LAN port 4 was swapped with the WAN port and the remaining three LAN
ports were numbered in reverse order from their labels on the case.
Fixes: 1a775a4fd0 ("ipq806x: add support for TP-Link Talon AD7200")
Signed-off-by: Alex Henrie <alexhenrie24@gmail.com>
(cherry picked from commit 6fb27e8e6d)
Hardware
--------
SoC: Qualcomm IPQ8064
RAM: 512MB DDR3
Flash: 256MB NAND (Micron MT29F2G08ABBEAH4)
32MB SPI-NOR (Macronix MX25U25635F)
WLAN: Qualcomm Atheros QCA9994 4T4R b/g/n
Qualcomm Atheros QCA9994 4T4R a/n/ac
ETH: eth0 - SECONDARY (Atheros AR8033)
eth1 - MAIN (Atheros AR8033)
USB: USB-C
LED: Dome (white / blue)
BTN: Reset
Installation
------------
Copy the OpenWrt sysupgrade image to the /tmp directory of the device
using scp. Default IP address is 192.168.1.20 and default username and
password are "ubnt".
SSH to the device and write the bootselect flag to ensure it is booting
from the mtd partition the OpenWrt image will be written to. Verify the
output device below matches mtd partition "bootselect" using /proc/mtd.
> dd if=/dev/zero bs=1 count=1 seek=7 conv=notrunc of=/dev/mtd11
Write the OpenWrt sysupgrade image to the mtd partition labeled
"kernel0". Also verify the used partition device using /proc/mtd.
> dd if=/tmp/sysupgrade.bin of=/dev/mtdblock12
Reboot the device.
Back to stock
-------------
Use the TFTP recovery procedure with the Ubiquiti firmware image to
restore the vendor firmware.
Signed-off-by: Jan Alexander <jan@nalx.net>
While the underscore in the name of the USB LEDs was removed from DTS,
/etc/board.d/01_leds also has to reflect that change.
Fixes: 28fd279e5d ("ipq806x: some corrections for TP-Link Talon AD7200")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Device hardware: https://deviwiki.com/wiki/TP-LINK_AD7200_(Talon)
The Talon AD7200 is basically an Archer C2600 with a third PCIe lane
and an 802.11ad radio. It looks like the Archers C2600/5400 but the
housing is slightly larger.
Specifications
--------------
- IPQ8064 dual-core 1400MHz
- QCA9988 2.4GHz WiFi
- QCA9990 5GHz WiFi
- QCA9500 60GHz WiFi
- 32MB SPI Flash
- 512MiB RAM
- 5 GBit Ports (QCA8337)
Installation
------------
Installation is possible from the OEM web interface.
Sysupgrade is possible.
TFTP recovery is possible.
- Image: AD7200_1.0_tp_recovery.bin
Notes
- This will be the first 802.11ad device supported by mainline.
Signed-off-by: Gary Cooper <gaco@bitmessage.de>
The ASRock G10 is a 2.4/5 GHz band 11ac "Gaming" router,
based on Qualcomm IPQ8064.
Specifications:
SoC: Qualcomm IPQ8064
CPU: Dual-Core A15 @ (384 - 1,400 MHz, 2C2T)
DRAM: 512 MiB (~467 MiB available)
NAND: 128 MB (Micron MT29F1G08ABBEAH4)
WLAN0: 4T4R 5 GHz Wlan (QCA9980)
WLAN1: 4T4R 2.4 GHz Wlan (QCA9980)
ETH: 5x 10/100/1000 Mbps Ethernet (QCA8337)
INPUT: Reset Button, WPS 2.4G and WPS 5G Button
LEDS: 1 multicolor status LED
USB: 2x USB 3.0 Type-A
POWER: 12VDC/3A AC Adapter + dedicated Power Switch
UART: Setting is 115200-8-N-1. 1x4 .1" unpopulated header
on the PCB (J6 - very tiny silkscreen next to TX).
Pinout: 1. 3v3 (Square - best skipped!), 2. RX, 3. GND, 4. TX
WARNING: The serial port needs a TTL/RS-232 3.3v level converter!
(Depending on the serial adapter RX and TX might need to
be swapped).
