serval-dna/test_cli.c
Andrew Bettison c7a2fb4573 Add nibble-tree iterator
The new struct tree_iterator and associated start/get/next/free
functions replace the recursive walk() function, removing the need for a
callback when iterating over all nodes in the tree, and allowing
iteration to be suspended while other pseudo-threads are run.  This
allows an HTTP REST request to keep a tree_iterator in its state struct
and potentially simplifies other areas of the code.

The iterator free()s any empty internal tree nodes that it encounters,
as did the original tree_walk() function.  To support the existence of
multiple iterators at once, a reference count has been added to the
tree_node struct, to prevent any iterator from free()ing a node while
any other iterators point to it; only the last iterator to pop out of an
empty node will free() it.

The tree_walk() and tree_walk_prefix() functions have been
re-implemented to use an iterator state object internally.  This
resolves an outstanding TODO to perform tree-node freeing during a
prefix walk, and simplifies the code considerably.

Renamed some function parameters and struct members to make the
nibble-tree API a little more self-explanatory.

Added a nibble-tree test to the 'serval-tests' utility.
2018-03-29 15:19:54 +10:30

532 lines
21 KiB
C

/*
Serval testing command line functions
Copyright (C) 2014 Serval Project Inc.
Copyright (C) 2018 Flinders University
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <poll.h>
#include <sys/stat.h>
#include "cli.h"
#include "serval_types.h"
#include "dataformats.h"
#include "os.h"
#include "conf.h"
#include "commandline.h"
#include "mem.h"
#include "str.h"
#include "debug.h"
#include "nibble_tree.h"
DEFINE_FEATURE(cli_tests);
DEFINE_CMD(app_byteorder_test, 0,
"Run byte order handling test",
"test","byteorder");
static int app_byteorder_test(const struct cli_parsed *UNUSED(parsed), struct cli_context *UNUSED(context))
{
uint64_t in=0x1234;
uint64_t out;
unsigned char bytes[8];
write_uint64(&bytes[0],in);
out=read_uint64(&bytes[0]);
if (in!=out)
cli_printf(context,"Byte order mangled (0x%016"PRIx64" should have been %016"PRIx64")\n",
out,in);
else cli_printf(context,"Byte order preserved.\n");
return -1;
}
DEFINE_CMD(app_crypt_test, 0,
"Run cryptography speed test",
"test","crypt");
static int app_crypt_test(const struct cli_parsed *parsed, struct cli_context *context)
{
DEBUG_cli_parsed(verbose, parsed);
unsigned char nonce[crypto_box_curve25519xsalsa20poly1305_NONCEBYTES];
unsigned char k[crypto_box_curve25519xsalsa20poly1305_BEFORENMBYTES];
unsigned char plain_block[65536];
randombytes_buf(nonce,sizeof(nonce));
randombytes_buf(k,sizeof(k));
int len,i;
cli_printf(context, "Benchmarking CryptoBox Auth-Cryption:\n");
int count=1024;
for(len=16;len<=16384;len*=2) {
time_ms_t start = gettime_ms();
for (i=0;i<count;i++) {
bzero(&plain_block[0],crypto_box_curve25519xsalsa20poly1305_ZEROBYTES);
crypto_box_curve25519xsalsa20poly1305_afternm
(plain_block,plain_block,len,nonce,k);
}
time_ms_t end = gettime_ms();
double each=(end - start) * 1.0 / i;
cli_printf(context, "%d bytes - %d tests took %"PRId64"ms - mean time = %.2fms\n",
len, i, (int64_t)(end - start), each);
/* Auto-reduce number of repeats so that it doesn't take too long on the phone */
if (each>1.00) count/=2;
}
cli_printf(context, "Benchmarking CryptoSign signature verification:\n");
{
unsigned char sign_pk[crypto_sign_PUBLICKEYBYTES];
unsigned char sign_sk[crypto_sign_SECRETKEYBYTES];
if (crypto_sign_keypair(sign_pk,sign_sk))
return WHY("crypto_sign_keypair() failed.\n");
