openwrt/target/linux/ipq40xx/files/drivers/net/phy/qca807x.c
Aleksander Jan Bajkowski 7365e6b00a kernel: remove obsolete kernel version switches
This removes unneeded kernel version switches from the targets after
kernel 5.10 has been dropped.

Signed-off-by: Aleksander Jan Bajkowski <olek2@wp.pl>
2023-05-20 15:19:14 +02:00

840 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2020 Sartura Ltd.
*
* Author: Robert Marko <robert.marko@sartura.hr>
*
* Qualcomm QCA8072 and QCA8075 PHY driver
*/
#include <linux/version.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/bitfield.h>
#include <linux/ethtool_netlink.h>
#include <linux/gpio.h>
#include <linux/sfp.h>
#include <dt-bindings/net/qcom-qca807x.h>
#define PHY_ID_QCA8072 0x004dd0b2
#define PHY_ID_QCA8075 0x004dd0b1
#define PHY_ID_QCA807X_PSGMII 0x06820805
/* Downshift */
#define QCA807X_SMARTSPEED_EN BIT(5)
#define QCA807X_SMARTSPEED_RETRY_LIMIT_MASK GENMASK(4, 2)
#define QCA807X_SMARTSPEED_RETRY_LIMIT_DEFAULT 5
#define QCA807X_SMARTSPEED_RETRY_LIMIT_MIN 2
#define QCA807X_SMARTSPEED_RETRY_LIMIT_MAX 9
/* Cable diagnostic test (CDT) */
#define QCA807X_CDT 0x16
#define QCA807X_CDT_ENABLE BIT(15)
#define QCA807X_CDT_ENABLE_INTER_PAIR_SHORT BIT(13)
#define QCA807X_CDT_STATUS BIT(11)
#define QCA807X_CDT_MMD3_STATUS 0x8064
#define QCA807X_CDT_MDI0_STATUS_MASK GENMASK(15, 12)
#define QCA807X_CDT_MDI1_STATUS_MASK GENMASK(11, 8)
#define QCA807X_CDT_MDI2_STATUS_MASK GENMASK(7, 4)
#define QCA807X_CDT_MDI3_STATUS_MASK GENMASK(3, 0)
#define QCA807X_CDT_RESULTS_INVALID 0x0
#define QCA807X_CDT_RESULTS_OK 0x1
#define QCA807X_CDT_RESULTS_OPEN 0x2
#define QCA807X_CDT_RESULTS_SAME_SHORT 0x3
#define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_OK 0x4
#define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_OK 0x8
#define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_OK 0xc
#define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_OPEN 0x6
#define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_OPEN 0xa
#define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_OPEN 0xe
#define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_SHORT 0x7
#define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_SHORT 0xb
#define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_SHORT 0xf
#define QCA807X_CDT_RESULTS_BUSY 0x9
#define QCA807X_CDT_MMD3_MDI0_LENGTH 0x8065
#define QCA807X_CDT_MMD3_MDI1_LENGTH 0x8066
#define QCA807X_CDT_MMD3_MDI2_LENGTH 0x8067
#define QCA807X_CDT_MMD3_MDI3_LENGTH 0x8068
#define QCA807X_CDT_SAME_SHORT_LENGTH_MASK GENMASK(15, 8)
#define QCA807X_CDT_CROSS_SHORT_LENGTH_MASK GENMASK(7, 0)
#define QCA807X_CHIP_CONFIGURATION 0x1f
#define QCA807X_BT_BX_REG_SEL BIT(15)
#define QCA807X_BT_BX_REG_SEL_FIBER 0
#define QCA807X_BT_BX_REG_SEL_COPPER 1
#define QCA807X_CHIP_CONFIGURATION_MODE_CFG_MASK GENMASK(3, 0)
#define QCA807X_CHIP_CONFIGURATION_MODE_QSGMII_SGMII 4
#define QCA807X_CHIP_CONFIGURATION_MODE_PSGMII_FIBER 3
#define QCA807X_CHIP_CONFIGURATION_MODE_PSGMII_ALL_COPPER 0
#define QCA807X_MEDIA_SELECT_STATUS 0x1a
#define QCA807X_MEDIA_DETECTED_COPPER BIT(5)
#define QCA807X_MEDIA_DETECTED_1000_BASE_X BIT(4)
#define QCA807X_MEDIA_DETECTED_100_BASE_FX BIT(3)
#define QCA807X_MMD7_FIBER_MODE_AUTO_DETECTION 0x807e
#define QCA807X_MMD7_FIBER_MODE_AUTO_DETECTION_EN BIT(0)
#define QCA807X_MMD7_1000BASE_T_POWER_SAVE_PER_CABLE_LENGTH 0x801a
