Add nibble-tree iterator

The new struct tree_iterator and associated start/get/next/free
functions replace the recursive walk() function, removing the need for a
callback when iterating over all nodes in the tree, and allowing
iteration to be suspended while other pseudo-threads are run.  This
allows an HTTP REST request to keep a tree_iterator in its state struct
and potentially simplifies other areas of the code.

The iterator free()s any empty internal tree nodes that it encounters,
as did the original tree_walk() function.  To support the existence of
multiple iterators at once, a reference count has been added to the
tree_node struct, to prevent any iterator from free()ing a node while
any other iterators point to it; only the last iterator to pop out of an
empty node will free() it.

The tree_walk() and tree_walk_prefix() functions have been
re-implemented to use an iterator state object internally.  This
resolves an outstanding TODO to perform tree-node freeing during a
prefix walk, and simplifies the code considerably.

Renamed some function parameters and struct members to make the
nibble-tree API a little more self-explanatory.

Added a nibble-tree test to the 'serval-tests' utility.
This commit is contained in:
Andrew Bettison 2017-10-20 17:05:14 +10:30
parent 2ef315b692
commit c7a2fb4573
6 changed files with 490 additions and 97 deletions

View File

@ -409,7 +409,9 @@ servaldwrap: $(OBJSDIR_SERVALD)/servalwrap.o
@echo LINK $@
@$(CC) -Wall -o $@ $^ $(LDFLAGS)
serval-tests: $(OBJSDIR_SERVALD)/test_features.o libservaldaemon.a
serval-tests: $(OBJSDIR_SERVALD)/test_features.o \
$(OBJSDIR_SERVALD)/log_output_console.o \
libservaldaemon.a
@echo LINK $@
@$(CC) -Wall -o $@ $^ $(LDFLAGS)

View File

@ -640,7 +640,7 @@ int meshmb_open(keyring_identity *id, struct meshmb_feeds **feeds)
*feeds = emalloc_zero(sizeof(struct meshmb_feeds));
if (*feeds){
(*feeds)->root.binary_length = sizeof(rhizome_bid_t);
(*feeds)->root.index_size_bytes = sizeof(rhizome_bid_t);
(*feeds)->id = id;
rhizome_manifest *m = rhizome_new_manifest();
if (m){

