mirror of
https://github.com/mapbox/tippecanoe.git
synced 2025-01-22 12:28:03 +00:00
34b00eca73
Add a command line option to specify the minimum allowed tile extent
714 lines
18 KiB
C++
714 lines
18 KiB
C++
#include <iostream>
|
|
#include <fstream>
|
|
#include <string>
|
|
#include <stack>
|
|
#include <vector>
|
|
#include <map>
|
|
#include <set>
|
|
#include <algorithm>
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
#include <zlib.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <math.h>
|
|
#include <sqlite3.h>
|
|
#include "vector_tile.pb.h"
|
|
#include "geometry.hh"
|
|
|
|
extern "C" {
|
|
#include "tile.h"
|
|
#include "pool.h"
|
|
#include "clip.h"
|
|
#include "mbtiles.h"
|
|
#include "projection.h"
|
|
}
|
|
|
|
#define CMD_BITS 3
|
|
|
|
// https://github.com/mapbox/mapnik-vector-tile/blob/master/src/vector_tile_compression.hpp
|
|
static inline int compress(std::string const& input, std::string& output) {
|
|
z_stream deflate_s;
|
|
deflate_s.zalloc = Z_NULL;
|
|
deflate_s.zfree = Z_NULL;
|
|
deflate_s.opaque = Z_NULL;
|
|
deflate_s.avail_in = 0;
|
|
deflate_s.next_in = Z_NULL;
|
|
deflateInit2(&deflate_s, Z_BEST_COMPRESSION, Z_DEFLATED, 31, 8, Z_DEFAULT_STRATEGY);
|
|
deflate_s.next_in = (Bytef *)input.data();
|
|
deflate_s.avail_in = input.size();
|
|
size_t length = 0;
|
|
do {
|
|
size_t increase = input.size() / 2 + 1024;
|
|
output.resize(length + increase);
|
|
deflate_s.avail_out = increase;
|
|
deflate_s.next_out = (Bytef *)(output.data() + length);
|
|
int ret = deflate(&deflate_s, Z_FINISH);
|
|
if (ret != Z_STREAM_END && ret != Z_OK && ret != Z_BUF_ERROR) {
|
|
return -1;
|
|
}
|
|
length += (increase - deflate_s.avail_out);
|
|
} while (deflate_s.avail_out == 0);
|
|
deflateEnd(&deflate_s);
|
|
output.resize(length);
|
|
return 0;
|
|
}
|
|
|
|
int to_feature(drawvec &geom, mapnik::vector::tile_feature *feature) {
|
|
int px = 0, py = 0;
|
|
int cmd_idx = -1;
|
|
int cmd = -1;
|
|
int length = 0;
|
|
int drew = 0;
|
|
int i;
|
|
|
|
int n = geom.size();
|
|
for (i = 0; i < n; i++) {
|
|
int op = geom[i].op;
|
|
|
|
if (op != cmd) {
|
|
if (cmd_idx >= 0) {
|
|
if (feature != NULL) {
|
|
feature->set_geometry(cmd_idx, (length << CMD_BITS) | (cmd & ((1 << CMD_BITS) - 1)));
|
|
}
|
|
}
|
|
|
|
cmd = op;
|
|
length = 0;
|
|
|
|
if (feature != NULL) {
|
|
cmd_idx = feature->geometry_size();
|
|
feature->add_geometry(0);
|
|
}
|
|
}
|
|
|
|
if (op == VT_MOVETO || op == VT_LINETO) {
|
|
long long wwx = geom[i].x;
|
|
long long wwy = geom[i].y;
|
|
|
|
int dx = wwx - px;
|
|
int dy = wwy - py;
|
|
|
|
if (feature != NULL) {
|
|
feature->add_geometry((dx << 1) ^ (dx >> 31));
|
|
feature->add_geometry((dy << 1) ^ (dy >> 31));
|
|
}
|
|
|
|
px = wwx;
|
|
py = wwy;
|
|
length++;
|
|
|
|
if (op == VT_LINETO && (dx != 0 || dy != 0)) {
|
|
drew = 1;
|
|
}
|
|
} else if (op == VT_CLOSEPATH) {
|
|
length++;
|
|
} else {
|
|
fprintf(stderr, "\nInternal error: corrupted geometry\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
if (cmd_idx >= 0) {
|
|
if (feature != NULL) {
|
|
feature->set_geometry(cmd_idx, (length << CMD_BITS) | (cmd & ((1 << CMD_BITS) - 1)));
|
|
}
|
|
}
|
|
|
|
return drew;
|
|
}
|
|
|
|
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2);
|
|
|
|