unsigned char plainText[1024];
unsigned char sig[crypto_sign_BYTES];
bzero(plainText,sizeof plainText);
snprintf((char *)&plainText[0],sizeof plainText,"%s","No casaba melons allowed in the lab.");
int plainLenIn=64;
time_ms_t start = gettime_ms();
for(i=0;i<10;i++) {
if (crypto_sign_detached(sig, NULL, plainText, plainLenIn, sign_sk))
return WHY("crypto_sign_detached() failed.\n");
}
time_ms_t end=gettime_ms();
cli_printf(context, "mean signature generation time = %.2fms\n",
(end-start)*1.0/i);
start = gettime_ms();
for(i=0;i<10;i++) {
if (crypto_sign_verify_detached(sig, plainText, plainLenIn, sign_pk))
return WHYF("crypto_sign_verify_detached() failed (i=%d).\n",i);
}
end = gettime_ms();
cli_printf(context, "mean signature verification time = %.2fms\n",
(end-start)*1.0/i);
}
/* We can't do public signing with a crypto_box key, but we should be able to
do shared-secret generation using crypto_sign keys. */
{
cli_printf(context, "Verifying CryptoSign implementation:\n");
unsigned char sign1_pk[crypto_sign_PUBLICKEYBYTES];
unsigned char sign1_sk[crypto_sign_SECRETKEYBYTES];
if (crypto_sign_keypair(sign1_pk,sign1_sk))
return WHY("crypto_sign_keypair() failed.\n");
/* Try calculating public key from secret key */
unsigned char pk[crypto_sign_PUBLICKEYBYTES];
if (memcmp(&sign1_sk[32], sign1_pk, crypto_sign_PUBLICKEYBYTES)) {
WHY("Could not calculate public key from private key.\n");
WHY_dump("calculated",&pk,sizeof(pk));
WHY_dump("original",&sign1_pk,sizeof(sign1_pk));
} else
cli_printf(context, "Public key is contained in private key.\n");
/* Now use a pre-tested keypair and make sure that we can sign and verify with
it, and that the signatures are as expected. */
unsigned char key[crypto_sign_SECRETKEYBYTES]={
0xf6,0x70,0x6b,0x8a,0x4e,0x1e,0x4b,0x01,
0x11,0x56,0x85,0xac,0x63,0x46,0x67,0x5f,
0xc1,0x44,0xcf,0xdf,0x98,0x5c,0x2b,0x8b,
0x18,0xff,0x70,0x9c,0x12,0x71,0x48,0xb9,
0x32,0x2a,0x88,0xba,0x9c,0xdd,0xed,0x35,
0x8f,0x01,0x18,0xf7,0x60,0x1b,0xfb,0x80,
0xaf,0xce,0x74,0xe0,0x85,0x39,0xac,0x13,
0x15,0xf6,0x79,0xaa,0x68,0xef,0x5d,0xc6};
unsigned char plainText[1024];
unsigned char sig[crypto_sign_BYTES];
bzero(plainText,1024);
snprintf((char *)&plainText[0],sizeof plainText,"%s","No casaba melons allowed in the lab.");
int plainLenIn=64;
WHY_dump("plaintext", plainText, 64);
if (crypto_sign_detached(sig, NULL, plainText, plainLenIn, key))
return WHY("crypto_sign_detached() failed.\n");
WHY_dump("signature", sig, sizeof sig);
unsigned char casabamelons[crypto_sign_BYTES]={
0xa4,0xea,0xd0,0x7f,0x11,0x65,0x28,0x3f,
0x90,0x45,0x87,0xbf,0xe5,0xb9,0x15,0x2a,
0x9a,0x2d,0x99,0x35,0x0d,0x0e,0x7b,0xb0,
0xcd,0x15,0x2e,0xe8,0xeb,0xb3,0xc2,0xb1,
0x13,0x8e,0xe3,0x82,0x55,0x6c,0x6e,0x34,
0x44,0xe4,0xbc,0xa3,0xd5,0xe0,0x7a,0x6a,
0x67,0x61,0xda,0x79,0x67,0xb6,0x1c,0x2e,
0x48,0xc7,0x28,0x5b,0xd8,0xd0,0x54,0x0c,
};
if (memcmp(casabamelons, sig, 64)) {
WHY("Computed signature for stored key+message does not match expected value.\n");
WHY_dump("expected signature",casabamelons,sizeof(casabamelons));
}
if (crypto_sign_verify_detached(sig, plainText, plainLenIn, &key[32]))
WHY("Cannot open rearranged ref/ version of signature.\n");
else
cli_printf(context, "Signature open fine.\n");
}
return 0;
}
void context_switch_test(int);
DEFINE_CMD(app_mem_test, 0,
"Run memory speed test",
"test","memory");
static int app_mem_test(const struct cli_parsed *UNUSED(parsed), struct cli_context *UNUSED(context))
{
size_t mem_size;
size_t addr;
uint64_t count;
// First test context switch speed
context_switch_test(1);