View File

@ -1,7 +1,7 @@
/*
Serval DNA
Copyright (C) 2012-2015 Serval Project Inc.
Copyright (C) 2016 Flinders University
Copyright (C) 2016-2018 Flinders University
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
@ -22,21 +22,22 @@ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#include <unistd.h>
#include <assert.h>
#include <string.h>
#include "lang.h" // for bool_t
#include "mem.h"
#include "nibble_tree.h"
static uint8_t get_nibble(const uint8_t *binary, int pos)
static unsigned get_nibble(const uint8_t *binary, int pos)
{
uint8_t byte = binary[pos>>1];
unsigned byte = binary[pos>>1];
if (!(pos&1))
byte=byte>>4;
return byte&0xF;
}
enum tree_error_reason tree_find(struct tree_root *root, void **result, const uint8_t *binary, size_t bin_length,
enum tree_error_reason tree_find(struct tree_root *root, void **result, const uint8_t *binary, size_t binary_size_bytes,
tree_create_callback create_node, void *context)
{
assert(bin_length <= root->binary_length);
assert(binary_size_bytes <= root->index_size_bytes);
struct tree_node *ptr = &root->_root_node;
if (result)
@ -44,11 +45,11 @@ enum tree_error_reason tree_find(struct tree_root *root, void **result, const ui
unsigned pos=0;
while(1) {
if (pos>>1 >= bin_length)
if (pos >= binary_size_bytes * 2)
return TREE_NOT_UNIQUE;
uint8_t nibble = get_nibble(binary, pos++);
void *node_ptr = ptr->tree_nodes[nibble];
unsigned nibble = get_nibble(binary, pos++);
void *node_ptr = ptr->slot[nibble];
if (ptr->is_tree & (1<<nibble)){
// search the next level of the tree
@ -56,16 +57,16 @@ enum tree_error_reason tree_find(struct tree_root *root, void **result, const ui
}else if(!node_ptr){
// allow caller to provide a node constructor
if (create_node && bin_length == root->binary_length){
node_ptr = create_node(context, binary, bin_length);
if (create_node && binary_size_bytes == root->index_size_bytes){
node_ptr = create_node(context, binary, binary_size_bytes);
if (!node_ptr)
return TREE_ERROR;
struct tree_record *tree_record = (struct tree_record *)node_ptr;
assert(memcmp(tree_record->binary, binary, bin_length) == 0);
tree_record ->tree_depth = pos*4;
assert(memcmp(tree_record->binary, binary, binary_size_bytes) == 0);
tree_record->binary_size_bits = pos*4;
if (result)
*result = node_ptr;
ptr->tree_nodes[nibble] = node_ptr;
ptr->slot[nibble] = node_ptr;
return TREE_FOUND;
}
return TREE_NOT_FOUND;
@ -74,7 +75,7 @@ enum tree_error_reason tree_find(struct tree_root *root, void **result, const ui
struct tree_record *tree_record = (struct tree_record *)node_ptr;
// check that the remaining bytes of the value are the same
if (memcmp(tree_record->binary, binary, bin_length) == 0){
if (memcmp(tree_record->binary, binary, binary_size_bytes) == 0){
if (result)
*result = node_ptr;
return TREE_FOUND;
@ -88,88 +89,190 @@ enum tree_error_reason tree_find(struct tree_root *root, void **result, const ui
if (!new_node)
return TREE_ERROR;
ptr->tree_nodes[nibble] = new_node;
ptr->slot[nibble] = new_node;
ptr->is_tree |= (1<<nibble);
ptr = new_node;
// get the nibble of the existing node
nibble = get_nibble(tree_record->binary, pos);
tree_record->tree_depth = (pos+1)*4;
ptr->tree_nodes[nibble] = node_ptr;
tree_record->binary_size_bits = (pos+1)*4;