Note about the IR-Remote:
There's a 8-Bit MCU (SONIX SN8F25E21SG) which is controlling the
IR-Remote and is fed by the IR-Photodiode. The SoC can talk to
the device via I2C. The vendor's GPL archive comes with the source
of the interface driver for this as a (character driver), the main
control software is however a blob.
Installation Instructions:
1. Download factory image to disk
2. Apply factory image via stock web-gui
Back to stock:
1. Login to router via ssh
2. run "asrock_g10_back_to_factory" script from /sbin
Notes:
- If something goes wrong durring sysupgrade, router will go back to
factory image.
- Asrock G10 uses partition layout from smem. So partition layout can
be normal or alternate.
- 900-arm-add-cmdline-override.patch was copied from 102-powerpc-add-cmdline-override.patch
from powerpc target.
Knowledge about BOOTCONFIG partition was based on user "jmomo" post from old
OpenWrt forum (Post #50):
https://forum.archive.openwrt.org/viewtopic.php?id=65956&p=2
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[bump to 5.4, add factory image, fix sysupgrade, convert partition
layout to smem, remove ipq-wifi-asrock-g10 and use ART, minor fixes]
Co-Authored-by: Pawel Dembicki <paweldembicki@gmail.com>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Tested-by: Lukasz Ostapiuk <palibrzuch@gmail.com>
Like in the previous patches for ath79 and ramips, this will remove
the "devicename" from LED labels in ipq806x.
The devicename is removed in DTS files and 01_leds, and a migration
script is added.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the Edgecore ECW5410 indoor AP.
Specification:
- SoC: Qualcomm Atheros IPQ8068 ARMv7 2x Cortex A-15
- RAM: 256MB(225 usable) DDR3
- NOR Flash: 16MB SPI NOR
- NAND Flash: 128MB S34MS01G2 Parallel NAND
- Ethernet: 2 x 1G via 2x AR8033 PHY-s connected directly to GMAC2 and GMAC3 via SGMII (802.3af POE IN on eth0)
- USB: 1 x USB 3.0 SuperSpeed
- WLAN: 2x QCA9994 AC Wawe 2 (1x 2GHz bgn, 1x 5GHz acn)
- CC2540 BLE
- UART console on RJ45 next to ethernet ports exposed.
Its Cisco pin compatible, 115200 8n1 baud.
Installation instructions:
Through stock firmware or initramfs.
1.Connect to console
2. Login with root account, if password is unknown then interrupt the boot with f and reset it in failsafe.
3. Transfer factory image
4. Flash the image with ubiformat /dev/mtd1 -y -f <your factory image path>
This will replace the rootfs2 with OpenWrt, if you are currently running from rootfs2 then simply change /dev/mtd1 to /dev/mtd0
Note
Initramfs:
1. Connect to console
2. Transfer the image from TFTP server with tftpboot,
or by using DHCP advertised image with dhcp command.
3. bootm
4. Run ubiformat /dev/mtd1
You need to interrupt the bootloader after rebooting and run:
run altbootcmd
This will switch your active rootfs partition to one you wrote to and boot from it.
So if rootfs1 is active, then it will change it to rootfs2.
This will format the rootfs2 partition, if your active partition is 2 then simply change /dev/mtd1 with /dev/mtd0
If you dont format the partition you will be writing too, then sysupgrade will find existing UBI rootfs and kernel volumes and update those.
This will result in wrong ordering and OpenWrt will panic on boot.
5. Transfer sysupgrade image
6. Flash with sysupgrade -n.
Note that sysupgrade will write the image to rootfs partition that is not currently in use.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
At this moment Linksys EA8500 uses only eth0.
This patch change switch registers, which allow to use eth1 as lan
and eth0 as wan. The method work with similar Linksys EA7500V1
and it work with EA8500.
Suggested-by: Sungbo Eo <mans0n@gorani.run>
Tested-by: Brian Onn <brian.a.onn@gmail.com>
Tested-by: Adrian Panella <ianchi74@outlook.com>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
This patch adds support for the Linksys EA7500 V1 router.