for(mem_size=1024;mem_size<=(128*1024*1024);mem_size*=2) {
uint8_t *mem=malloc(mem_size);
if (!mem) {
fprintf(stderr,"Could not allocate %zdKB memory -- stopping test.\n",mem_size/1024);
return -1;
}
// Fill memory with random stuff so that we don't have memory page-in
// delays when doing the reads
for(addr=0;addr<mem_size;addr++) mem[addr]=random()&0xff;
time_ms_t end_time=gettime_ms()+100;
uint64_t total=0;
size_t mem_mask=mem_size-1;
for(count=0;gettime_ms()<end_time;count++) {
addr=random()&mem_mask;
total+=mem[addr];
}
printf("Memory size = %8zdKB : %"PRId64" random reads per second (irrelevant sum is %016"PRIx64")\n",
mem_size/1024,count*10,
/* use total so that compiler doesn't optimise away our memory accesses */
total);
end_time=gettime_ms()+100;
for(count=0;gettime_ms()<end_time;count++) {
addr=random()&mem_mask;
mem[addr]=3;
}
printf("Memory size = %8zdKB : %"PRId64" random writes per second (irrelevant sum is %016"PRIx64")\n",
mem_size/1024,count*10,
/* use total so that compiler doesn't optimise away our memory accesses */
total);
free(mem);
}
return 0;
}
DEFINE_CMD(app_config_test, 0,
"Load a test config file and log various fields",
"config","test","<file>");
static int app_config_test(const struct cli_parsed *UNUSED(parsed), struct cli_context *UNUSED(context))
{
const char *filename;
if (cli_arg(parsed, "file", &filename, NULL, NULL)==-1)
return -1;
int fd = open(filename, O_RDONLY);
if (fd == -1)
return WHY_perror("open");
struct stat st;
fstat(fd, &st);
char *buf = emalloc(st.st_size);
if (!buf)
return -1;
if (read(fd, buf, st.st_size) != st.st_size)
return WHY_perror("read");
struct cf_om_node *root = NULL;
int ret = cf_om_parse(filename, buf, st.st_size, &root);
close(fd);
DEBUGF(verbose, "ret = %s", strbuf_str(strbuf_cf_flags(strbuf_alloca(128), ret)));
//cf_dump_node(root, 0);
struct config_main config;
memset(&config, 0, sizeof config);
cf_dfl_config_main(&config);
int result = root ? cf_opt_config_main(&config, root) : CFEMPTY;
cf_om_free_node(&root);
free(buf);
DEBUGF(verbose, "result = %s", strbuf_str(strbuf_cf_flags(strbuf_alloca(128), result)));
DEBUGF(verbose, "config.log.file.path = %s", alloca_str_toprint(config.log.file.path));
DEBUGF(verbose, "config.log.file.show_pid = %d", config.log.file.show_pid);
DEBUGF(verbose, "config.log.file.show_time = %d", config.log.file.show_time);
DEBUGF(verbose, "config.server.chdir = %s", alloca_str_toprint(config.server.chdir));
DEBUGF(verbose, "config.debug.verbose = %d", config.debug.verbose);
DEBUGF(verbose, "config.directory.service = %s", alloca_tohex_sid_t(config.directory.service));
DEBUGF(verbose, "config.rhizome.api.addfile.allow_host = %s", inet_ntoa(config.rhizome.api.addfile.allow_host));
unsigned j;
for (j = 0; j < config.dna.helper.argv.ac; ++j) {
DEBUGF(verbose, "config.dna.helper.argv.%u=%s", config.dna.helper.argv.av[j].key, config.dna.helper.argv.av[j].value);
}
for (j = 0; j < config.rhizome.direct.peer.ac; ++j) {
DEBUGF(verbose, "config.rhizome.direct.peer.%s", config.rhizome.direct.peer.av[j].key);
DEBUGF(verbose, " .protocol = %s", alloca_str_toprint(config.rhizome.direct.peer.av[j].value.protocol));
DEBUGF(verbose, " .host = %s", alloca_str_toprint(config.rhizome.direct.peer.av[j].value.host));
DEBUGF(verbose, " .port = %u", config.rhizome.direct.peer.av[j].value.port);
}
for (j = 0; j < config.interfaces.ac; ++j) {
DEBUGF(verbose, "config.interfaces.%u", config.interfaces.av[j].key);
DEBUGF(verbose, " .exclude = %d", config.interfaces.av[j].value.exclude);
DEBUGF(verbose, " .match = [");
unsigned k;
for (k = 0; k < config.interfaces.av[j].value.match.patc; ++k)