#define QCA807X_CONTROL_DAC_MASK GENMASK(2, 0)
#define QCA807X_MMD7_LED_100N_1 0x8074
#define QCA807X_MMD7_LED_100N_2 0x8075
#define QCA807X_MMD7_LED_1000N_1 0x8076
#define QCA807X_MMD7_LED_1000N_2 0x8077
#define QCA807X_LED_TXACT_BLK_EN_2 BIT(10)
#define QCA807X_LED_RXACT_BLK_EN_2 BIT(9)
#define QCA807X_LED_GT_ON_EN_2 BIT(6)
#define QCA807X_LED_HT_ON_EN_2 BIT(5)
#define QCA807X_LED_BT_ON_EN_2 BIT(4)
#define QCA807X_GPIO_FORCE_EN BIT(15)
#define QCA807X_GPIO_FORCE_MODE_MASK GENMASK(14, 13)
#define QCA807X_INTR_ENABLE 0x12
#define QCA807X_INTR_STATUS 0x13
#define QCA807X_INTR_ENABLE_AUTONEG_ERR BIT(15)
#define QCA807X_INTR_ENABLE_SPEED_CHANGED BIT(14)
#define QCA807X_INTR_ENABLE_DUPLEX_CHANGED BIT(13)
#define QCA807X_INTR_ENABLE_LINK_FAIL BIT(11)
#define QCA807X_INTR_ENABLE_LINK_SUCCESS BIT(10)
#define QCA807X_FUNCTION_CONTROL 0x10
#define QCA807X_FC_MDI_CROSSOVER_MODE_MASK GENMASK(6, 5)
#define QCA807X_FC_MDI_CROSSOVER_AUTO 3
#define QCA807X_FC_MDI_CROSSOVER_MANUAL_MDIX 1
#define QCA807X_FC_MDI_CROSSOVER_MANUAL_MDI 0
#define QCA807X_PHY_SPECIFIC_STATUS 0x11
#define QCA807X_SS_SPEED_AND_DUPLEX_RESOLVED BIT(11)
#define QCA807X_SS_SPEED_MASK GENMASK(15, 14)
#define QCA807X_SS_SPEED_1000 2
#define QCA807X_SS_SPEED_100 1
#define QCA807X_SS_SPEED_10 0
#define QCA807X_SS_DUPLEX BIT(13)
#define QCA807X_SS_MDIX BIT(6)
/* PSGMII PHY specific */
#define PSGMII_QSGMII_DRIVE_CONTROL_1 0xb
#define PSGMII_QSGMII_TX_DRIVER_MASK GENMASK(7, 4)
#define PSGMII_MODE_CTRL 0x6d
#define PSGMII_MODE_CTRL_AZ_WORKAROUND_MASK BIT(0)
#define PSGMII_MMD3_SERDES_CONTROL 0x805a
struct qca807x_gpio_priv {
struct phy_device *phy;
};
static int qca807x_get_downshift(struct phy_device *phydev, u8 *data)
{
int val, cnt, enable;
val = phy_read(phydev, MII_NWAYTEST);
if (val < 0)
return val;
enable = FIELD_GET(QCA807X_SMARTSPEED_EN, val);
cnt = FIELD_GET(QCA807X_SMARTSPEED_RETRY_LIMIT_MASK, val) + 2;
*data = enable ? cnt : DOWNSHIFT_DEV_DISABLE;
return 0;
}
static int qca807x_set_downshift(struct phy_device *phydev, u8 cnt)
{
int ret, val;
if (cnt > QCA807X_SMARTSPEED_RETRY_LIMIT_MAX ||
(cnt < QCA807X_SMARTSPEED_RETRY_LIMIT_MIN && cnt != DOWNSHIFT_DEV_DISABLE))
return -EINVAL;
if (!cnt) {
ret = phy_clear_bits(phydev, MII_NWAYTEST, QCA807X_SMARTSPEED_EN);
} else {
val = QCA807X_SMARTSPEED_EN;
val |= FIELD_PREP(QCA807X_SMARTSPEED_RETRY_LIMIT_MASK, cnt - 2);
phy_modify(phydev, MII_NWAYTEST,
QCA807X_SMARTSPEED_EN |
QCA807X_SMARTSPEED_RETRY_LIMIT_MASK,
val);
}
ret = genphy_soft_reset(phydev);
return ret;
}
static int qca807x_get_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return qca807x_get_downshift(phydev, data);
default:
return -EOPNOTSUPP;
}
}
static int qca807x_set_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, const void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return qca807x_set_downshift(phydev, *(const u8 *)data);
default:
return -EOPNOTSUPP;
}
}
static bool qca807x_distance_valid(int result)
{
switch (result) {
case QCA807X_CDT_RESULTS_OPEN:
case QCA807X_CDT_RESULTS_SAME_SHORT:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_OK:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_OK:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_OK:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_OPEN:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_OPEN:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_OPEN:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_SHORT:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_SHORT:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_SHORT:
return true;
}
return false;
}
static int qca807x_report_length(struct phy_device *phydev,
int pair, int result)
{
int length;
int ret;
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, QCA807X_CDT_MMD3_MDI0_LENGTH + pair);
if (ret < 0)
return ret;
switch (result) {
case ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT:
length = (FIELD_GET(QCA807X_CDT_SAME_SHORT_LENGTH_MASK, ret) * 800) / 10;
break;
case ETHTOOL_A_CABLE_RESULT_CODE_OPEN:
case ETHTOOL_A_CABLE_RESULT_CODE_CROSS_SHORT:
length = (FIELD_GET(QCA807X_CDT_CROSS_SHORT_LENGTH_MASK, ret) * 800) / 10;
break;
}
ethnl_cable_test_fault_length(phydev, pair, length);
return 0;
}
static int qca807x_cable_test_report_trans(int result)
{
switch (result) {
case QCA807X_CDT_RESULTS_OK:
return ETHTOOL_A_CABLE_RESULT_CODE_OK;
case QCA807X_CDT_RESULTS_OPEN:
return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
case QCA807X_CDT_RESULTS_SAME_SHORT:
return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_OK:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_OK:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_OK:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_OPEN:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_OPEN:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_OPEN:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_SHORT:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_SHORT:
case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_SHORT:
return ETHTOOL_A_CABLE_RESULT_CODE_CROSS_SHORT;
default:
return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
}
}
static int qca807x_cable_test_report(struct phy_device *phydev)
{
int pair0, pair1, pair2, pair3;
int ret;
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, QCA807X_CDT_MMD3_STATUS);
if (ret < 0)
return ret;
pair0 = FIELD_GET(QCA807X_CDT_MDI0_STATUS_MASK, ret);
pair1 = FIELD_GET(QCA807X_CDT_MDI1_STATUS_MASK, ret);
pair2 = FIELD_GET(QCA807X_CDT_MDI2_STATUS_MASK, ret);
pair3 = FIELD_GET(QCA807X_CDT_MDI3_STATUS_MASK, ret);
ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A,
qca807x_cable_test_report_trans(pair0));
ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_B,
qca807x_cable_test_report_trans(pair1));
ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_C,
qca807x_cable_test_report_trans(pair2));
ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_D,
qca807x_cable_test_report_trans(pair3));
if (qca807x_distance_valid(pair0))
qca807x_report_length(phydev, 0, qca807x_cable_test_report_trans(pair0));
if (qca807x_distance_valid(pair1))
qca807x_report_length(phydev, 1, qca807x_cable_test_report_trans(pair1));
if (qca807x_distance_valid(pair2))
qca807x_report_length(phydev, 2, qca807x_cable_test_report_trans(pair2));
if (qca807x_distance_valid(pair3))
qca807x_report_length(phydev, 3, qca807x_cable_test_report_trans(pair3));
return 0;
}
static int qca807x_cable_test_get_status(struct phy_device *phydev,
bool *finished)
{
int val;
*finished = false;
val = phy_read(phydev, QCA807X_CDT);
if (!((val & QCA807X_CDT_ENABLE) && (val & QCA807X_CDT_STATUS))) {
*finished = true;
return qca807x_cable_test_report(phydev);
