tippecanoe/tile.cc
2014-10-01 10:20:04 -07:00

672 lines
14 KiB
C++

#include <iostream>
#include <fstream>
#include <string>
#include <stack>
#include <vector>
#include <algorithm>
#include <stdio.h>
#include <unistd.h>
#include <zlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <math.h>
#include <sqlite3.h>
#include "vector_tile.pb.h"
extern "C" {
#include "tile.h"
#include "pool.h"
#include "clip.h"
#include "mbtiles.h"
}
#define CMD_BITS 3
// https://github.com/mapbox/mapnik-vector-tile/blob/master/src/vector_tile_compression.hpp
static inline int compress(std::string const& input, std::string& output) {
z_stream deflate_s;
deflate_s.zalloc = Z_NULL;
deflate_s.zfree = Z_NULL;
deflate_s.opaque = Z_NULL;
deflate_s.avail_in = 0;
deflate_s.next_in = Z_NULL;
deflateInit(&deflate_s, Z_DEFAULT_COMPRESSION);
deflate_s.next_in = (Bytef *)input.data();
deflate_s.avail_in = input.size();
size_t length = 0;
do {
size_t increase = input.size() / 2 + 1024;
output.resize(length + increase);
deflate_s.avail_out = increase;
deflate_s.next_out = (Bytef *)(output.data() + length);
int ret = deflate(&deflate_s, Z_FINISH);
if (ret != Z_STREAM_END && ret != Z_OK && ret != Z_BUF_ERROR) {
return -1;
}
length += (increase - deflate_s.avail_out);
} while (deflate_s.avail_out == 0);
deflateEnd(&deflate_s);
output.resize(length);
return 0;
}
struct draw {
int op;
long long x;
long long y;
int necessary;
draw(int op, long long x, long long y) {
this->op = op;
this->x = x;
this->y = y;
}
draw() { }
};
typedef std::vector<draw> drawvec;
drawvec decode_feature(char **meta, int z, unsigned tx, unsigned ty, int detail) {
drawvec out;
while (1) {
draw d;
deserialize_int(meta, &d.op);
if (d.op == VT_END) {
break;
}
if (d.op == VT_MOVETO || d.op == VT_LINETO) {
int wx, wy;
deserialize_int(meta, &wx);
deserialize_int(meta, &wy);
long long wwx = (unsigned) wx;
long long wwy = (unsigned) wy;
if (z != 0) {
wwx -= tx << (32 - z);
wwy -= ty << (32 - z);
}
d.x = wwx;
d.y = wwy;
}
out.push_back(d);
}
return out;
}
int to_feature(drawvec &geom, mapnik::vector::tile_feature *feature) {
int px = 0, py = 0;
int cmd_idx = -1;
int cmd = -1;
int length = 0;
int drew = 0;
int i;
int n = geom.size();
for (i = 0; i < n; i++) {
int op = geom[i].op;
if (op != cmd) {
if (cmd_idx >= 0) {
if (feature != NULL) {
feature->set_geometry(cmd_idx, (length << CMD_BITS) | (cmd & ((1 << CMD_BITS) - 1)));
}
}
cmd = op;
length = 0;
if (feature != NULL) {
cmd_idx = feature->geometry_size();
feature->add_geometry(0);
}
}
if (op == VT_MOVETO || op == VT_LINETO) {
long long wwx = geom[i].x;
long long wwy = geom[i].y;
int dx = wwx - px;
int dy = wwy - py;
if (feature != NULL) {
feature->add_geometry((dx << 1) ^ (dx >> 31));
feature->add_geometry((dy << 1) ^ (dy >> 31));
}
px = wwx;
py = wwy;
length++;
if (op == VT_LINETO && (dx != 0 || dy != 0)) {
drew = 1;
}
} else if (op == VT_CLOSEPATH) {
length++;
} else {
fprintf(stderr, "\nInternal error: corrupted geometry\n");
exit(EXIT_FAILURE);
}
}
if (cmd_idx >= 0) {
if (feature != NULL) {
feature->set_geometry(cmd_idx, (length << CMD_BITS) | (cmd & ((1 << CMD_BITS) - 1)));
}
}
return drew;
}
drawvec remove_noop(drawvec geom, int type) {
// first pass: remove empty linetos
long long x = 0, y = 0;
drawvec out;
unsigned i;
for (i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_LINETO && geom[i].x == x && geom[i].y == y) {
continue;
}
if (geom[i].op == VT_CLOSEPATH) {