struct coalesce {
|
|
int type;
|
|
drawvec geom;
|
|
std::vector<int> meta;
|
|
unsigned long long index;
|
|
unsigned long long index2;
|
|
char *metasrc;
|
|
bool coalesced;
|
|
|
|
bool operator< (const coalesce &o) const {
|
|
int cmp = coalindexcmp(this, &o);
|
|
if (cmp < 0) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
};
|
|
|
|
int coalcmp(const void *v1, const void *v2) {
|
|
const struct coalesce *c1 = (const struct coalesce *) v1;
|
|
const struct coalesce *c2 = (const struct coalesce *) v2;
|
|
|
|
int cmp = c1->type - c2->type;
|
|
if (cmp != 0) {
|
|
return cmp;
|
|
}
|
|
|
|
unsigned i;
|
|
for (i = 0; i < c1->meta.size() && i < c2->meta.size(); i++) {
|
|
cmp = c1->meta[i] - c2->meta[i];
|
|
|
|
if (cmp != 0) {
|
|
return cmp;
|
|
}
|
|
}
|
|
|
|
if (c1->meta.size() < c2->meta.size()) {
|
|
return -1;
|
|
} else if (c1->meta.size() > c2->meta.size()) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2) {
|
|
int cmp = coalcmp((const void *) c1, (const void *) c2);
|
|
|
|
if (cmp == 0) {
|
|
if (c1->index < c2->index) {
|
|
return -1;
|
|
} else if (c1->index > c2->index) {
|
|
return 1;
|
|
}
|
|
|
|
if (c1->index2 > c2->index2) {
|
|
return -1;
|
|
} else if (c1->index2 < c2->index2) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return cmp;
|
|
}
|
|
|
|
void decode_meta(char **meta, struct pool *keys, struct pool *values, struct pool *file_keys, std::vector<int> *intmeta, char *only) {
|
|
int m;
|
|
deserialize_int(meta, &m);
|
|
|
|
int i;
|
|
for (i = 0; i < m; i++) {
|
|
int t;
|
|
deserialize_int(meta, &t);
|
|
struct pool_val *key = deserialize_string(meta, keys, VT_STRING);
|
|
|
|
if (only != NULL && (strcmp(key->s, only) != 0)) {
|
|
deserialize_int(meta, &t);
|
|
*meta += t;
|
|
} else {
|
|
struct pool_val *value = deserialize_string(meta, values, t);
|
|
|
|
intmeta->push_back(key->n);
|
|
intmeta->push_back(value->n);
|
|
|
|
if (!is_pooled(file_keys, key->s, t)) {
|
|
// Dup to retain after munmap
|
|
pool(file_keys, strdup(key->s), t);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
mapnik::vector::tile create_tile(char **layernames, int line_detail, std::vector<std::vector<coalesce> > &features, long long *count, struct pool **keys, struct pool **values, int nlayers) {
|
|
mapnik::vector::tile tile;
|
|
|
|
int i;
|
|
for (i = 0; i < nlayers; i++) {
|
|
mapnik::vector::tile_layer *layer = tile.add_layers();
|
|
|
|
layer->set_name(layernames[i]);
|
|
layer->set_version(1);
|
|
layer->set_extent(1 << line_detail);
|
|
|
|
unsigned x;
|
|
for (x = 0; x < features[i].size(); x++) {
|
|
if (features[i][x].type == VT_LINE || features[i][x].type == VT_POLYGON) {
|
|
features[i][x].geom = remove_noop(features[i][x].geom, features[i][x].type);
|
|
}
|
|
|
|
mapnik::vector::tile_feature *feature = layer->add_features();
|
|
|
|
if (features[i][x].type == VT_POINT) {
|
|
feature->set_type(mapnik::vector::tile::Point);
|
|
} else if (features[i][x].type == VT_LINE) {
|
|
feature->set_type(mapnik::vector::tile::LineString);
|
|
} else if (features[i][x].type == VT_POLYGON) {
|
|
feature->set_type(mapnik::vector::tile::Polygon);
|
|
} else {
|
|
feature->set_type(mapnik::vector::tile::Unknown);
|
|
}
|
|
|
|
to_feature(features[i][x].geom, feature);
|
|