}
return 0;
}
static int qca807x_cable_test_start(struct phy_device *phydev)
{
int val, ret;
val = phy_read(phydev, QCA807X_CDT);
/* Enable inter-pair short check as well */
val &= ~QCA807X_CDT_ENABLE_INTER_PAIR_SHORT;
val |= QCA807X_CDT_ENABLE;
ret = phy_write(phydev, QCA807X_CDT, val);
return ret;
}
#ifdef CONFIG_GPIOLIB
static int qca807x_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
{
return GPIO_LINE_DIRECTION_OUT;
}
static int qca807x_gpio_get_reg(unsigned int offset)
{
return QCA807X_MMD7_LED_100N_2 + (offset % 2) * 2;
}
static int qca807x_gpio_get(struct gpio_chip *gc, unsigned int offset)
{
struct qca807x_gpio_priv *priv = gpiochip_get_data(gc);
int val;
val = phy_read_mmd(priv->phy, MDIO_MMD_AN, qca807x_gpio_get_reg(offset));
return FIELD_GET(QCA807X_GPIO_FORCE_MODE_MASK, val);
}
static void qca807x_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
{
struct qca807x_gpio_priv *priv = gpiochip_get_data(gc);
int val;
val = phy_read_mmd(priv->phy, MDIO_MMD_AN, qca807x_gpio_get_reg(offset));
val &= ~QCA807X_GPIO_FORCE_MODE_MASK;
val |= QCA807X_GPIO_FORCE_EN;
val |= FIELD_PREP(QCA807X_GPIO_FORCE_MODE_MASK, value);
phy_write_mmd(priv->phy, MDIO_MMD_AN, qca807x_gpio_get_reg(offset), val);
}
static int qca807x_gpio_dir_out(struct gpio_chip *gc, unsigned int offset, int value)
{
qca807x_gpio_set(gc, offset, value);
return 0;
}
static int qca807x_gpio(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct qca807x_gpio_priv *priv;
struct gpio_chip *gc;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->phy = phydev;
gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
if (!gc)
return -ENOMEM;
gc->label = dev_name(dev);
gc->base = -1;
gc->ngpio = 2;
gc->parent = dev;
gc->owner = THIS_MODULE;
gc->can_sleep = true;
gc->get_direction = qca807x_gpio_get_direction;
gc->direction_output = qca807x_gpio_dir_out;
gc->get = qca807x_gpio_get;
gc->set = qca807x_gpio_set;
return devm_gpiochip_add_data(dev, gc, priv);
}
#endif
static int qca807x_read_copper_status(struct phy_device *phydev)
{
int ss, err, old_link = phydev->link;
/* Update the link, but return if there was an error */
err = genphy_update_link(phydev);
if (err)
return err;
/* why bother the PHY if nothing can have changed */
if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
return 0;
phydev->speed = SPEED_UNKNOWN;
phydev->duplex = DUPLEX_UNKNOWN;
phydev->pause = 0;
phydev->asym_pause = 0;
err = genphy_read_lpa(phydev);
if (err < 0)
return err;
/* Read the QCA807x PHY-Specific Status register copper page,
* which indicates the speed and duplex that the PHY is actually
* using, irrespective of whether we are in autoneg mode or not.
*/
ss = phy_read(phydev, QCA807X_PHY_SPECIFIC_STATUS);
if (ss < 0)
return ss;
if (ss & QCA807X_SS_SPEED_AND_DUPLEX_RESOLVED) {
int sfc;
sfc = phy_read(phydev, QCA807X_FUNCTION_CONTROL);
if (sfc < 0)
return sfc;
switch (FIELD_GET(QCA807X_SS_SPEED_MASK, ss)) {
case QCA807X_SS_SPEED_10:
phydev->speed = SPEED_10;
break;
case QCA807X_SS_SPEED_100:
phydev->speed = SPEED_100;
break;
case QCA807X_SS_SPEED_1000:
phydev->speed = SPEED_1000;
break;
}
if (ss & QCA807X_SS_DUPLEX)
phydev->duplex = DUPLEX_FULL;
else
phydev->duplex = DUPLEX_HALF;
if (ss & QCA807X_SS_MDIX)
phydev->mdix = ETH_TP_MDI_X;
else
phydev->mdix = ETH_TP_MDI;
switch (FIELD_GET(QCA807X_FC_MDI_CROSSOVER_MODE_MASK, sfc)) {