Specification:
- CPU: Qualcomm IPQ8064
- RAM: 256MB
- Flash: NAND 128MB
- WiFi: QCA9982 an+ac + QCA9983 bgn
- Ethernet: 5 GBE Ports (WAN+ 4xLAN) (QCA8337)
- USB: 1x USB 3.0 1x USB2.0
- Serial console: RJ-45 115200 8n1 (1V8 Voltage level)
- 2 Buttons
- 1 LED
Known issues:
- Some devices won't flash via web gui
Installation:
- Newer stock images doesn't allow to install custom firmware.
- Please downgrade software to 1.1.2 version. Official firmware:
https://downloads.linksys.com/downloads/firmware/FW_EA7500_1.1.2.172843_prod.gpg.img
- Do it two times to downgrade all stored images.
- Apply factory image via web-gui.
Serial + TFTP method:
- downgrade to 1.1.2 two times
- connect ehternet and serial cable
- set ip address of tftp server to 192.168.1.254
- put openwrt factory image to tftp folder and rename it to macan.bin
- stop device while booting in u-boot
- run command: "run flashimg"
- run command: "setenv boot_part 1"
- run command "saveenv"
- reset
Back to stock:
- Please use old non-gpg image like this 1.1.2:
https://downloads.linksys.com/downloads/firmware/FW_EA7500_1.1.2.172843_prod.img
- ssh to router and copy image to tmp
- use sysupgrade -n -F
Tested by github users: @jack338c and @grzesiczek1
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
[removed i2c4_pins, mdio0_pins, nand_pins, rgmii2_pins from DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
With this commit, the WAN LED is triggered by the switch port state
instead of the eth0 netdev.
Otherwise, the LED is always illuminated, regardless of the WAN port
link state.
Signed-off-by: David Bauer <mail@david-bauer.net>
NEC WG2600HP uses port1 on QCA8337 as a WAN port, so "0x2" should
be used as a portmask instead of "0x1e" for "WAN" LED configuration.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Buffalo WXR-2533DHP is a 2.4/5 GHz band 11ac router, based on Qualcomm
IPQ8064.
The U-Boot on WXR-2533DHP employs a complicated dual firmware
protection scheme against corruptions of the kernel and rootfs
images. See the notes in buffalo.sh for details.
specifications:
- Qualcomm IPQ8064 (384 - 1,400 MHz, 2C2T)
- 512 MB of RAM (DDR3)
- 256 MB of Flash (NAND)
- 4T4R 2.4/5 GHz Wlan (QCA9980)
- 5x 10/100/1000 Mbps Ethernet
- 10x LEDs, 8x keys (6x buttons, 2x slide-switches)
- 2x USB 3.0 Type-A
- 12VDC/4A AC Adapter
- UART through-hole on PCB
- J3: Vcc, GND, TX, RX from USB port side
- 115200n8
Boot instructions for the initramfs image:
1. Prepare the TFTP server with the initramfs image renamed to
"wxr2300dhp-initramfs.uImage" and IP address "192.168.11.10".
2. Press the "AOSS" button while powering on the WXR-2533DHP.
3. Wait until the "Wireless" LED flashes before releasing the AOSS button.
The WXR-2533DHP will grab the image from TFTP server and will boot it.
Flashing instructions:
To persistently write the firmware, flash an openwrt sysupgrade image
from inside the initramfs, for example transfer
via `scp <sysupgrade> root@192.168.1.1:/tmp` and flash on the device
with `sysupgrade -n /tmp/<sysupgrade>`. Then wait ~120 seconds to
let it finish the flashing process.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [reworded message]
Specification:
- SoC: Qualcomm Atheros IPQ8064 ARM-v7 Dual Core SMP CPU
- RAM: 512MB DDR3 System Memory
- NOR Flash: 32MB SPI NOR
- NAND Flash: 256MB NAND
- Ethernet: 5 x 1G via QCA8337N
- USB: 2 x USB 3.0 SuperSpeed
- PCIe: 3x Mini PCIe 2.0 Slots
Three PCIE2.0 connectors can connect two or three radio cards
such as the CUS260 for 2.4 GHz WLAN and the CUS239 for 802.11ac WLAN
How to flash via u-boot console:
tftpboot 0x44000000 openwrt-ipq806x-qcom_ipq8064-ap161-squashfs-nand-factory.bin
nand erase 0x1340000 0x4000000
nand write 0x44000000 0x1340000 $filesize
setenv bootargs ‘console=ttyMSM0,115200 ubi.mtd=ubi root=/dev/ubiblock0_1’
saveenv
bootm
Further upgrades via sysupgrade.