DEBUGF(verbose, " %s", alloca_str_toprint(config.interfaces.av[j].value.match.patv[k]));
DEBUGF(verbose, " ]");
DEBUGF(verbose, " .type = %d", config.interfaces.av[j].value.type);
DEBUGF(verbose, " .port = %u", config.interfaces.av[j].value.port);
DEBUGF(verbose, " .broadcast.drop = %d", (int) config.interfaces.av[j].value.broadcast.drop);
DEBUGF(verbose, " .unicast.drop = %d", (int) config.interfaces.av[j].value.unicast.drop);
DEBUGF(verbose, " .drop_packets = %u", (unsigned) config.interfaces.av[j].value.drop_packets);
}
for (j = 0; j < config.hosts.ac; ++j) {
char sidhex[SID_STRLEN + 1];
tohex(sidhex, SID_STRLEN, config.hosts.av[j].key.binary);
DEBUGF(verbose, "config.hosts.%s", sidhex);
DEBUGF(verbose, " .interface = %s", alloca_str_toprint(config.hosts.av[j].value.interface));
DEBUGF(verbose, " .address = %s", inet_ntoa(config.hosts.av[j].value.address));
DEBUGF(verbose, " .port = %u", config.hosts.av[j].value.port);
}
return 0;
}
// Nibble Tree test
#define ASSERT(C) do { if (!(C)) FATALF("(%s)", #C); } while (0)
#define ASSERTF(C,F,...) do { if (!(C)) FATALF("(%s) " F, "" #C, ##__VA_ARGS__); } while (0)
struct data {
uint8_t binary[4];
};
struct node {
size_t nbits;
struct data data;
};
static void *create_node_callback(void *context, const uint8_t *binary, size_t binary_size_bytes)
{
ASSERT(binary_size_bytes == sizeof(struct data));
struct node *ret = (struct node *) emalloc_zero(sizeof(struct node));
ASSERT(ret);
ret->data = *(const struct data *)binary;
*(struct node **)context = ret;
return ret;
}
static struct node *create_node(struct tree_root *root, uint32_t index) {
uint8_t binary[4] = { index >> 24, index >> 16, index >> 8, index };
struct node *result = NULL;
struct node *created_node = NULL;
tree_find(root, (void**)&result, binary, 4, create_node_callback, &created_node);
ASSERT(result);
ASSERT(created_node);
ASSERTF(created_node == result, "created_node=%p, result=%p", created_node, result);
ASSERTF(memcmp(result->data.binary, binary, 4) == 0,
"result->data.binary=%s, should be %s",
alloca_tohex(result->data.binary, sizeof result->data.binary),
alloca_tohex(binary, sizeof binary));
DEBUGF(verbose, "created %s -> %p, nbits=%zu", alloca_tohex(binary, sizeof binary), result, result->nbits);
return created_node;
}
static void advance_to(tree_iterator *it, uint32_t index, size_t bytes) {
uint8_t binary[4] = { index >> 24, index >> 16, index >> 8, index };
assert(bytes <= sizeof binary);
DEBUGF(verbose, "advance to %s", alloca_tohex(binary, bytes));
tree_iterator_advance_to(it, binary, bytes);
}
static void assert_current_node(tree_iterator *it, struct node *node) {
DEBUGF(verbose, "assert that current node is %p", node);
struct node **current = (struct node **) tree_iterator_get_node(it);
if (node) {
ASSERT(current);
ASSERTF(*current == node, "*current=%p, should be %p", *current, node);
}
else {
ASSERTF(current == NULL, "*current=%p, should be NULL", *current);
}
}
static void delete_current_node(tree_iterator *it) {
struct node **node = (struct node **) tree_iterator_get_node(it);
ASSERT(node);
ASSERT(*node);
struct data data = (*node)->data; // copy
free(*node);
*node = NULL;
DEBUGF(verbose, "deleted %s", alloca_tohex(data.binary, sizeof data.binary));
}
DEFINE_CMD(app_nibble_tree_test, 0,
"Run nibble tree test",
"test","nibble-tree");
static int app_nibble_tree_test(const struct cli_parsed *UNUSED(parsed), struct cli_context *UNUSED(context))
{
struct tree_root root = {.index_size_bytes = sizeof(struct data)};
struct tree_statistics stats;
tree_iterator it;
// Creation.