*count += features[i][x].geom.size();
|
|
|
|
unsigned y;
|
|
for (y = 0; y < features[i][x].meta.size(); y++) {
|
|
feature->add_tags(features[i][x].meta[y]);
|
|
}
|
|
}
|
|
|
|
struct pool_val *pv;
|
|
for (pv = keys[i]->head; pv != NULL; pv = pv->next) {
|
|
layer->add_keys(pv->s, strlen(pv->s));
|
|
}
|
|
for (pv = values[i]->head; pv != NULL; pv = pv->next) {
|
|
mapnik::vector::tile_value *tv = layer->add_values();
|
|
|
|
if (pv->type == VT_NUMBER) {
|
|
tv->set_double_value(atof(pv->s));
|
|
} else if (pv->type == VT_BOOLEAN) {
|
|
tv->set_bool_value(pv->s[0] == 't');
|
|
} else {
|
|
tv->set_string_value(pv->s);
|
|
}
|
|
}
|
|
}
|
|
|
|
return tile;
|
|
}
|
|
|
|
struct sll {
|
|
char *name;
|
|
long long val;
|
|
|
|
bool operator< (const sll &o) const {
|
|
if (this->val < o.val) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
sll(char *name, long long val) {
|
|
this->name = name;
|
|
this->val = val;
|
|
}
|
|
};
|
|
|
|
#if 0
|
|
void evaluate(std::vector<coalesce> &features, char *metabase, struct pool *file_keys, const char *layername, int line_detail, long long orig) {
|
|
std::vector<sll> options;
|
|
|
|
struct pool_val *pv;
|
|
for (pv = file_keys->head; pv != NULL; pv = pv->next) {
|
|
struct pool keys, values;
|
|
pool_init(&keys, 0);
|
|
pool_init(&values, 0);
|
|
long long count = 0;
|
|
|
|
for (unsigned i = 0; i < features.size(); i++) {
|
|
char *meta = features[i].metasrc;
|
|
|
|
features[i].meta.resize(0);
|
|
decode_meta(&meta, &keys, &values, file_keys, &features[i].meta, pv->s);
|
|
}
|
|
|
|
std::vector<coalesce> empty;
|
|
mapnik::vector::tile tile = create_tile(layername, line_detail, empty, &count, &keys, &values, 1); // XXX layer
|
|
|
|
std::string s;
|
|
std::string compressed;
|
|
|
|
tile.SerializeToString(&s);
|
|
compress(s, compressed);
|
|
|
|
options.push_back(sll(pv->s, compressed.size()));
|
|
|
|
pool_free(&values);
|
|
pool_free(&keys);
|
|
}
|
|
|
|
std::sort(options.begin(), options.end());
|
|
for (unsigned i = 0; i < options.size(); i++) {
|
|
if (options[i].val > 1024) {
|
|
fprintf(stderr, "using -x %s would save about %lld, for a tile size of of %lld\n", options[i].name, options[i].val, orig - options[i].val);
|
|
}
|
|
}
|
|
|
|
struct pool keys, values;
|
|
pool_init(&keys, 0);
|
|
pool_init(&values, 0);
|
|
long long count = 0;
|
|
|
|
std::vector<coalesce> empty;
|
|
mapnik::vector::tile tile = create_tile(layername, line_detail, features, &count, &keys, &values, nlayers);
|
|
|
|
std::string s;
|
|
std::string compressed;
|
|
|
|
tile.SerializeToString(&s);
|
|
compress(s, compressed);
|
|
fprintf(stderr, "geometry alone (-X) would be %lld\n", (long long) compressed.size());
|
|
|
|
pool_free(&values);
|
|
pool_free(&keys);
|
|
}
|
|
#endif
|
|
|
|
long long write_tile(char **geoms, char *metabase, unsigned *file_bbox, int z, unsigned tx, unsigned ty, int detail, int min_detail, int basezoom, struct pool **file_keys, char **layernames, sqlite3 *outdb, double droprate, int buffer, const char *fname, FILE *geomfile[4], int file_minzoom, int file_maxzoom, double todo, char *geomstart, long long along, double gamma, int nlayers, char *prevent) {
|
|
int line_detail;
|
|
static bool evaluated = false;
|
|
double oprogress = 0;
|
|