Tested on IPQ8064 AP161 Board:
1) NAND boot
2) Tested USB and PCIe interfaces
3) WDOG test
4) cpu frequency scaling
5) ethernet, 2G and 5G WiFi
6) ubi sysupgrade
Signed-off-by: Ram Chandra Jangir <rjangir@codeaurora.org>
Netgear R7800 switch LAN ports are numbered backwards in LuCI,
i.e. numbering is not corresponding to the actual physical port labels,
patch fixes that.
Signed-off-by: Aleksandr V. Piskunov <aleksandr.v.piskunov@gmail.com>
[merged with existing board using the same config]
Signed-off-by: Hannu Nyman <hannu.nyman@iki.fi>
The original device support patch configured the amber wlan LEDs (which
are meant as error indicator by the OEM) controlled by the SOC's GPIO
as wlan traffic indicators, as the correct white wlan LEDs are
connected to GPIOs controlled by the QCA9984/ ath10k wlan cards were
not accessible. The recent addition of GPIO/ LED support to ath10k now
makes it possible to use the correct white LEDs instead - and
"mac80211: ath10k: use tpt LED trigger by default" also enables them by
default. While both LEDs are independent of each other (two separate
LEDs sharing one light tunnel), triggering both on wlan traffic is not
the intended behaviour (bright yellow light).
Tested on the ZyXEL NBG6817.
Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de>
NEC Aterm WG2600HP is a 2.4/5 GHz band 11ac router, based on Qualcomm
IPQ8064.
Specification:
- IPQ8064 (384 - 1,400 MHz)
- 512 MB of RAM
- 32 MB of Flash (SPI)
- 4T4R 2.4/5 GHz
- 5x 10/100/1000 Mbps Ethernet
- 12x LEDs, 4x keys
- 1x USB 3.0 Type-A
- UART header on PCB
- RX, TX, NC, GND, Vcc from power connector side
- baudrate: 115200 bps
Flash instruction using initramfs image:
1. Connect serial cable to UART header
2. Connect power cable and turn on the router
3. When the "Press the [f] key and hit [enter] to enter failsafe mode"
message is displayed on the console, press the "f" key and Enter key
sequentially to enter the failsafe mode
4. create fw_env.config file with following contents on failsafe mode:
/dev/mtd9 0x0 0x10000 0x10000
5. Execute following commands to add and change the environment
variables of U-Boot
fw_setenv ipaddr "192.168.0.1"
fw_setenv serverip "192.168.0.2"
fw_setenv autostart "yes"
fw_setenv bootcmd "tftpboot 0x44000000 wg2600hp-initramfs.bin;
bootipq"
6. Set the IP address of the computer to 192.168.0.2, connect to the LAN
port of WG2600HP, and start the TFTP server on the computer
7. Rename OpenWrt initramfs image for WG2600HP to
"wg2600hp-initramfs.bin" and place it in the TFTP directory
8. Remove power cable from WG2600HP, reconnect it and restart WG2600HP
9. WG2600HP downloads initramfs image from TFTP server on the computer,
loads it and boot with initramfs image
10. On the initramfs image, execute "mtd erase firmware" to erase stock
firmware and execute sysupgrade with the sysupgrade image
11. Wait ~180 seconds to complete flashing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Hardware highlights:
- SoC: Qualcomm Atheros IPQ8064/5 ARM Dual Core CPU
- RAM: (512MB or 1GB) DDR3 System Memory
- Storage: 32MB NOR (Cypress S25FL256S1)
256MB NAND (Micron MT29F2G08ABBEAH4)
- Ethernet: 5 x 1G via QCA8337N
- USB: 1 x USB 2.0/3.0 + 1 x USB 2.0 on mini PCIe3 socket
- PCIe: 3x mini PCIe (third mini PCIE3 is PCIe/USB shared)
- SIM Card Slot: 2 x Slot
- Buttons: Reset Button
- LEDs: 18x, 8x GPIO controllable
- Buzzer
The correct amount of RAM will be passed by the bootloader.