out.push_back(geom[i]);
} else { /* moveto or lineto */
out.push_back(geom[i]);
x = geom[i].x;
y = geom[i].y;
}
}
// second pass: remove unused movetos
geom = out;
out.resize(0);
for (i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
if (i + 1 >= geom.size()) {
continue;
}
if (geom[i + 1].op == VT_MOVETO) {
continue;
}
if (geom[i + 1].op == VT_CLOSEPATH) {
i++; // also remove unused closepath
continue;
}
}
out.push_back(geom[i]);
}
// second pass: remove empty movetos
if (type == VT_LINE) {
geom = out;
out.resize(0);
for (i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
if (i > 0 && geom[i - 1].op == VT_LINETO && geom[i - 1].x == geom[i].x && geom[i - 1].y == geom[i].y) {
continue;
}
}
out.push_back(geom[i]);
}
}
return out;
}
int shrink_lines(struct draw *geom, int len, int z, int basezoom) {
double scale = 1.0 / exp(log(sqrt(2.5)) * (basezoom - z));
struct draw tmp[3 * len];
int out = 0;
int i;
for (i = 0; i < len; i++) {
if (i > 0 && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO) && geom[i].op == VT_LINETO) {
long long cx = (geom[i].x + geom[i - 1].x) / 2;
long long cy = (geom[i].y + geom[i - 1].y) / 2;
tmp[out + 0].op = VT_MOVETO;
tmp[out + 0].x = cx + (geom[i - 1].x - cx) * scale;
tmp[out + 0].y = cy + (geom[i - 1].y - cy) * scale;
tmp[out + 1].op = VT_LINETO;
tmp[out + 1].x = cx + (geom[i].x - cx) * scale;
tmp[out + 1].y = cy + (geom[i].y - cy) * scale;
tmp[out + 2].op = VT_MOVETO;
tmp[out + 2].x = geom[i].x;
tmp[out + 2].y = geom[i].y;
out += 3;
} else {
tmp[out++] = geom[i];
}
}
memcpy(geom, tmp, out * sizeof(struct draw));
return out;
}
void to_tile_scale(drawvec &geom, int z, int detail) {
unsigned i;
for (i = 0; i < geom.size(); i++) {
geom[i].x >>= (32 - detail - z);
geom[i].y >>= (32 - detail - z);
}
}
double square_distance_from_line(long long point_x, long long point_y, long long segA_x, long long segA_y, long long segB_x, long long segB_y) {
double p2x = segB_x - segA_x;
double p2y = segB_y - segA_y;
double something = p2x * p2x + p2y * p2y;
double u = 0 == something ? 0 : ((point_x - segA_x) * p2x + (point_y - segA_y) * p2y) / something;
if (u > 1) {
u = 1;
} else if (u < 0) {
u = 0;
}
double x = segA_x + u * p2x;
double y = segA_y + u * p2y;
double dx = x - point_x;
double dy = y - point_y;
return dx * dx + dy * dy;
}
// https://github.com/Project-OSRM/osrm-backend/blob/733d1384a40f/Algorithms/DouglasePeucker.cpp
void douglas_peucker(drawvec &geom, int start, int n, double e) {
e = e * e;
std::stack<int> recursion_stack;
{
int left_border = 0;
int right_border = 1;
// Sweep linerarily over array and identify those ranges that need to be checked
do {
if (geom[start + right_border].necessary) {
recursion_stack.push(left_border);
recursion_stack.push(right_border);
left_border = right_border;
}
++right_border;
} while (right_border < n);
}
while (!recursion_stack.empty()) {
// pop next element
int second = recursion_stack.top();
recursion_stack.pop();
int first = recursion_stack.top();
recursion_stack.pop();
double max_distance = -1;
int farthest_element_index = second;
// find index idx of element with max_distance
int i;
for (i = first + 1; i < second; i++) {
double temp_dist = square_distance_from_line(geom[start + i].x, geom[start + i].y,
geom[start + first].x, geom[start + first].y,
geom[start + second].x, geom[start + second].y);
double distance = fabs(temp_dist);
if (distance > e && distance > max_distance) {