struct node *node1 = create_node(&root, 0x12345670);
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 1, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 1, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 0, "maximum_depth=%zu", stats.maximum_depth);
struct node *node2 = create_node(&root, 0x12345671);
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 2, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
struct node *node3 = create_node(&root, 0x12345672);
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 3, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
struct node *node4 = create_node(&root, 0x01234567);
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 4, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
struct node *node5 = create_node(&root, 0x23456789);
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 5, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
// Simple iteration through all nodes in order.
tree_iterator_start(&it, &root);
assert_current_node(&it, node4);
tree_iterator_advance(&it);
assert_current_node(&it, node1);
tree_iterator_advance(&it);
assert_current_node(&it, node2);
assert_current_node(&it, node2);
tree_iterator_advance(&it);
assert_current_node(&it, node3);
tree_iterator_advance(&it);
assert_current_node(&it, node5);
assert_current_node(&it, node5);
tree_iterator_advance(&it);
assert_current_node(&it, NULL);
assert_current_node(&it, NULL);
tree_iterator_advance(&it);
assert_current_node(&it, NULL);
tree_iterator_free(&it);
// Simple iteration through all nodes after a given starting point.
tree_iterator_start(&it, &root);
advance_to(&it, 0x12345672, 4);
assert_current_node(&it, node3);
tree_iterator_advance(&it);
assert_current_node(&it, node5);
tree_iterator_advance(&it);
assert_current_node(&it, NULL);
tree_iterator_free(&it);
// Simple advance to a prefix starting point.
tree_iterator_start(&it, &root);
advance_to(&it, 0x12340000, 2);
assert_current_node(&it, node1);
tree_iterator_advance(&it);
assert_current_node(&it, node2);
tree_iterator_advance(&it);
assert_current_node(&it, node3);
tree_iterator_advance(&it);
assert_current_node(&it, node5);
tree_iterator_advance(&it);
assert_current_node(&it, NULL);
tree_iterator_free(&it);
// Delete a record from a node, leaving it non-empty.
tree_iterator_start(&it, &root);
advance_to(&it, 0x12345672, 4);
assert_current_node(&it, node3);
delete_current_node(&it);
node3 = NULL;
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 4, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
tree_iterator_free(&it);
// Delete records from a node, leaving it empty. A second iterator positioned in the node
// prevents the node from being free()d until it advances.
tree_iterator it2;
tree_iterator_start(&it2, &root);
advance_to(&it2, 0x12345670, 4);
assert_current_node(&it2, node1);
//
tree_iterator_start(&it, &root);
advance_to(&it, 0x12345670, 4);
assert_current_node(&it, node1);
delete_current_node(&it);
node1 = NULL;
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 3, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
assert_current_node(&it, node2); // node is not empty yet
assert_current_node(&it2, node2);
delete_current_node(&it); // makes the node empty
node2 = NULL;
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 2, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 1, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
assert_current_node(&it, node5); // does not free() the empty node
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 2, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 1, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
assert_current_node(&it2, node5); // free()s the empty node
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 2, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 1, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 0, "maximum_depth=%zu", stats.maximum_depth);
tree_iterator_free(&it2);
tree_iterator_free(&it);
return 0;
}