ptr->slot[nibble] = node_ptr;
}
}
}
static int walk(struct tree_node *node, unsigned pos,
uint8_t *empty, const uint8_t *binary, size_t bin_length,
walk_callback callback, void *context){
unsigned i=0, e=16;
int ret=0;
*empty=1;
void tree_iterator_start(tree_iterator *it, struct tree_root *root)
{
it->stack = &it->bottom;
it->bottom.down = NULL;
it->bottom.node = &root->_root_node;
it->bottom.slotnum = 0;
root->_root_node.ref_count++;
}
if (binary){
assert(pos*2 < bin_length);
uint8_t n = get_nibble(binary, pos);
for(;i<n;i++){
if (node->tree_nodes[i]){
*empty=0;
break;
static bool_t push(tree_iterator *it)
{
assert(it->stack->node->is_tree & (1 << it->stack->slotnum));
struct tree_node *child = it->stack->node->slot[it->stack->slotnum];
assert(child);
tree_node_iterator *nit = (tree_node_iterator *) emalloc_zero(sizeof(tree_node_iterator));
if (!nit)
return 0;
nit->down = it->stack;
nit->node = child;
nit->slotnum = 0;
it->stack = nit;
child->ref_count++;
return 1;
}
static inline bool_t is_empty(struct tree_node *node)
{
unsigned i;
for (i = 0; i < 16; ++i)
if (node->slot[i])
return 0;
return 1;
}
static void pop(tree_iterator *it)
{
assert(it->stack);
assert(it->stack->node->ref_count != 0);
tree_node_iterator *popped = it->stack;
it->stack = it->stack->down;
if (--popped->node->ref_count == 0 && it->stack && is_empty(popped->node)) {
assert(it->stack->slotnum < 16);
assert(it->stack->node->is_tree & (1 << it->stack->slotnum));
assert(it->stack->node->slot[it->stack->slotnum] == popped->node);
if (it->stack) {
assert(popped != &it->bottom);
assert(popped->node != it->bottom.node);
free(popped->node);
}
else {
assert(popped == &it->bottom);
assert(popped->node == it->bottom.node);
}
popped->node = NULL;
it->stack->node->slot[it->stack->slotnum] = NULL;
it->stack->node->is_tree &= ~(1 << it->stack->slotnum);
}
if (it->stack) {
free(popped);
it->stack->slotnum++;
}
else
assert(popped == &it->bottom);
}
void tree_iterator_advance_to(tree_iterator *it, const uint8_t *binary, size_t binary_size_bytes)
{
// can only call this function once on an iterator, straight after tree_iterator_start()
assert(it->stack == &it->bottom);
assert(it->stack->slotnum == 0);
assert(it->stack->node);
unsigned n;
for (n = 0; n < binary_size_bytes * 2; ++n) {
it->stack->slotnum = get_nibble(binary, n);
if (!((it->stack->node->is_tree & (1 << it->stack->slotnum)) && push(it)))
break;
}
}
void **tree_iterator_get_node(tree_iterator *it)
{
while (it->stack) {
if (it->stack->slotnum < 16) {
if (it->stack->node->is_tree & (1 << it->stack->slotnum)) {
if (!push(it))
return NULL;
}
else {
void **childp = &it->stack->node->slot[it->stack->slotnum];
if (*childp)
return childp;
else
it->stack->slotnum++;
}
}
}
for (;i<e;i++){
if (node->is_tree & (1<<i)){
uint8_t child_empty=1;
ret = walk((struct tree_node *)node->tree_nodes[i], pos+1, &child_empty, binary, bin_length, callback, context);
if (child_empty){
free(node->tree_nodes[i]);
node->tree_nodes[i]=NULL;
node->is_tree&=~(1<<i);
}
}else if(node->tree_nodes[i]){
ret = callback(&node->tree_nodes[i], context);
else {
assert(it->stack->slotnum == 16);
pop(it);
}
if (ret)
return ret;
if (node->tree_nodes[i])
*empty=0;