farthest_element_index = i;
max_distance = distance;
}
}
if (max_distance > e) {
// mark idx as necessary
geom[start + farthest_element_index].necessary = 1;
if (1 < farthest_element_index - first) {
recursion_stack.push(first);
recursion_stack.push(farthest_element_index);
}
if (1 < second - farthest_element_index) {
recursion_stack.push(farthest_element_index);
recursion_stack.push(second);
}
}
}
}
drawvec clip_lines(drawvec &geom, int z, int detail) {
drawvec out;
unsigned i;
for (i = 0; i < geom.size(); i++) {
if (i > 0 && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO) && geom[i].op == VT_LINETO) {
double x1 = geom[i - 1].x;
double y1 = geom[i - 1].y;
double x2 = geom[i - 0].x;
double y2 = geom[i - 0].y;
unsigned area = 0xFFFFFFFF;
if (z != 0) {
area = 1 << (32 - z);
}
int c = clip(&x1, &y1, &x2, &y2, 0, 0, area, area);
if (c > 1) { // clipped
out.push_back(draw(VT_MOVETO, x1, y1));
out.push_back(draw(VT_LINETO, x2, y2));
out.push_back(draw(VT_MOVETO, geom[i].x, geom[i].y));
} else if (c == 1) { // unchanged
out.push_back(geom[i]);
} else { // clipped away entirely
out.push_back(draw(VT_MOVETO, geom[i].x, geom[i].y));
}
} else {
out.push_back(geom[i]);
}
}
return out;
}
drawvec simplify_lines(drawvec &geom, int z, int detail) {
int res = 1 << (32 - detail - z);
unsigned i;
for (i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
geom[i].necessary = 1;
} else if (geom[i].op == VT_LINETO) {
geom[i].necessary = 0;
} else {
geom[i].necessary = 1;
}
}
for (i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
unsigned j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op == VT_CLOSEPATH || geom[j].op == VT_MOVETO) {
break;
}
}
geom[i].necessary = 1;
geom[j - 1].necessary = 1;
douglas_peucker(geom, i, j - i, res);
i = j - 1;
}
}
drawvec out;
for (i = 0; i < geom.size(); i++) {
if (geom[i].necessary) {
out.push_back(geom[i]);
}
}
return out;
}
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2);
struct coalesce {
int type;
drawvec geom;
std::vector<int> meta;
unsigned long long index;
bool operator< (const coalesce &o) const {
int cmp = coalindexcmp(this, &o);
if (cmp < 0) {
return true;
} else {
return false;
}
}
};
int coalcmp(const void *v1, const void *v2) {
const struct coalesce *c1 = (const struct coalesce *) v1;
const struct coalesce *c2 = (const struct coalesce *) v2;
int cmp = c1->type - c2->type;
if (cmp != 0) {
return cmp;
}
unsigned i;
for (i = 0; i < c1->meta.size() && i < c2->meta.size(); i++) {
cmp = c1->meta[i] - c2->meta[i];
if (cmp != 0) {
return cmp;
}
}
if (c1->meta.size() < c2->meta.size()) {
return -1;
} else if (c1->meta.size() > c2->meta.size()) {
return 1;
} else {
return 0;
}
}
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2) {
int cmp = coalcmp((const void *) c1, (const void *) c2);
if (cmp == 0) {
if (c1->index < c2->index) {
return -1;
} else if (c1->index > c2->index) {
return 1;
}
}
return cmp;
}
long long write_tile(struct index *start, struct index *end, char *metabase, unsigned *file_bbox, int z, unsigned tx, unsigned ty, int detail, int basezoom, struct pool *file_keys, char *layername, sqlite3 *outdb) {
GOOGLE_PROTOBUF_VERIFY_VERSION;
mapnik::vector::tile tile;
mapnik::vector::tile_layer *layer = tile.add_layers();
layer->set_name(layername);
layer->set_version(1);
layer->set_extent(1 << detail);
struct pool keys, values, dup;
pool_init(&keys, 0);
pool_init(&values, 0);
