whisper.cpp/models/ggml_to_pt.py

110 lines
3.5 KiB
Python
Raw Permalink Normal View History

import struct
import torch
import numpy as np
from collections import OrderedDict
from pathlib import Path
import sys
if len(sys.argv) < 3:
print(
"Usage: convert-ggml-to-pt.py model.bin dir-output\n")
sys.exit(1)
fname_inp = Path(sys.argv[1])
dir_out = Path(sys.argv[2])
fname_out = dir_out / "torch-model.pt"
# Open the ggml file
with open(fname_inp, "rb") as f:
# Read magic number and hyperparameters
magic_number, n_vocab, n_audio_ctx, n_audio_state, n_audio_head, n_audio_layer, n_text_ctx, n_text_state, n_text_head, n_text_layer, n_mels, use_f16 = struct.unpack("12i", f.read(48))
print(f"Magic number: {magic_number}")
print(f"Vocab size: {n_vocab}")
print(f"Audio context size: {n_audio_ctx}")
print(f"Audio state size: {n_audio_state}")
print(f"Audio head size: {n_audio_head}")
print(f"Audio layer size: {n_audio_layer}")
print(f"Text context size: {n_text_ctx}")
print(f"Text head size: {n_text_head}")
print(f"Mel size: {n_mels}")
# Read mel filters
# mel_filters = np.fromfile(f, dtype=np.float32, count=n_mels * 2).reshape(n_mels, 2)
# print(f"Mel filters: {mel_filters}")
filters_shape_0 = struct.unpack("i", f.read(4))[0]
print(f"Filters shape 0: {filters_shape_0}")
filters_shape_1 = struct.unpack("i", f.read(4))[0]
print(f"Filters shape 1: {filters_shape_1}")
# Read tokenizer tokens
# bytes = f.read(4)
# print(bytes)
# for i in range(filters.shape[0]):
# for j in range(filters.shape[1]):
# fout.write(struct.pack("f", filters[i][j]))
mel_filters = np.zeros((filters_shape_0, filters_shape_1))
for i in range(filters_shape_0):
for j in range(filters_shape_1):
mel_filters[i][j] = struct.unpack("f", f.read(4))[0]
bytes_data = f.read(4)
num_tokens = struct.unpack("i", bytes_data)[0]
tokens = {}
for _ in range(num_tokens):
token_len = struct.unpack("i", f.read(4))[0]
token = f.read(token_len)
tokens[token] = {}
# Read model variables
model_state_dict = OrderedDict()
while True:
try:
n_dims, name_length, ftype = struct.unpack("iii", f.read(12))
except struct.error:
break # End of file
dims = [struct.unpack("i", f.read(4))[0] for _ in range(n_dims)]
dims = dims[::-1]
name = f.read(name_length).decode("utf-8")
if ftype == 1: # f16
data = np.fromfile(f, dtype=np.float16, count=np.prod(dims)).reshape(dims)
else: # f32
data = np.fromfile(f, dtype=np.float32, count=np.prod(dims)).reshape(dims)
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
data = data[:, 0]
model_state_dict[name] = torch.from_numpy(data)
# Now you have the model's state_dict stored in model_state_dict
# You can load this state_dict into a model with the same architecture
# dims = ModelDimensions(**checkpoint["dims"])
# model = Whisper(dims)
from whisper import Whisper, ModelDimensions
dims = ModelDimensions(
n_mels=n_mels,
n_audio_ctx=n_audio_ctx,
n_audio_state=n_audio_state,
n_audio_head=n_audio_head,
n_audio_layer=n_audio_layer,
n_text_ctx=n_text_ctx,
n_text_state=n_text_state,
n_text_head=n_text_head,
n_text_layer=n_text_layer,
n_vocab=n_vocab,
)
model = Whisper(dims) # Replace with your model's class
model.load_state_dict(model_state_dict)
# Save the model in PyTorch format
torch.save(model.state_dict(), fname_out)