case QCA807X_FC_MDI_CROSSOVER_MANUAL_MDI:
phydev->mdix_ctrl = ETH_TP_MDI;
break;
case QCA807X_FC_MDI_CROSSOVER_MANUAL_MDIX:
phydev->mdix_ctrl = ETH_TP_MDI_X;
break;
case QCA807X_FC_MDI_CROSSOVER_AUTO:
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
break;
}
}
if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete)
phy_resolve_aneg_pause(phydev);
return 0;
}
static int qca807x_read_fiber_status(struct phy_device *phydev)
{
int ss, err, lpa, old_link = phydev->link;
/* Update the link, but return if there was an error */
err = genphy_update_link(phydev);
if (err)
return err;
/* why bother the PHY if nothing can have changed */
if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
return 0;
phydev->speed = SPEED_UNKNOWN;
phydev->duplex = DUPLEX_UNKNOWN;
phydev->pause = 0;
phydev->asym_pause = 0;
if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
lpa = phy_read(phydev, MII_LPA);
if (lpa < 0)
return lpa;
linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
phydev->lp_advertising, lpa & LPA_LPACK);
linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
phydev->lp_advertising, lpa & LPA_1000XFULL);
linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
phydev->lp_advertising, lpa & LPA_1000XPAUSE);
linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
phydev->lp_advertising,
lpa & LPA_1000XPAUSE_ASYM);
phy_resolve_aneg_linkmode(phydev);
}
/* Read the QCA807x PHY-Specific Status register fiber page,
* which indicates the speed and duplex that the PHY is actually
* using, irrespective of whether we are in autoneg mode or not.
*/
ss = phy_read(phydev, QCA807X_PHY_SPECIFIC_STATUS);
if (ss < 0)
return ss;
if (ss & QCA807X_SS_SPEED_AND_DUPLEX_RESOLVED) {
switch (FIELD_GET(QCA807X_SS_SPEED_MASK, ss)) {
case QCA807X_SS_SPEED_100:
phydev->speed = SPEED_100;
break;
case QCA807X_SS_SPEED_1000:
phydev->speed = SPEED_1000;
break;
}
if (ss & QCA807X_SS_DUPLEX)
phydev->duplex = DUPLEX_FULL;
else
phydev->duplex = DUPLEX_HALF;
}
return 0;
}
static int qca807x_read_status(struct phy_device *phydev)
{
if (linkmode_test_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, phydev->supported)) {
switch (phydev->port) {
case PORT_FIBRE:
return qca807x_read_fiber_status(phydev);
case PORT_TP:
return qca807x_read_copper_status(phydev);
default:
return -EINVAL;
}
} else
return qca807x_read_copper_status(phydev);
}
static int qca807x_config_intr(struct phy_device *phydev)
{
int ret, val;
val = phy_read(phydev, QCA807X_INTR_ENABLE);
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
/* Check for combo port as it has fewer interrupts */
if (phy_read(phydev, QCA807X_CHIP_CONFIGURATION)) {
val |= QCA807X_INTR_ENABLE_SPEED_CHANGED;
val |= QCA807X_INTR_ENABLE_LINK_FAIL;
val |= QCA807X_INTR_ENABLE_LINK_SUCCESS;
} else {
val |= QCA807X_INTR_ENABLE_AUTONEG_ERR;
val |= QCA807X_INTR_ENABLE_SPEED_CHANGED;
val |= QCA807X_INTR_ENABLE_DUPLEX_CHANGED;
val |= QCA807X_INTR_ENABLE_LINK_FAIL;
val |= QCA807X_INTR_ENABLE_LINK_SUCCESS;
}
ret = phy_write(phydev, QCA807X_INTR_ENABLE, val);
} else {
ret = phy_write(phydev, QCA807X_INTR_ENABLE, 0);
}
return ret;
}
static irqreturn_t qca807x_handle_interrupt(struct phy_device *phydev)
{
int irq_status, int_enabled;
irq_status = phy_read(phydev, QCA807X_INTR_STATUS);
if (irq_status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