// stop comparing the start binary after looking at the first branch of the tree
binary=NULL;
}
return NULL;
}
return ret;
void tree_iterator_advance(tree_iterator *it)
{
if (tree_iterator_get_node(it)) {
assert(it->stack);
assert(it->stack->slotnum < 16);
it->stack->slotnum++;
}
}
void tree_iterator_free(tree_iterator *it)
{
while (it->stack)
pop(it);
}
// start enumerating the tree from binary, and continue until the end
// callback is allowed to free any nodes while the walk is in progress
int tree_walk(struct tree_root *root, const uint8_t *binary, size_t bin_length, walk_callback callback, void *context)
int tree_walk(struct tree_root *root, const uint8_t *binary, size_t binary_size_bytes, walk_callback callback, void *context)
{
assert(!binary || bin_length <= root->binary_length);
uint8_t ignore;
return walk(&root->_root_node, 0, &ignore, binary, bin_length, callback, context);
int ret = 0;
tree_iterator it;
tree_iterator_start(&it, root);
if (binary) {
assert(binary_size_bytes <= root->index_size_bytes);
tree_iterator_advance_to(&it, binary, binary_size_bytes);
}
void **node;
while ((node = tree_iterator_get_node(&it)) && (ret = callback(node, context)) == 0)
tree_iterator_advance(&it);
tree_iterator_free(&it);
return ret;
}
int tree_walk_prefix(struct tree_root *root, const uint8_t *binary, size_t bin_length, walk_callback callback, void *context)
int tree_walk_prefix(struct tree_root *root, const uint8_t *binary, size_t binary_size_bytes, walk_callback callback, void *context)
{
assert(bin_length <= root->binary_length);
//TODO if callback free's nodes, collapse parent tree nodes too without needing to walk again?
struct tree_node *node = &root->_root_node;
unsigned pos=0;
// look for a branch of the tree with a partial match
for (; node && pos<bin_length*2; pos++){
uint8_t i=get_nibble(binary, pos);
if ((node->is_tree & (1<<i))==0){
struct tree_record *tree_record = (struct tree_record *)node->tree_nodes[i];
// only one match?
if (tree_record && memcmp(tree_record->binary, binary, bin_length)==0){
return callback(&node->tree_nodes[i], context);
}
return 0;
}
node = node->tree_nodes[i];
}
// walk the whole branch
uint8_t ignore;
return walk(node, pos+1, &ignore, NULL, 0, callback, context);
assert(binary);
assert(binary_size_bytes <= root->index_size_bytes);
int ret = 0;
tree_iterator it;
tree_iterator_start(&it, root);
tree_iterator_advance_to(&it, binary, binary_size_bytes);
void **node;
while ( (node = tree_iterator_get_node(&it))
&& memcmp(((struct tree_record *)*node)->binary, binary, binary_size_bytes) == 0
&& (ret = callback(node, context)) == 0)
tree_iterator_advance(&it);
tree_iterator_free(&it);
return ret;
}
static void walk_statistics(struct tree_node *node, unsigned depth, struct tree_statistics *stats)
{
stats->node_count++;
if (depth > stats->maximum_depth)
stats->maximum_depth = depth;
if (is_empty(node))
stats->empty_node_count++;
unsigned i;
for (i = 0; i < 16; ++i)
if (node->is_tree & (1 << i))
walk_statistics(node->slot[i], depth + 1, stats);
else if (node->slot[i])
stats->record_count++;
}
struct tree_statistics tree_compute_statistics(struct tree_root *root)
{
struct tree_statistics stats;
bzero(&stats, sizeof stats);
walk_statistics(&root->_root_node, 0, &stats);
return stats;
}

