mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-19 20:57:52 +00:00
185 lines
6.0 KiB
Python
185 lines
6.0 KiB
Python
|
import io
|
||
|
import os
|
||
|
import sys
|
||
|
import struct
|
||
|
import json
|
||
|
import code
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
|
||
|
from transformers import WhisperForConditionalGeneration
|
||
|
|
||
|
conv_map = {'self_attn_layer_norm': 'attn_ln',
|
||
|
'encoder_attn.k_proj': 'attn.key',
|
||
|
'self_attn.out_proj': 'attn.out',
|
||
|
'encoder_attn.out_proj': 'cross_attn.out',
|
||
|
'self_attn.q_proj': 'attn.query',
|
||
|
'encoder_attn.q_proj': 'cross_attn.query',
|
||
|
'self_attn.v_proj': 'attn.value',
|
||
|
'encoder_attn.v_proj': 'cross_attn.value',
|
||
|
'encoder_attn_layer_norm': 'cross_attn_ln',
|
||
|
'fc1': 'mlp.0',
|
||
|
'fc2': 'mlp.2',
|
||
|
'final_layer_norm': 'mlp_ln',
|
||
|
'encoder.layer_norm.bias': 'encoder.ln_post.bias',
|
||
|
'encoder.layer_norm.weight': 'encoder.ln_post.weight',
|
||
|
'encoder.embed_positions.weight': 'encoder.positional_embedding',
|
||
|
'decoder.layer_norm.bias': 'decoder.ln.bias',
|
||
|
'decoder.layer_norm.weight': 'decoder.ln.weight',
|
||
|
'decoder.embed_positions.weight': 'decoder.positional_embedding',
|
||
|
'decoder.embed_tokens.weight': 'decoder.token_embedding.weight',
|
||
|
}
|
||
|
|
||
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||
|
def bytes_to_unicode():
|
||
|
"""
|
||
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||
|
The reversible bpe codes work on unicode strings.
|
||
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||
|
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||
|
"""
|
||
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||
|
cs = bs[:]
|
||
|
n = 0
|
||
|
for b in range(2**8):
|
||
|
if b not in bs:
|
||
|
bs.append(b)
|
||
|
cs.append(2**8+n)
|
||
|
n += 1
|
||
|
cs = [chr(n) for n in cs]
|
||
|
return dict(zip(bs, cs))
|
||
|
|
||
|
if len(sys.argv) < 4:
|
||
|
print("Usage: convert-h5-to-ggml.py dir_model path-to-whisper-repo dir-output [use-f32]\n")
|
||
|
sys.exit(1)
|
||
|
|
||
|
dir_model = sys.argv[1]
|
||
|
dir_whisper = sys.argv[2]
|
||
|
dir_out = sys.argv[3]
|
||
|
|
||
|
with open(dir_model + "/vocab.json", "r") as f:
|
||
|
encoder = json.load(f)
|
||
|
with open(dir_model + "/added_tokens.json", "r") as f:
|
||
|
encoder_added = json.load(f)
|
||
|
with open(dir_model + "/config.json", "r") as f:
|
||
|
hparams = json.load(f)
|
||
|
|
||
|
model = WhisperForConditionalGeneration.from_pretrained(dir_model)
|
||
|
|
||
|
#code.interact(local=locals())
|
||
|
|
||
|
n_mels = hparams["num_mel_bins"]
|
||
|
with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as f:
|
||
|
filters = torch.from_numpy(f[f"mel_{n_mels}"])
|
||
|
|
||
|
dir_tokenizer = dir_model
|
||
|
|
||
|
fname_out = dir_out + "/ggml-model.bin"
|
||
|
|
||
|
with open(dir_tokenizer + "/vocab.json", "r", encoding="utf8") as f:
|
||
|
tokens = json.load(f)
|
||
|
|
||
|
|
||
|
use_f16 = True
|
||
|
|
||
|
fout = open(fname_out, "wb")
|
||
|
|
||
|
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
||
|
fout.write(struct.pack("i", hparams["vocab_size"]))
|
||
|
fout.write(struct.pack("i", hparams["max_source_positions"]))
|
