for j in range(filters.shape[1]):
fout.write(struct.pack("f", filters[i][j]))
byte_encoder = bytes_to_unicode()
byte_decoder = {v:k for k, v in byte_encoder.items()}
fout.write(struct.pack("i", len(tokens)))
tokens = sorted(tokens.items(), key=lambda x: x[1])
for key in tokens:
text = bytearray([byte_decoder[c] for c in key[0]])
fout.write(struct.pack("i", len(text)))
fout.write(text)
list_vars = model.state_dict()
for name in list_vars.keys():
# this seems to not be used
# ref: https://github.com/huggingface/transformers/blob/9a5b84a0076a04fe9596da72e8668069d4f09ea0/src/transformers/models/whisper/modeling_whisper.py#L1099-L1106
if name == "proj_out.weight":
print('Skipping', name)
continue
src = name
nn = name
if name != "proj_out.weight":
nn = nn.split(".")[1:]
else:
nn = nn.split(".")
if nn[1] == "layers":
nn[1] = "blocks"
if ".".join(nn[3:-1]) == "encoder_attn.k_proj":
mapped = "attn.key" if nn[0] == "encoder" else "cross_attn.key"
else:
mapped = conv_map[".".join(nn[3:-1])]
name = ".".join(nn[:3] + [mapped] + nn[-1:])
else:
name = ".".join(nn)
name = conv_map[name] if name in conv_map else name
print(src, ' -> ', name)
data = list_vars[src].squeeze().numpy()
data = data.astype(np.float16)
# reshape conv bias from [n] to [n, 1]
if name == "encoder.conv1.bias" or \
name == "encoder.conv2.bias":
data = data.reshape(data.shape[0], 1)
print(" Reshaped variable: " + name + " to shape: ", data.shape)
n_dims = len(data.shape)
print(name, n_dims, data.shape)
# looks like the whisper models are in f16 by default
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
# ftype == 0 -> float32, ftype == 1 -> float16
ftype = 1;
if use_f16:
if n_dims < 2 or \
name == "encoder.conv1.bias" or \
name == "encoder.conv2.bias" or \
name == "encoder.positional_embedding" or \
name == "decoder.positional_embedding":
print(" Converting to float32")
data = data.astype(np.float32)
ftype = 0
else:
data = data.astype(np.float32)
ftype = 0
# header
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str);
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " + fname_out)
print("")