pool_init(&dup, 1);
double interval = 1;
double seq = 0;
long long count = 0;
if (z < basezoom) {
interval = exp(log(2.5) * (basezoom - z));
}
std::vector<coalesce> features;
struct index *i;
for (i = start; i < end; i++) {
int t;
char *meta = metabase + i->fpos;
deserialize_int(&meta, &t);
if (t == VT_POINT) {
seq++;
if (seq >= 0) {
seq -= interval;
} else {
continue;
}
}
drawvec geom = decode_feature(&meta, z, tx, ty, detail);
if (t == VT_LINE) {
geom = clip_lines(geom, z, detail);
}
if (t == VT_LINE || t == VT_POLYGON) {
geom = simplify_lines(geom, z, detail);
}
#if 0
if (t == VT_LINE && z != basezoom) {
len = shrink_lines(geom, len, z, basezoom);
}
#endif
to_tile_scale(geom, z, detail);
if (t == VT_POINT || to_feature(geom, NULL)) {
struct pool_val *pv = pool_long_long(&dup, &i->fpos, 0);
if (pv->n == 0) {
continue;
}
pv->n = 0;
struct coalesce c;
c.type = t;
c.index = i->index;
c.geom = geom;
int m;
deserialize_int(&meta, &m);
int i;
for (i = 0; i < m; i++) {
int t;
deserialize_int(&meta, &t);
struct pool_val *key = deserialize_string(&meta, &keys, VT_STRING);
struct pool_val *value = deserialize_string(&meta, &values, t);
c.meta.push_back(key->n);
c.meta.push_back(value->n);
if (!is_pooled(file_keys, key->s, t)) {
// Dup to retain after munmap
pool(file_keys, strdup(key->s), t);
}
}
features.push_back(c);
}
}
std::sort(features.begin(), features.end());
std::vector<coalesce> out;
unsigned x;
for (x = 0; x < features.size(); x++) {
unsigned y = out.size() - 1;
if (out.size() > 0 && coalcmp(&features[x], &out[y]) < 0) {
fprintf(stderr, "\nfeature out of order\n");
}
if (out.size() > 0 && out[y].geom.size() + features[x].geom.size() < 20000 && coalcmp(&features[x], &out[y]) == 0 && features[x].type != VT_POINT) {
unsigned z;
for (z = 0; z < features[x].geom.size(); z++) {
out[y].geom.push_back(features[x].geom[z]);
}
} else {
out.push_back(features[x]);
}
}
features = out;
for (x = 0; x < features.size(); x++) {
if (features[x].type == VT_LINE || features[x].type == VT_POLYGON) {
features[x].geom = remove_noop(features[x].geom, features[x].type);
}
mapnik::vector::tile_feature *feature = layer->add_features();
if (features[x].type == VT_POINT) {
feature->set_type(mapnik::vector::tile::Point);
} else if (features[x].type == VT_LINE) {
feature->set_type(mapnik::vector::tile::LineString);
} else if (features[x].type == VT_POLYGON) {
feature->set_type(mapnik::vector::tile::Polygon);
} else {
feature->set_type(mapnik::vector::tile::Unknown);
}
to_feature(features[x].geom, feature);
count += features[x].geom.size();
unsigned y;
for (y = 0; y < features[x].meta.size(); y++) {
feature->add_tags(features[x].meta[y]);
}
}
features.resize(0);
struct pool_val *pv;
for (pv = keys.head; pv != NULL; pv = pv->next) {
layer->add_keys(pv->s, strlen(pv->s));
}
for (pv = values.head; pv != NULL; pv = pv->next) {
mapnik::vector::tile_value *tv = layer->add_values();
if (pv->type == VT_NUMBER) {
tv->set_double_value(atof(pv->s));
} else {
tv->set_string_value(pv->s);
}
}
pool_free(&keys);
pool_free(&values);
pool_free(&dup);
std::string s;
std::string compressed;
tile.SerializeToString(&s);
compress(s, compressed);
if (compressed.size() > 500000) {
fprintf(stderr, "tile %d/%u/%u size is %lld, >500000\n", z, tx, ty, (long long) compressed.size());
exit(EXIT_FAILURE);
}
mbtiles_write_tile(outdb, z, tx, ty, compressed.data(), compressed.size());
return count;
}