double fraction = 1;
|
|
|
|
char *og = *geoms;
|
|
|
|
for (line_detail = detail; line_detail >= min_detail || line_detail == detail; line_detail--) {
|
|
GOOGLE_PROTOBUF_VERIFY_VERSION;
|
|
|
|
struct pool keys1[nlayers], values1[nlayers];
|
|
struct pool *keys[nlayers], *values[nlayers];
|
|
int i;
|
|
for (i = 0; i < nlayers; i++) {
|
|
pool_init(&keys1[i], 0);
|
|
pool_init(&values1[i], 0);
|
|
|
|
keys[i] = &keys1[i];
|
|
values[i] = &values1[i];
|
|
}
|
|
|
|
long long count = 0;
|
|
//long long along = 0;
|
|
double accum_area = 0;
|
|
|
|
double interval = 0;
|
|
double seq = 0;
|
|
if (z < basezoom) {
|
|
interval = exp(log(droprate) * (basezoom - z));
|
|
}
|
|
|
|
double fraction_accum = 0;
|
|
|
|
unsigned long long previndex = 0;
|
|
double scale = (double) (1LL << (64 - 2 * (z + 8)));
|
|
double gap = 0;
|
|
|
|
std::vector<std::vector<coalesce> > features;
|
|
for (i = 0; i < nlayers; i++) {
|
|
features.push_back(std::vector<coalesce>());
|
|
}
|
|
|
|
int within[4] = { 0 };
|
|
long long geompos[4] = { 0 };
|
|
|
|
*geoms = og;
|
|
|
|
while (1) {
|
|
signed char t;
|
|
deserialize_byte(geoms, &t);
|
|
if (t < 0) {
|
|
break;
|
|
}
|
|
|
|
signed char layer;
|
|
deserialize_byte(geoms, &layer);
|
|
|
|
long long metastart;
|
|
deserialize_long_long(geoms, &metastart);
|
|
char *meta = metabase + metastart;
|
|
long long bbox[4];
|
|
|
|
drawvec geom = decode_geometry(geoms, z, tx, ty, line_detail, bbox);
|
|
|
|
signed char feature_minzoom;
|
|
deserialize_byte(geoms, &feature_minzoom);
|
|
|
|
double progress = floor((((*geoms - geomstart + along) / (double) todo) + z) / (file_maxzoom + 1) * 1000) / 10;
|
|
if (progress != oprogress) {
|
|
fprintf(stderr, " %3.1f%% %d/%u/%u \r", progress, z, tx, ty);
|
|
oprogress = progress;
|
|
}
|
|
|
|
int quick = quick_check(bbox, z, line_detail, buffer);
|
|
if (quick == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (quick != 1) {
|
|
if (t == VT_LINE) {
|
|
geom = clip_lines(geom, z, line_detail, buffer);
|
|
}
|
|
if (t == VT_POLYGON) {
|
|
geom = clip_poly(geom, z, line_detail, buffer);
|
|
}
|
|
if (t == VT_POINT) {
|
|
geom = clip_point(geom, z, line_detail, buffer);
|
|
}
|
|
|
|
geom = remove_noop(geom, t);
|
|
}
|
|
|
|
if (line_detail == detail && fraction == 1) { /* only write out the next zoom once, even if we retry */
|
|
if (geom.size() > 0 && z + 1 <= file_maxzoom) {
|
|
int j;
|
|
for (j = 0; j < 4; j++) {
|
|
int xo = j & 1;
|
|
int yo = (j >> 1) & 1;
|
|
|
|
long long bbox2[4];
|
|
int k;
|
|
for (k = 0; k < 4; k++) {
|
|
bbox2[k] = bbox[k];
|
|
}
|
|
if (z != 0) {
|
|
// Offset back to world-relative
|
|
bbox2[0] += tx << (32 - z);
|
|
bbox2[1] += ty << (32 - z);
|
|
bbox2[2] += tx << (32 - z);
|
|
bbox2[3] += ty << (32 - z);
|
|
}
|
|
// Offset to child tile-relative
|
|
bbox2[0] -= (tx * 2 + xo) << (32 - (z + 1));
|
|
bbox2[1] -= (ty * 2 + yo) << (32 - (z + 1));
|
|
bbox2[2] -= (tx * 2 + xo) << (32 - (z + 1));
|
|
bbox2[3] -= (ty * 2 + yo) << (32 - (z + 1));
|
|
|
|
int quick2 = quick_check(bbox2, z + 1, line_detail, buffer);
|
|
if (quick2 != 0) {
|
|
if (!within[j]) {
|
|
serialize_int(geomfile[j], z + 1, &geompos[j], fname);
|
|
serialize_uint(geomfile[j], tx * 2 + xo, &geompos[j], fname);
|
|