/* Read the current enabled interrupts */
int_enabled = phy_read(phydev, QCA807X_INTR_ENABLE);
if (int_enabled < 0) {
phy_error(phydev);
return IRQ_NONE;
}
/* See if this was one of our enabled interrupts */
if (!(irq_status & int_enabled))
return IRQ_NONE;
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
static int qca807x_led_config(struct phy_device *phydev)
{
struct device_node *node = phydev->mdio.dev.of_node;
bool led_config = false;
int val;
val = phy_read_mmd(phydev, MDIO_MMD_AN, QCA807X_MMD7_LED_1000N_1);
if (val < 0)
return val;
if (of_property_read_bool(node, "qcom,single-led-1000")) {
val |= QCA807X_LED_TXACT_BLK_EN_2;
val |= QCA807X_LED_RXACT_BLK_EN_2;
val |= QCA807X_LED_GT_ON_EN_2;
led_config = true;
}
if (of_property_read_bool(node, "qcom,single-led-100")) {
val |= QCA807X_LED_HT_ON_EN_2;
led_config = true;
}
if (of_property_read_bool(node, "qcom,single-led-10")) {
val |= QCA807X_LED_BT_ON_EN_2;
led_config = true;
}
if (led_config)
return phy_write_mmd(phydev, MDIO_MMD_AN, QCA807X_MMD7_LED_1000N_1, val);
else
return 0;
}
static int qca807x_sfp_insert(void *upstream, const struct sfp_eeprom_id *id)
{
struct phy_device *phydev = upstream;
__ETHTOOL_DECLARE_LINK_MODE_MASK(support) = { 0, };
phy_interface_t iface;
int ret;
sfp_parse_support(phydev->sfp_bus, id, support);
iface = sfp_select_interface(phydev->sfp_bus, support);
dev_info(&phydev->mdio.dev, "%s SFP module inserted\n", phy_modes(iface));
switch (iface) {
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_100BASEX:
/* Set PHY mode to PSGMII combo (1/4 copper + combo ports) mode */
ret = phy_modify(phydev,
QCA807X_CHIP_CONFIGURATION,
QCA807X_CHIP_CONFIGURATION_MODE_CFG_MASK,
QCA807X_CHIP_CONFIGURATION_MODE_PSGMII_FIBER);
/* Enable fiber mode autodection (1000Base-X or 100Base-FX) */
ret = phy_set_bits_mmd(phydev,
MDIO_MMD_AN,
QCA807X_MMD7_FIBER_MODE_AUTO_DETECTION,
QCA807X_MMD7_FIBER_MODE_AUTO_DETECTION_EN);
/* Select fiber page */
ret = phy_clear_bits(phydev,
QCA807X_CHIP_CONFIGURATION,
QCA807X_BT_BX_REG_SEL);
phydev->port = PORT_FIBRE;
break;
default:
dev_err(&phydev->mdio.dev, "Incompatible SFP module inserted\n");
return -EINVAL;
}
return ret;
}
static void qca807x_sfp_remove(void *upstream)
{
struct phy_device *phydev = upstream;
/* Select copper page */
phy_set_bits(phydev,
QCA807X_CHIP_CONFIGURATION,
QCA807X_BT_BX_REG_SEL);
phydev->port = PORT_TP;
}
static const struct sfp_upstream_ops qca807x_sfp_ops = {
.attach = phy_sfp_attach,
.detach = phy_sfp_detach,
.module_insert = qca807x_sfp_insert,
.module_remove = qca807x_sfp_remove,
};
static int qca807x_config(struct phy_device *phydev)
{
struct device_node *node = phydev->mdio.dev.of_node;
int control_dac, ret = 0;
u32 of_control_dac;
/* Check for Combo port */
if (phy_read(phydev, QCA807X_CHIP_CONFIGURATION)) {
int psgmii_serdes;
/* Prevent PSGMII going into hibernation via PSGMII self test */
psgmii_serdes = phy_read_mmd(phydev, MDIO_MMD_PCS, PSGMII_MMD3_SERDES_CONTROL);
psgmii_serdes &= ~BIT(1);
ret = phy_write_mmd(phydev, MDIO_MMD_PCS,
PSGMII_MMD3_SERDES_CONTROL,
psgmii_serdes);
}
if (!of_property_read_u32(node, "qcom,control-dac", &of_control_dac)) {
control_dac = phy_read_mmd(phydev, MDIO_MMD_AN,
QCA807X_MMD7_1000BASE_T_POWER_SAVE_PER_CABLE_LENGTH);
control_dac &= ~QCA807X_CONTROL_DAC_MASK;
control_dac |= FIELD_PREP(QCA807X_CONTROL_DAC_MASK, of_control_dac);