View File

@ -1,7 +1,7 @@
/*
Serval DNA
Copyright (C) 2012-2015 Serval Project Inc.
Copyright (C) 2016 Flinders University
Copyright (C) 2016-2018 Flinders University
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
@ -23,22 +23,38 @@ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#include <stdint.h> // for uint8_t, size_t
struct tree_record{
// number of bits of the binary value, to uniquely identify this record within the tree's current contents
size_t tree_depth;
// Every record in a nibble tree has the following structure:
// - a count of the number of bits in the binary index
// - the binary index itself, consisting of the number of bytes as specified by
// root.binary_size_bytes
// - the rest of the record
struct tree_record {
size_t binary_size_bits;
uint8_t binary[0];
};
// each node has 16 slots based on the next 4 bits of the binary value
// each slot either points to another tree node or a data record
struct tree_node{
// bit flags for the type of object each element points to
// Each node in the nibble tree has 16 slots based on the next 4 bits of the
// binary value.
struct tree_node {
// A reference count that is incremented by an iterator while it has a
// pointer to the node, and decremented when it discards the pointer. The
// iterator free()s the node if its count decrements to zero and all of its
// slots are NULL. This prevents nodes being free()d while in-use.
unsigned ref_count;
// A bitmask that has tbe bit (1 << slot_number) set if the corresponding
// slot points to a sub-tree.
uint16_t is_tree;
void *tree_nodes[16];
// Each slot either points to another tree node or a data record, depending
// on its corresponding bit in 'is_tree'.
void *slot[16];
};
struct tree_root{
size_t binary_length;
// The root of a nibble tree specifies the binary index size, in bytes, and
// contains the root node.
struct tree_root {
size_t index_size_bytes;
struct tree_node _root_node;
};
@ -49,28 +65,94 @@ enum tree_error_reason {
TREE_FOUND = 0
};
// allocate a new record and return it
// the returned memory buffer *must* begin with the same memory layout as struct tree_record
typedef void* (*tree_create_callback) (void *context, const uint8_t *binary, size_t bin_length);
typedef void* (*tree_create_callback) (void *context, const uint8_t *binary, size_t binary_size_bytes);
// find the record related to the given binary value
// if not found, the supplied not_found function will be called
// if not found, the supplied create_node function will be called
// if the callback returns a non-null value it will be inserted into the tree
// returns either the current depth in the tree or a tree_error_reason
enum tree_error_reason tree_find(struct tree_root *root, void **result, const uint8_t *binary, size_t bin_length,
enum tree_error_reason tree_find(struct tree_root *root, void **result, const uint8_t *binary, size_t binary_size_bytes,
tree_create_callback create_node, void *context);
// Iteration:
//
// tree_iterator it;
// tree_iterator_advance_to(&it, index, sizeof index); // optional
// node_type **node;
// for (tree_iterator_start(&it, root); (node = tree_iterator_get_node(&it)); tree_iterator_advance(&it)) {
// ..
// }
// tree_iterator_free(&it);
//
// An iterator advances through nodes in order of ascending binary index.
//
// The tree_iterator_get_node() function returns the same pointer on all
// successive invocations until tree_iterator_advance() is called, and returns
// NULL once the iterator has been advanced past the last node.
//
// The tree_iterator_advance_to() function rapidly positions the iterator at
// the first node whose binary index is >= the given binary index. This
// function can only be called once, straight after tree_iterator_start().
//
// Deletion:
//
// tree_iterator it;
// tree_iterator_start(&it, root);
// ...
// node_type **node = tree_iterator_get_node(&it));
// *node = NULL;
// node = tree_iterator_get_node(&it)); // returns the next node
// ...
// tree_iterator_free(&it);
//
// The tree_iterator_get_node(), tree_iterator_advance() and
// tree_iterator_free() functions all free() empty nodes as long as no other
// iterator is currently traversing the node. If there are several iterators
// positioned within an empty node, then only the last one to advance out of it
// will free() the node.
typedef struct tree_node_iterator {
struct tree_node_iterator *down;
struct tree_node *node;
unsigned slotnum;
} tree_node_iterator;
typedef struct tree_iterator {
struct tree_node_iterator bottom;
struct tree_node_iterator *stack;
} tree_iterator;
void tree_iterator_start(tree_iterator *it, struct tree_root *root);
void tree_iterator_advance_to(tree_iterator *it, const uint8_t *binary, size_t binary_size_bytes);
void **tree_iterator_get_node(tree_iterator *it);
void tree_iterator_advance(tree_iterator *it);
void tree_iterator_free(tree_iterator *it);
// The following legacy API functions are now implemented using iterators.
// callback function for walking the tree
// return 0 to continue enumeration, anything else to stop
// set (*record) to null to indicate that memory has been released and the node should be removed from the tree
typedef int (*walk_callback) (void **record, void *context);
// walk the tree, calling walk_callback for each node.
// if binary & bin_length have been supplied, skip all records <= this binary value
int tree_walk(struct tree_root *root, const uint8_t *binary, size_t bin_length, walk_callback callback, void *context);
// if binary & binary_size_bytes have been supplied, skip all records < this binary value
int tree_walk(struct tree_root *root, const uint8_t *binary, size_t binary_size_bytes, walk_callback callback, void *context);
// walk the tree where nodes match the prefix binary / bin_length
int tree_walk_prefix(struct tree_root *root, const uint8_t *binary, size_t bin_length, walk_callback callback, void *context);
// walk the tree where nodes match the prefix binary / binary_size_bytes
int tree_walk_prefix(struct tree_root *root, const uint8_t *binary, size_t binary_size_bytes, walk_callback callback, void *context);
// Tree statistics.
struct tree_statistics {
size_t record_count;
size_t node_count;
size_t empty_node_count;
size_t maximum_depth;
};
struct tree_statistics tree_compute_statistics(struct tree_root *root);
#endif // __SERVAL_DNA__NIBBLE_TREE_H