In contrast to the documentation provided by Compex, the third PCIe
doesn't use GPIO16 for PERST. Instead, GPIO3 is shared and used as PERST
for PCIe0 and PCIe2.
So far, no one was able to get USB 3.0 working with the 1GB RAM version,
while it works fine for my 512MB version. Since USB 3.0 doesn't work with
the Compex firmware for the 1G variant either, it could be a hardware
issue with these boards.
OpenWrt will be installed to the NAND flash. Make sure to have a full
working image on the NOR flash. It will be the backup in case anything
goes wrong.
It has been observed that an image loaded via tftpboot might have
bitflips. Hence the extra step to create a crc32 checksum to allow to
compare the checksum with the one from the source file prior to flashing.
In all cases it is necessary to set the following u-boot parameter to an
empty (whitespace) value, to ensure that the chosen bootargs of the dts
isn't overwritten or set to bogus - not working - values:
(IPQ) # set bootargs " "
(IPQ) # set fsbootargs " "
(IPQ) # saveenv
The sysupgrade image can be installed directly on flash using u-boot (put
jumper in JP13 (leave JP9 open) to boot from nand):
(IPQ) # set serverip 192.168.1.20
(IPQ) # set ipaddr 192.168.1.1
(IPQ) # tftpboot 0x42000000 openwrt-ipq806x-compex_wpq864-squashfs-nand-factory.bin
(IPQ) # crc32 0x42000000 $filesize
(IPQ) # nand erase 0x1340000 0x4000000
(IPQ) # nand write 0x42000000 0x1340000 $filesize
The initramfs image can be started using:
(IPQ) # set fdt_high 0x48000000
(IPQ) # tftpboot 0x44000000 openwrt-ipq806x-compex_wpq864-initramfs-fit-uImage.itb
(IPQ) # bootm 0x44000000
Signed-off-by: Christian Mehlis <christian@m3hlis.de>
Signed-off-by: Mathias Kresin <dev@kresin.me>
This patch adds support for GL.iNet GL-B1300
Specification:
- SOC: IPQ4028 / QCA Dakota
- RAM: 256 MiB
- FLASH: 32 MiB
- ETH: Qualcomm Atheros QCA8075 Gigabit Switch (2 x LAN, 1 x WAN)
- USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
- WLAN1: Qualcomm Atheros QCA4028 2.4GHz 802.11bgn 2:2x2
- WLAN2: Qualcomm Atheros QCA4028 5GHz 802.11a/n/ac 2:2x2
- INPUT: one reset and one WPS button
- LEDS: 3 leds: Power, WIFI(only for 2.4G currently), and one reserved
- UART: 1 x UART on PCB (3.3V, TX, RX, GND) - 115200 8N1
Installation:
Method 1:
- use serial port to stop uboot
- uboot command: run lf
Method 2:
- push down reset button and power on
- wait until three leds constantly on then release
- upgrade by uboot web at http://192.168.1.1
Note:
- the sysupgrade image need to be renamed to lede-gl-b1300.bin in both method.
- the sysupgrade image can be automatically downloaded if tftp server at
192.168.1.2 have that file.
- the wifi led will be flashing when writing image.
Signed-off-by: Dongming Han <handongming@gl-inet.com>
This commit marks the CPUs switchport explicit as untagged.
Otherwise, an eth0.1 interface is created and the devices
LAN-ports are not working.
Signed-off-by: David Bauer <mail@david-bauer.net>
* QCA IPQ401x
* 256 MB of RAM
* 32 MB of SPI NOR flash (s25fl256s1)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=OM-A42
* 2T2R 5 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=17,variant=OM-A42
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x button (reset; kmod-input-gpio-keys compatible)
* external watchdog
- triggered GPIO
* 1x USB (xHCI)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
* powered only via POE
- 802.3af POE on Ethernet 1
- 18-24v passive POE (mode B) on Ethernet 2
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Sven Eckelmann <sven.eckelmann@open-mesh.com>
Use the generic board detection method:
- Board name: First compatible string from the device tree
- Board model: Model property from the device tree
Change occurrences of board name in userspace by the compatible
string, and removed target specific board detection script
Replace the definition of SUPPORTED_DEVICES in Device/Default
to extract the dt compatible string from each device definition.