ret = phy_write_mmd(phydev, MDIO_MMD_AN,
QCA807X_MMD7_1000BASE_T_POWER_SAVE_PER_CABLE_LENGTH,
control_dac);
}
/* Optionally configure LED-s */
if (IS_ENABLED(CONFIG_GPIOLIB)) {
/* Check whether PHY-s pins are used as GPIO-s */
if (!of_property_read_bool(node, "gpio-controller"))
ret = qca807x_led_config(phydev);
} else {
ret = qca807x_led_config(phydev);
}
return ret;
}
static int qca807x_probe(struct phy_device *phydev)
{
struct device_node *node = phydev->mdio.dev.of_node;
int ret = 0;
if (IS_ENABLED(CONFIG_GPIOLIB)) {
/* Do not register a GPIO controller unless flagged for it */
if (of_property_read_bool(node, "gpio-controller"))
ret = qca807x_gpio(phydev);
}
/* Attach SFP bus on combo port*/
if (phy_read(phydev, QCA807X_CHIP_CONFIGURATION)) {
ret = phy_sfp_probe(phydev, &qca807x_sfp_ops);
linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, phydev->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, phydev->advertising);
}
return ret;
}
static int qca807x_psgmii_config(struct phy_device *phydev)
{
struct device_node *node = phydev->mdio.dev.of_node;
int tx_amp, ret = 0;
u32 tx_driver_strength;
/* Workaround to enable AZ transmitting ability */
ret = phy_clear_bits_mmd(phydev,
MDIO_MMD_PMAPMD,
PSGMII_MODE_CTRL,
PSGMII_MODE_CTRL_AZ_WORKAROUND_MASK);
/* PSGMII/QSGMII TX amp set to DT defined value instead of default 600mV */
if (!of_property_read_u32(node, "qcom,tx-driver-strength", &tx_driver_strength)) {
tx_amp = phy_read(phydev, PSGMII_QSGMII_DRIVE_CONTROL_1);
tx_amp &= ~PSGMII_QSGMII_TX_DRIVER_MASK;
tx_amp |= FIELD_PREP(PSGMII_QSGMII_TX_DRIVER_MASK, tx_driver_strength);
ret = phy_write(phydev, PSGMII_QSGMII_DRIVE_CONTROL_1, tx_amp);
}
return ret;
}
static struct phy_driver qca807x_drivers[] = {
{
PHY_ID_MATCH_EXACT(PHY_ID_QCA8072),
.name = "Qualcomm QCA8072",
.flags = PHY_POLL_CABLE_TEST,
/* PHY_GBIT_FEATURES */
.probe = qca807x_probe,
.config_init = qca807x_config,
.read_status = qca807x_read_status,
.config_intr = qca807x_config_intr,
.handle_interrupt = qca807x_handle_interrupt,
.soft_reset = genphy_soft_reset,
.get_tunable = qca807x_get_tunable,
.set_tunable = qca807x_set_tunable,
.resume = genphy_resume,
.suspend = genphy_suspend,
.cable_test_start = qca807x_cable_test_start,
.cable_test_get_status = qca807x_cable_test_get_status,
},
{
PHY_ID_MATCH_EXACT(PHY_ID_QCA8075),
.name = "Qualcomm QCA8075",
.flags = PHY_POLL_CABLE_TEST,
/* PHY_GBIT_FEATURES */
.probe = qca807x_probe,
.config_init = qca807x_config,
.read_status = qca807x_read_status,
.config_intr = qca807x_config_intr,
.handle_interrupt = qca807x_handle_interrupt,
.soft_reset = genphy_soft_reset,
.get_tunable = qca807x_get_tunable,
.set_tunable = qca807x_set_tunable,
.resume = genphy_resume,
.suspend = genphy_suspend,
.cable_test_start = qca807x_cable_test_start,
.cable_test_get_status = qca807x_cable_test_get_status,
},
{
PHY_ID_MATCH_EXACT(PHY_ID_QCA807X_PSGMII),
.name = "Qualcomm QCA807x PSGMII",
.probe = qca807x_psgmii_config,
},
};
module_phy_driver(qca807x_drivers);
static struct mdio_device_id __maybe_unused qca807x_tbl[] = {
{ PHY_ID_MATCH_EXACT(PHY_ID_QCA8072) },
{ PHY_ID_MATCH_EXACT(PHY_ID_QCA8075) },
{ PHY_ID_MATCH_MODEL(PHY_ID_QCA807X_PSGMII) },
{ }
};
MODULE_AUTHOR("Robert Marko");
MODULE_DESCRIPTION("Qualcomm QCA807x PHY driver");
MODULE_DEVICE_TABLE(mdio, qca807x_tbl);
MODULE_LICENSE("GPL");