tahoe-lafs/misc/operations_helpers/provisioning/web_reliability.py

169 lines
6.2 KiB
Python
Raw Normal View History

from nevow import rend, loaders, tags as T
from nevow.inevow import IRequest
import reliability # requires NumPy
import util
def get_arg(ctx_or_req, argname, default=None, multiple=False):
"""Extract an argument from either the query args (req.args) or the form
body fields (req.fields). If multiple=False, this returns a single value
(or the default, which defaults to None), and the query args take
precedence. If multiple=True, this returns a tuple of arguments (possibly
empty), starting with all those in the query args.
"""
req = IRequest(ctx_or_req)
results = []
if argname in req.args:
results.extend(req.args[argname])
if req.fields and argname in req.fields:
results.append(req.fields[argname].value)
if multiple:
return tuple(results)
if results:
return results[0]
return default
DAY=24*60*60
MONTH=31*DAY
YEAR=365*DAY
def is_available():
if reliability:
return True
return False
def yandm(seconds):
return "%dy.%dm" % (int(seconds/YEAR), int( (seconds%YEAR)/MONTH))
class ReliabilityTool(rend.Page):
addSlash = True
docFactory = loaders.xmlfile(util.sibling("reliability.xhtml"))
DEFAULT_PARAMETERS = [
("drive_lifetime", "8Y", "time",
"Average drive lifetime"),
("k", 3, "int",
"Minimum number of shares needed to recover the file"),
("R", 7, "int",
"Repair threshold: repair will not occur until fewer than R shares "
"are left"),
("N", 10, "int",
"Total number of shares of the file generated"),
("delta", "1M", "time", "Amount of time between each simulation step"),
("check_period", "1M", "time",
"How often to run the checker and repair if fewer than R shares"),
("report_period", "3M", "time",
"Amount of time between result rows in this report"),
("report_span", "5Y", "time",
"Total amount of time covered by this report"),
]
def parse_time(self, s):
if s.endswith("M"):
return int(s[:-1]) * MONTH
if s.endswith("Y"):
return int(s[:-1]) * YEAR
return int(s)
def format_time(self, s):
if s%YEAR == 0:
return "%dY" % (s/YEAR)
if s%MONTH == 0:
return "%dM" % (s/MONTH)
return "%d" % s
def get_parameters(self, ctx):
parameters = {}
for (name,default,argtype,description) in self.DEFAULT_PARAMETERS:
v = get_arg(ctx, name, default)
if argtype == "time":
value = self.parse_time(v)
else:
value = int(v)
parameters[name] = value
return parameters
def renderHTTP(self, ctx):
self.parameters = self.get_parameters(ctx)
self.results = reliability.ReliabilityModel.run(**self.parameters)
return rend.Page.renderHTTP(self, ctx)
def make_input(self, name, old_value):
return T.input(name=name, type="text", size="5",
value=self.format_time(old_value))
def render_forms(self, ctx, data):
f = T.form(action=".", method="get")
table = []
for (name,default_value,argtype,description) in self.DEFAULT_PARAMETERS:
old_value = self.parameters[name]
i = self.make_input(name, old_value)
table.append(T.tr[T.td[name+":"], T.td[i], T.td[description]])
go = T.input(type="submit", value="Recompute")
return [T.h2["Simulation Parameters:"],
f[T.table[table], go],
]
def data_simulation_table(self, ctx, data):
for row in self.results.samples:
yield row
def render_simulation_row(self, ctx, row):
(when, unmaintained_shareprobs, maintained_shareprobs,
P_repaired_last_check_period,
cumulative_number_of_repairs,
cumulative_number_of_new_shares,
P_dead_unmaintained, P_dead_maintained) = row
ctx.fillSlots("t", yandm(when))
ctx.fillSlots("P_repair", "%.6f" % P_repaired_last_check_period)
ctx.fillSlots("P_dead_unmaintained", "%.6g" % P_dead_unmaintained)
ctx.fillSlots("P_dead_maintained", "%.6g" % P_dead_maintained)
return ctx.tag
def render_report_span(self, ctx, row):
(when, unmaintained_shareprobs, maintained_shareprobs,
P_repaired_last_check_period,
cumulative_number_of_repairs,
cumulative_number_of_new_shares,
P_dead_unmaintained, P_dead_maintained) = self.results.samples[-1]
return ctx.tag[yandm(when)]
def render_P_loss_unmaintained(self, ctx, row):
(when, unmaintained_shareprobs, maintained_shareprobs,
P_repaired_last_check_period,
cumulative_number_of_repairs,
cumulative_number_of_new_shares,
P_dead_unmaintained, P_dead_maintained) = self.results.samples[-1]
return ctx.tag["%.6g (%1.8f%%)" % (P_dead_unmaintained,
100*P_dead_unmaintained)]
def render_P_loss_maintained(self, ctx, row):
(when, unmaintained_shareprobs, maintained_shareprobs,
P_repaired_last_check_period,
cumulative_number_of_repairs,
cumulative_number_of_new_shares,
P_dead_unmaintained, P_dead_maintained) = self.results.samples[-1]
return ctx.tag["%.6g (%1.8f%%)" % (P_dead_maintained,
100*P_dead_maintained)]
def render_P_repair_rate(self, ctx, row):
(when, unmaintained_shareprobs, maintained_shareprobs,
P_repaired_last_check_period,
cumulative_number_of_repairs,
cumulative_number_of_new_shares,
P_dead_unmaintained, P_dead_maintained) = self.results.samples[-1]
freq = when / cumulative_number_of_repairs
return ctx.tag["%.6g" % freq]
def render_P_repair_shares(self, ctx, row):
(when, unmaintained_shareprobs, maintained_shareprobs,
P_repaired_last_check_period,
cumulative_number_of_repairs,
cumulative_number_of_new_shares,
P_dead_unmaintained, P_dead_maintained) = self.results.samples[-1]
generated_shares = cumulative_number_of_new_shares / cumulative_number_of_repairs
return ctx.tag["%1.2f" % generated_shares]