||
|
fout.write(struct.pack("i", hparams["d_model"]))
|
||
|
fout.write(struct.pack("i", hparams["decoder_attention_heads"]))
|
||
|
fout.write(struct.pack("i", hparams["decoder_layers"]))
|
||
|
fout.write(struct.pack("i", hparams["max_length"]))
|
||
|
fout.write(struct.pack("i", hparams["d_model"]))
|
||
|
fout.write(struct.pack("i", hparams["encoder_attention_heads"]))
|
||
|
fout.write(struct.pack("i", hparams["encoder_layers"]))
|
||
|
fout.write(struct.pack("i", hparams["num_mel_bins"]))
|
||
|
fout.write(struct.pack("i", use_f16))
|
||
|
|
||
|
fout.write(struct.pack("i", filters.shape[0]))
|
||
|
fout.write(struct.pack("i", filters.shape[1]))
|
||
|
for i in range(filters.shape[0]):
|
||
|
for j in range(filters.shape[1]):
|
||
|
fout.write(struct.pack("f", filters[i][j]))
|
||
|
|
||
|
byte_encoder = bytes_to_unicode()
|
||
|
byte_decoder = {v:k for k, v in byte_encoder.items()}
|
||
|
|
||
|
fout.write(struct.pack("i", len(tokens)))
|
||
|
|
||
|
tokens = sorted(tokens.items(), key=lambda x: x[1])
|
||
|
for key in tokens:
|
||
|
text = bytearray([byte_decoder[c] for c in key[0]])
|
||
|
fout.write(struct.pack("i", len(text)))
|
||
|
fout.write(text)
|
||
|
|
||
|
list_vars = model.state_dict()
|
||
|
for name in list_vars.keys():
|
||
|
if name == "proj_out.weight":
|
||
|
print('Skipping', name)
|
||
|
continue
|
||
|
|
||
|
src = name
|
||
|
|
||
|
nn = name
|
||
|
nn = nn.split(".")[1:]
|
||
|
if nn[1] == "layers":
|
||
|
nn[1] = "blocks"
|
||
|
if ".".join(nn[3:-1]) == "self_attn.k_proj":
|
||
|
mapped = "attn.key" if nn[0] == "encoder" else "cross_attn.key"
|
||
|
else:
|
||
|
mapped = conv_map[".".join(nn[3:-1])]
|
||
|
name = ".".join(nn[:3] + [mapped] + nn[-1:])
|
||
|
else:
|
||
|
name = ".".join(nn)
|
||
|
name = conv_map[name] if name in conv_map else name
|
||
|
|
||
|
print(src, ' -> ', name)
|
||
|
data = list_vars[src].squeeze().numpy()
|
||
|
data = data.astype(np.float16)
|
||
|
|
||
|
# reshape conv bias from [n] to [n, 1]
|
||
|
if name == "encoder.conv1.bias" or \
|
||
|
name == "encoder.conv2.bias":
|
||
|
data = data.reshape(data.shape[0], 1)
|
||
|
print(" Reshaped variable: " + name + " to shape: ", data.shape)
|
||
|
|
||
|
n_dims = len(data.shape)
|
||
|
print(name, n_dims, data.shape)
|
||
|
|
||
|
# looks like the whisper models are in f16 by default
|
||
|
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
|
||
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
||
|
ftype = 1;
|
||
|
if use_f16:
|
||
|
if n_dims < 2 or \
|
||
|
name == "encoder.conv1.bias" or \
|
||
|
name == "encoder.conv2.bias" or \
|
||
|
name == "encoder.positional_embedding" or \
|
||
|
name == "decoder.positional_embedding":
|
||
|
print(" Converting to float32")
|
||
|
data = data.astype(np.float32)
|
||
|
ftype = 0
|
||
|
else:
|
||
|
data = data.astype(np.float32)
|
||
|
ftype = 0
|
||
|
|
||
|
# header
|
||
|
str = name.encode('utf-8')
|
||
|
fout.write(struct.pack("iii", n_dims, len(str), ftype))
|
||
|
for i in range(n_dims):
|
||
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
||
|
fout.write(str);
|
||
|
|
||
|
# data
|
||
|
data.tofile(fout)
|
||
|
|
||
|
fout.close()
|
||
|
|
||
|
print("Done. Output file: " + fname_out)
|
||
|
print("")
|