View File

@ -52,7 +52,7 @@ static struct broadcast bpilist[MAX_BPIS];
#define OA_CODE_P2P_ME 0xfc
#define OA_CODE_SIGNKEY 0xfb // full sign key of an identity, from which a SID can be derived
static __thread struct tree_root root={.binary_length=SID_SIZE};
static __thread struct tree_root root={.index_size_bytes=SID_SIZE};
static __thread struct subscriber *my_subscriber=NULL;

View File

@ -1,6 +1,7 @@
/*
Serval testing command line functions
Copyright (C) 2014 Serval Project Inc.
Copyright (C) 2018 Flinders University
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
@ -34,6 +35,7 @@
#include "mem.h"
#include "str.h"
#include "debug.h"
#include "nibble_tree.h"
DEFINE_FEATURE(cli_tests);
@ -323,3 +325,207 @@ static int app_config_test(const struct cli_parsed *UNUSED(parsed), struct cli_c
}
return 0;
}
// Nibble Tree test
#define ASSERT(C) do { if (!(C)) FATALF("(%s)", #C); } while (0)
#define ASSERTF(C,F,...) do { if (!(C)) FATALF("(%s) " F, "" #C, ##__VA_ARGS__); } while (0)
struct data {
uint8_t binary[4];
};
struct node {
size_t nbits;
struct data data;
};
static void *create_node_callback(void *context, const uint8_t *binary, size_t binary_size_bytes)
{
ASSERT(binary_size_bytes == sizeof(struct data));
struct node *ret = (struct node *) emalloc_zero(sizeof(struct node));
ASSERT(ret);
ret->data = *(const struct data *)binary;
*(struct node **)context = ret;
return ret;
}
static struct node *create_node(struct tree_root *root, uint32_t index) {
uint8_t binary[4] = { index >> 24, index >> 16, index >> 8, index };
struct node *result = NULL;
struct node *created_node = NULL;
tree_find(root, (void**)&result, binary, 4, create_node_callback, &created_node);
ASSERT(result);
ASSERT(created_node);
ASSERTF(created_node == result, "created_node=%p, result=%p", created_node, result);
ASSERTF(memcmp(result->data.binary, binary, 4) == 0,
"result->data.binary=%s, should be %s",
alloca_tohex(result->data.binary, sizeof result->data.binary),
alloca_tohex(binary, sizeof binary));
DEBUGF(verbose, "created %s -> %p, nbits=%zu", alloca_tohex(binary, sizeof binary), result, result->nbits);
return created_node;
}
static void advance_to(tree_iterator *it, uint32_t index, size_t bytes) {
uint8_t binary[4] = { index >> 24, index >> 16, index >> 8, index };
assert(bytes <= sizeof binary);
DEBUGF(verbose, "advance to %s", alloca_tohex(binary, bytes));
tree_iterator_advance_to(it, binary, bytes);
}
static void assert_current_node(tree_iterator *it, struct node *node) {
DEBUGF(verbose, "assert that current node is %p", node);
struct node **current = (struct node **) tree_iterator_get_node(it);
if (node) {
ASSERT(current);
ASSERTF(*current == node, "*current=%p, should be %p", *current, node);
}
else {
ASSERTF(current == NULL, "*current=%p, should be NULL", *current);
}
}
static void delete_current_node(tree_iterator *it) {
struct node **node = (struct node **) tree_iterator_get_node(it);
ASSERT(node);
ASSERT(*node);
struct data data = (*node)->data; // copy
free(*node);
*node = NULL;
DEBUGF(verbose, "deleted %s", alloca_tohex(data.binary, sizeof data.binary));
}
DEFINE_CMD(app_nibble_tree_test, 0,
"Run nibble tree test",
"test","nibble-tree");
static int app_nibble_tree_test(const struct cli_parsed *UNUSED(parsed), struct cli_context *UNUSED(context))
{
struct tree_root root = {.index_size_bytes = sizeof(struct data)};
struct tree_statistics stats;
tree_iterator it;
// Creation.
struct node *node1 = create_node(&root, 0x12345670);
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 1, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 1, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 0, "maximum_depth=%zu", stats.maximum_depth);
struct node *node2 = create_node(&root, 0x12345671);
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 2, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