serialize_uint(geomfile[j], ty * 2 + yo, &geompos[j], fname);
|
|
within[j] = 1;
|
|
}
|
|
|
|
// Offset from tile coordinates back to world coordinates
|
|
unsigned sx = 0, sy = 0;
|
|
if (z != 0) {
|
|
sx = tx << (32 - z);
|
|
sy = ty << (32 - z);
|
|
}
|
|
|
|
//printf("type %d, meta %lld\n", t, metastart);
|
|
serialize_byte(geomfile[j], t, &geompos[j], fname);
|
|
serialize_byte(geomfile[j], layer, &geompos[j], fname);
|
|
serialize_long_long(geomfile[j], metastart, &geompos[j], fname);
|
|
|
|
for (unsigned u = 0; u < geom.size(); u++) {
|
|
serialize_byte(geomfile[j], geom[u].op, &geompos[j], fname);
|
|
|
|
if (geom[u].op != VT_CLOSEPATH) {
|
|
serialize_uint(geomfile[j], geom[u].x + sx, &geompos[j], fname);
|
|
serialize_uint(geomfile[j], geom[u].y + sy, &geompos[j], fname);
|
|
}
|
|
}
|
|
|
|
serialize_byte(geomfile[j], VT_END, &geompos[j], fname);
|
|
serialize_byte(geomfile[j], feature_minzoom, &geompos[j], fname);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (z < file_minzoom) {
|
|
continue;
|
|
}
|
|
|
|
if (t == VT_LINE && z + line_detail <= feature_minzoom) {
|
|
continue;
|
|
}
|
|
|
|
if (t == VT_POINT && z < feature_minzoom && gamma < 0) {
|
|
continue;
|
|
}
|
|
|
|
if (gamma >= 0 && (t == VT_POINT || (prevent['l' & 0xFF] && t == VT_LINE))) {
|
|
seq++;
|
|
if (seq >= 0) {
|
|
seq -= interval;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
if (gamma > 0) {
|
|
unsigned long long index = encode(bbox[0] / 2 + bbox[2] / 2, bbox[1] / 2 + bbox[3] / 2);
|
|
if (gap > 0) {
|
|
if (index == previndex) {
|
|
continue; // Exact duplicate: can't fulfil the gap requirement
|
|
}
|
|
|
|
if (exp(log((index - previndex) / scale) * gamma) >= gap) {
|
|
// Dot is further from the previous than the nth root of the gap,
|
|
// so produce it, and choose a new gap at the next point.
|
|
gap = 0;
|
|
} else {
|
|
continue;
|
|
}
|
|
} else {
|
|
gap = (index - previndex) / scale;
|
|
|
|
if (gap == 0) {
|
|
continue; // Exact duplicate: skip
|
|
} else if (gap < 1) {
|
|
continue; // Narrow dot spacing: need to stretch out
|
|
} else {
|
|
gap = 0; // Wider spacing than minimum: so pass through unchanged
|
|
}
|
|
}
|
|
|
|
previndex = index;
|
|
}
|
|
}
|
|
|
|
fraction_accum += fraction;
|
|
if (fraction_accum < 1) {
|
|
continue;
|
|
}
|
|
fraction_accum -= 1;
|
|
|
|
bool reduced = false;
|
|
if (t == VT_POLYGON) {
|
|
geom = reduce_tiny_poly(geom, z, line_detail, &reduced, &accum_area);
|
|
}
|
|
|
|
if ((t == VT_LINE || t == VT_POLYGON) && !prevent['s' & 0xFF]) {
|
|
if (!reduced) {
|
|
geom = simplify_lines(geom, z, line_detail);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
if (t == VT_LINE && z != basezoom) {
|
|
geom = shrink_lines(geom, z, line_detail, basezoom, &along);
|
|
}
|
|
#endif
|
|
|
|
if (t == VT_LINE && !prevent['r' & 0xFF]) {
|
|
geom = reorder_lines(geom);
|
|
}
|
|
|
|
to_tile_scale(geom, z, line_detail);
|
|
|
|
if (t == VT_POINT || to_feature(geom, NULL)) {
|
|
struct coalesce c;
|
|
|
|
c.type = t;
|
|
if (geom.size() > 0) {
|
|
c.index = encode(geom[0].x, geom[0].y);
|
|
c.index2 = encode(geom[geom.size() - 1].x, geom[geom.size() - 1].y);
|
|
|
|
// Anything numbered below the start of the line
|
|
// can't possibly be the next feature.
|
|
// We want lowest-but-not-under.