Additionally, for devices supported by lede-17.01, append
the value of BOARD_NAME to SUPPORTED_DEVICES in the device
definition.
Signed-off-by: Luis Araneda <luaraneda@gmail.com>
This will allow to maintain the current syntax for LEDs config
when switching to a device tree compatible string boardname.
None of the current boards use a comma in the boardname, so they
will be unaffected.
Signed-off-by: Luis Araneda <luaraneda@gmail.com>
The ZyXEL NBG6817 calculates all MAC addresses based on the ethaddr
value stored in the U-Boot environment (0:APPSBLENV). No MAC addresses
are stored in the ART partition and the generated MAC addresses for the
wlan interfaces alternate randomly between 12:34:56:78:90:12 and
00:03:7f:12:34:56.
interface new/ OEM MAC old MAC
wlan-2.4g (phy1): ethaddr undefined
wlan-5g (phy0): ethaddr + 1 undefined
lan : ethaddr + 2 ethaddr
wan : ethaddr + 3 ethaddr + 1
This patch defines stable MAC addresses for the wlan interfaces for
the first time instead of generating them at random. The previously
defined values for lan/ wan are changed to follow the settings of the
OEM firmware.
Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de>
The order of LAN ports shown in Luci is reversed compared to what is
written on the case of the device. Fix the order so that they match.
Signed-off-by: Baptiste Jonglez <git@bitsofnetworks.org>
Do not assign the CPU port twice, this confuses LuCI and possible other
programs relying on topology information in board.json.
Ref: https://github.com/openwrt/luci/issues/1086
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
This patch adds support for AVM FRITZ!Box 4040.
hardware highlights:
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB Nanya NT5CC128M16IP
FLASH: 32 MiB MXIC MX25L25635FMI
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
1 x 2.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: one WLAN and one WPS button
LEDS: Power, WAN/Internet, WIFI, INFO (red and amber) and LAN.
Serial:
WARNING: The serial port needs a TTL/RS-232 v3.3 level converter!
The Serial setting is 115200-8-N-1. The SoC's serial port is right
next to the MXIC FLASH chip. The board has a unpopulated 1x4 0.1"
header for it. Use a multimeter to figure out the pinout!
This board currently needs an additional u-boot image in order to boot
properly. Booting with EVA isn't possible ATM.
Install Procedure:
0. It's highly recommended to connect to the serial port.
The serial settings are listed above.
1. install a u-boot image for AVM Fritz!Box 4040
(see <https://github.com/chunkeey/FritzBox-4040-UBOOT/releases> and
<https://github.com/chunkeey/FritzBox-4040-UBOOT/blob/master/upload-to-f4040.sh>)
2. upload the initramfs.itb image via tftp (u-boot listens to
192.168.1.1 - use binary transfer mode!)
3. connect to the FB4040 and use sysupgrade sysupgrade.bin
to install the image.
Works:
- Switch and Ethernet (99%)
- Buttons (WLAN, WPS)
- FLASH (1 x 32MiB NOR Chip)
- WLAN2G and WLAN5G
- CPUFREQ scaling
- PRNG
- serial
- Crypto Accelerator
- sysupgrade (Read the flash instructions to avoid bricking)
- full LEDE Install (Read the flash instructions to avoid bricking)
- LEDs (Power, WAN, Info (red and amber), LAN)
The LEDs are connected to the QCA8075 LED ports.
The AR40xx driver contains a gpio-controller to
handle these special "GPIOs".
- USB Both 3.0 and 2.0 ports
- many packages from other ARMv7 boards
(This does include the RaspberryPi Model 2!)
- ...
Not planned:
- WAN<->LAN short-cut
- Qualcomm Secure Execution Environment
- ...