struct node *node3 = create_node(&root, 0x12345672);
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 3, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
struct node *node4 = create_node(&root, 0x01234567);
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 4, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
struct node *node5 = create_node(&root, 0x23456789);
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 5, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
// Simple iteration through all nodes in order.
tree_iterator_start(&it, &root);
assert_current_node(&it, node4);
tree_iterator_advance(&it);
assert_current_node(&it, node1);
tree_iterator_advance(&it);
assert_current_node(&it, node2);
assert_current_node(&it, node2);
tree_iterator_advance(&it);
assert_current_node(&it, node3);
tree_iterator_advance(&it);
assert_current_node(&it, node5);
assert_current_node(&it, node5);
tree_iterator_advance(&it);
assert_current_node(&it, NULL);
assert_current_node(&it, NULL);
tree_iterator_advance(&it);
assert_current_node(&it, NULL);
tree_iterator_free(&it);
// Simple iteration through all nodes after a given starting point.
tree_iterator_start(&it, &root);
advance_to(&it, 0x12345672, 4);
assert_current_node(&it, node3);
tree_iterator_advance(&it);
assert_current_node(&it, node5);
tree_iterator_advance(&it);
assert_current_node(&it, NULL);
tree_iterator_free(&it);
// Simple advance to a prefix starting point.
tree_iterator_start(&it, &root);
advance_to(&it, 0x12340000, 2);
assert_current_node(&it, node1);
tree_iterator_advance(&it);
assert_current_node(&it, node2);
tree_iterator_advance(&it);
assert_current_node(&it, node3);
tree_iterator_advance(&it);
assert_current_node(&it, node5);
tree_iterator_advance(&it);
assert_current_node(&it, NULL);
tree_iterator_free(&it);
// Delete a record from a node, leaving it non-empty.
tree_iterator_start(&it, &root);
advance_to(&it, 0x12345672, 4);
assert_current_node(&it, node3);
delete_current_node(&it);
node3 = NULL;
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 4, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
tree_iterator_free(&it);
// Delete records from a node, leaving it empty. A second iterator positioned in the node
// prevents the node from being free()d until it advances.
tree_iterator it2;
tree_iterator_start(&it2, &root);
advance_to(&it2, 0x12345670, 4);
assert_current_node(&it2, node1);
//
tree_iterator_start(&it, &root);
advance_to(&it, 0x12345670, 4);
assert_current_node(&it, node1);
delete_current_node(&it);
node1 = NULL;
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 3, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
assert_current_node(&it, node2); // node is not empty yet
assert_current_node(&it2, node2);
delete_current_node(&it); // makes the node empty
node2 = NULL;
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 2, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 1, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
assert_current_node(&it, node5); // does not free() the empty node
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 2, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 8, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 1, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 7, "maximum_depth=%zu", stats.maximum_depth);
assert_current_node(&it2, node5); // free()s the empty node
stats = tree_compute_statistics(&root);
ASSERTF(stats.record_count == 2, "record_count=%zu", stats.record_count);
ASSERTF(stats.node_count == 1, "node_count=%zu", stats.node_count);
ASSERTF(stats.empty_node_count == 0, "empty_node_count=%zu", stats.empty_node_count);
ASSERTF(stats.maximum_depth == 0, "maximum_depth=%zu", stats.maximum_depth);
tree_iterator_free(&it2);
tree_iterator_free(&it);
return 0;
}