|
|
if (c.index2 < c.index) {
|
|
c.index2 = ~0LL;
|
|
}
|
|
} else {
|
|
c.index = 0;
|
|
c.index2 = 0;
|
|
}
|
|
c.geom = geom;
|
|
c.metasrc = meta;
|
|
c.coalesced = false;
|
|
|
|
decode_meta(&meta, keys[layer], values[layer], file_keys[layer], &c.meta, NULL);
|
|
features[layer].push_back(c);
|
|
}
|
|
}
|
|
|
|
int j;
|
|
for (j = 0; j < 4; j++) {
|
|
if (within[j]) {
|
|
serialize_byte(geomfile[j], -2, &geompos[j], fname);
|
|
within[j] = 0;
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < nlayers; j++) {
|
|
if (!prevent['o' & 0xFF]) {
|
|
std::sort(features[j].begin(), features[j].end());
|
|
}
|
|
|
|
std::vector<coalesce> out;
|
|
unsigned x;
|
|
for (x = 0; x < features[j].size(); x++) {
|
|
unsigned y = out.size() - 1;
|
|
|
|
#if 0
|
|
if (out.size() > 0 && coalcmp(&features[j][x], &out[y]) < 0) {
|
|
fprintf(stderr, "\nfeature out of order\n");
|
|
}
|
|
#endif
|
|
|
|
if (!prevent['c' & 0xFF] && out.size() > 0 && out[y].geom.size() + features[j][x].geom.size() < 20000 && coalcmp(&features[j][x], &out[y]) == 0 && features[j][x].type != VT_POINT) {
|
|
unsigned z;
|
|
for (z = 0; z < features[j][x].geom.size(); z++) {
|
|
out[y].geom.push_back(features[j][x].geom[z]);
|
|
}
|
|
out[y].coalesced = true;
|
|
} else {
|
|
out.push_back(features[j][x]);
|
|
}
|
|
}
|
|
features[j] = out;
|
|
|
|
for (x = 0; x < features[j].size(); x++) {
|
|
if (features[j][x].coalesced && features[j][x].type == VT_LINE) {
|
|
features[j][x].geom = remove_noop(features[j][x].geom, features[j][x].type);
|
|
features[j][x].geom = simplify_lines(features[j][x].geom, 32, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
long long totalsize = 0;
|
|
for (j = 0; j < nlayers; j++) {
|
|
totalsize += features[j].size();
|
|
}
|
|
|
|
if (totalsize > 0) {
|
|
if (totalsize > 200000 && !prevent['f' & 0xFF]) {
|
|
fprintf(stderr, "tile %d/%u/%u has %lld features, >200000 \n", z, tx, ty, totalsize);
|
|
fprintf(stderr, "Try using -z to set a higher base zoom level.\n");
|
|
return -1;
|
|
}
|
|
|
|
mapnik::vector::tile tile = create_tile(layernames, line_detail, features, &count, keys, values, nlayers);
|
|
|
|
int i;
|
|
for (i = 0; i < nlayers; i++) {
|
|
pool_free(&keys1[i]);
|
|
pool_free(&values1[i]);
|
|
}
|
|
|
|
std::string s;
|
|
std::string compressed;
|
|
|
|
tile.SerializeToString(&s);
|
|
compress(s, compressed);
|
|
|
|
if (compressed.size() > 500000 && !prevent['k' & 0xFF]) {
|
|
fprintf(stderr, "tile %d/%u/%u size is %lld with detail %d, >500000 \n", z, tx, ty, (long long) compressed.size(), line_detail);
|
|
|
|
if (line_detail == min_detail || !evaluated) {
|
|
evaluated = true;
|
|
#if 0
|
|
evaluate(features[0], metabase, file_keys[0], layername, line_detail, compressed.size()); // XXX layer
|
|
#endif
|
|
}
|
|
|
|
if (prevent['d' & 0xFF]) {
|
|
// The 95% is a guess to avoid too many retries
|
|
// and probably actually varies based on how much duplicated metadata there is
|
|
|
|
fraction = fraction * 500000 / compressed.size() * 0.95;
|
|
fprintf(stderr, "Going to try keeping %0.2f%% of the features to make it fit\n", fraction * 100);
|
|
line_detail++; // to keep it the same when the loop decrements it
|
|
}
|
|
} else {
|
|
mbtiles_write_tile(outdb, z, tx, ty, compressed.data(), compressed.size());
|
|
return count;
|
|
}
|
|
} else {
|
|
return count;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "could not make tile %d/%u/%u small enough\n", z, tx, ty);
|
|
return -1;
|
|
}
|
|
|