The Range header causes n.read() to be called with an offset= of type 'long',
which eventually got used in a Spans/DataSpans object's __len__ method.
Apparently python doesn't permit __len__() to return longs, only ints.
Rewrote Spans/DataSpans to use s.len() instead of len(s) aka s.__len__() .
Added a test in test_download. Note that test_web didn't catch this because
it uses mock FileNodes for speed: it's probably time to rewrite that.
There is still an unresolved error-recovery problem in #1154, so I'm not
closing the ticket quite yet.
This bug had the effect of making uploads sometimes (rarely) appear to succeed when they had actually not distributed the shares well enough to achieve the desired servers-of-happiness level.
- Make some important utility functions clearer and more thoroughly
documented.
- Assert in upload.servers_of_happiness that the buckets attributes
of PeerTrackers passed to it are mutually disjoint.
- Get rid of some silly non-Pythonisms that I didn't see when I first
wrote these patches.
- Make sure that should_add_server returns true when queried about a
shnum that it doesn't know about yet.
- Change Tahoe2PeerSelector.preexisting_shares to map a shareid to a set
of peerids, alter dependencies to deal with that.
- Remove upload.should_add_servers, because it is no longer necessary
- Move upload.shares_of_happiness and upload.shares_by_server to a utility
file.
- Change some points in Tahoe2PeerSelector.
- Compute servers_of_happiness using a bipartite matching algorithm that
we know is optimal instead of an ad-hoc greedy algorithm that isn't.
- Change servers_of_happiness to just take a sharemap as an argument,
change its callers to merge existing_shares and used_peers before
calling it.
- Change an error message in the encoder to be more appropriate for
servers of happiness.
- Clarify the wording of an error message in immutable/upload.py
- Refactor a happiness failure message to happinessutil.py, and make
immutable/upload.py and immutable/encode.py use it.
- Move the word "only" as far to the right as possible in failure
messages.
- Use a better definition of progress during peer selection.
- Do read-only peer share detection queries in parallel, not sequentially.
- Clean up logging semantics; print the query statistics whenever an
upload is unsuccessful, not just in one case.
allmydata.util.log.err() either takes a Failure as the first positional
argument, or takes no positional arguments and must be invoked in an
exception handler. Fixed its signature to match both foolscap.logging.log.err
and twisted.python.log.err . Included a brief unit test.
Stop checking separately for ConnectionDone/ConnectionLost, since those have
been folded into DeadReferenceError since foolscap-0.3.1 . Write
rrefutil.trap_deadref() in terms of rrefutil.trap_and_discard() to improve
code coverage.
* remove Downloader.download_to_data/download_to_filename/download_to_filehandle
* remove download.Data/FileName/FileHandle targets
* remove filenode.download/download_to_data/download_to_filename methods
* leave Downloader.download (the whole Downloader will go away eventually)
* add util.consumer.MemoryConsumer/download_to_data, for convenience
(this is mostly used by unit tests, but it gets used by enough non-test
code to warrant putting it in allmydata.util)
* update tests
* removes about 180 lines of code. Yay negative code days!
Overall plan is to rewrite immutable/download.py and leave filenode.read() as
the sole read-side API.
* backups now share dirnodes with any previous backup, in any location,
so renames and moves are handled very efficiently
* "tahoe backup" no longer bothers reading the previous snapshot
* if you switch grids, you should delete ~/.tahoe/private/backupdb.sqlite,
to force new uploads of all files and directories
We need to carefully document the licence of figleaf in order to get Tahoe-LAFS into Ubuntu Karmic Koala. However, figleaf isn't really a part of Tahoe-LAFS per se -- this is just a "convenience copy" of a development tool. The quickest way to make Tahoe-LAFS acceptable for Karmic then, is to remove figleaf from the Tahoe-LAFS tarball itself. People who want to run figleaf on Tahoe-LAFS (as everyone should want) can install figleaf themselves. I haven't tested this -- there may be incompatibilities between upstream figleaf and the copy that we had here...