Signed-off-by: Christian Lamparter <chunkeey@googlemail.com>
Signed-off-by: John Crispin <john@phrozen.org>
After "73d923e base-files: emit tagged switch configuration by default"
some default network configurations are broken because the lan and wan
ifnames are forcibly set to untagged netdevs.
Adjust the offending set_interfaces_lan_wan() calls to use the proper
tagged device names.
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
Remove the wifi5g LED from the the d7800, r7500 and r7800. Albeit this
GPIO is mentioned in the GPL tarball, it doesn't do anything. The
2.4/5 GHz LEDs are connected to the wifi chips and not be controlled
from the the userspace.
Use the LEDs names/colours as they are used in the board manuals. Merge
redundant LED configurations. Use the phy[0|1]tpt trigger for the
wireless LEDs. Remove the workarounds for the not controllable wireless
LEDs.
Fix spi compatible strings and remove superfluous spi-max-frequency
parameters.
If there are two power leds, use one for indicating normal operation and
one for failsafe/upgrade. Keep the on/off state of the main power led
during boot.
Use the usb pinmux settings from the nbg6817 gpl sources.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Set the pinmux to the values found in the GPL tarballs of the boards.
Remove pinmux which are is not used (like nand pinmux for spi
flash boards).
This allows to use the wan orange led of the C2600 which had a wrong
pinmux before. Might fix buttons or leds of other boards as well.
Fix the LED color and the ledswitch key code of the C2600. Rename the
ledgnr to ledswitch.
Add support for indication the boot state using LEDs to the D7800,
NBG6817, R7500 and R7500v2.
Change GPIO active to readable values in D7800, EA8500, R7500,
R7500v2 and R7800.
Change gpioexport to gpio pinmux.
Add proper "drive strenght" to i2c4_pins and use it for RPM on
C2600, D7800, EA8500, R7500, R7500v2.
Remove pcie pinmux from D7800.
Move pinctrl to correct place in NBG6817 and R7800.
Signed-off-by: Henryk Heisig <hyniu@o2.pl>
This router is similar to the C2600. Ethernet on WAN + LAN, switch,
sysupgrade, LEDs, buttons and WiFi on 2G + 5G do work. The xDSL modem
and the POTS/DECT interface are not supported yet.
It is not possible to flash LEDE via the TP-Link webinterface. The
image need to be signed. The first 0x200 bytes of the image is the
TP-Link header including the signature. The signature is not validated
by the bootloader. The LEDE image is zeroed in this area.
To install LEDE it is necessary to solder a four pin header to JP2.
Connect a serial interface to this header and interrupt the autostart
of kernel. Transfer the sysupgrade image via TFTP and write it to the
serial flash at 0x320000.
Signed-off-by: Sebastian Quilitz <zeraphim@x-pantion.de>
Updating spi pins configuration in R7800 and C2600 DTs
Adding more usb power pin export and gsbi6 in R7800 DT
Updating and fixing leds
Signed-off-by: Pavel Kubelun <be.dissent@gmail.com>
CPU: 2x1.8GHz ARM, RAM: 512MiB
Storage: 4MiB serial Flash, 3.9GiB MMC
NIC: 2x1GBit/s, Switch with 5 external and 2 internal ports
WiFi: Dualband, ath10k 2.4GHz, 5GHz MU-MIMO
For installation copy xx-mmcblk0p4-kernel.bin and xx-mmcblk0p5-rootfs-full.bin
to device. Then run:
cat xx-mmcblk0p4-kernel.bin > /dev/mmc0blk0p4
cat xx-mmcblk0p5-rootfs-full.bin > /dev/mmc0blk0p5
reboot -f
For debugging serial console is easily visible on board, no soldering needed.
Signed-off-by: André Valentin <avalentin@marcant.net>
Signed-off-by: Alexis Green <alexis@cessp.it>
[Jo-Philipp Wich: add missing DEVICE_TITLE, fix model name in commit title]
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
Replace former uci-defaults.sh implementation with the uci-defaults-new.sh one
and update all users accordingly.
Signed-off-by: Jo-Philipp Wich <jow@openwrt.org>
SVN-Revision: 47867