* ethernet1:
- physical port label "Ethernet 1"
- its mac address is printed on the device label
* ethernet2:
- physical port label "Ethernet 2"
- can be used to power the device
Both ports are not marked by there role (because the vendor firmware
automatically detects roles) but the "Ethernet 2" port was used in the past
for "WAN" functionality in OpenWrt.
Tested-by: Michaël BILCOT <michael.bilcot@gmail.com>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
The calibration data and mac addresses on this device are stored in the
0:ART partition. It is therefore possible to move the code to handle them
directly to the devicetree instead of the various scripts.
But the actual relevant information about the partition layout is provided
by the bootloader via bootargs (mtdparts) and not via the devicetree
itself. Instead of using a fixed-partition template, the mtd dynamic
partitions support from the upstream kernel is used.
Reported-by: Robert Marko <robert.marko@sartura.hr>
Tested-by: Michaël BILCOT <michael.bilcot@gmail.com>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ethernet1:
- physical port label "Ethernet 1"
- its mac address is printed on the device label
* ethernet2:
- physical port label "Ethernet 2"
- can be used to power the device
Both ports are not marked by there role (because the vendor firmware
automatically detects roles) but the "Ethernet 2" port was used in the past
for "WAN" functionality in OpenWrt.
Signed-off-by: Sven Eckelmann <sven@narfation.org>
The calibration data and mac addresses on this device are stored in the
0:ART partition. It is therefore possible to move the code to handle them
directly to the devicetree instead of the various scripts.
But the actual relevant information about the partition layout is provided
by the bootloader via bootargs (mtdparts) and not via the devicetree
itself. Instead of using a fixed-partition template, the mtd dynamic
partitions support from the upstream kernel is used.
Reported-by: Robert Marko <robert.marko@sartura.hr>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
The calibration data and mac addresses on this device are stored in the
0:ART partition. It is therefore possible to move the code to handle them
directly to the devicetree instead of the various scripts.
But the actual relevant information about the partition layout is provided
by the bootloader via bootargs (mtdparts) and not via the devicetree
itself. Instead of using a fixed-partition template, the mtd dynamic
partitions support from the upstream kernel is used.
Reported-by: Robert Marko <robert.marko@sartura.hr>
Reviewed-by: Robert Marko <robimarko@gmail.com>
Tested-by: Michaël BILCOT <michael.bilcot@gmail.com>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
The calibration data and mac addresses on this device are stored in the
0:ART partition. It is therefore possible to move the code to handle them
directly to the devicetree instead of the various scripts.
But the actual relevant information about the partition layout is provided
by the bootloader via bootargs (mtdparts) and not via the devicetree
itself. Instead of using a fixed-partition template, the mtd dynamic
partitions support from the upstream kernel is used.
Reported-by: Robert Marko <robert.marko@sartura.hr>
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ethernet1:
- physical port label "Ethernet 1"
- can be used to power the device
- its mac address is printed on the device label
* ethernet2:
- physical port label "Ethernet 2"
Both ports are not marked by there role (because the vendor firmware
automatically detects roles) but the "Ethernet 1" port was used in the past
for "WAN" functionality in OpenWrt.
Reviewed-by: Robert Marko <robimarko@gmail.com>
Tested-by: Michaël BILCOT <michael.bilcot@gmail.com>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ethernet1:
- physical port label "Ethernet 1"
- can be used to power the device
- its mac address is printed on the device label
* ethernet2:
- physical port label "Ethernet 2"
Both ports are not marked by there role (because the vendor firmware
automatically detects roles) but the "Ethernet 1" port was used in the past
for "WAN" functionality in OpenWrt.
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Reenable D-Link DAP-2610, convert it to DSA and label port to 'lan', as shown on the case
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Guillaume Lefebvre <guillaume@zelig.ch>
Specifications:
SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM: 256 MiB
FLASH1: 4 MiB NOR
FLASH2: 128 MiB NAND
ETH: Qualcomm QCA8075
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2
WLAN2: Qualcomm Atheros QCA4018 5G 802.11n/ac W2 2x2
USB: 1 x USB 3.0 port
Button: 1 x Reset button
Switch: 1 x Mode switch
LED: 1 x Blue LED + 1 x White LED
Install via uboot tftp or uboot web failsafe.
By uboot tftp:
(IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-generic-glinet_gl-a1300-squashfs-nand-factory.ubi
(IPQ40xx) # nand erase 0 0x8000000
(IPQ40xx) # nand write 0x84000000 0 $filesize
By uboot web failsafe:
Push the reset button for 10 seconds util the power led flash faster,
then use broswer to access http://192.168.1.1
Afterwards upgrade can use sysupgrade image.
Signed-off-by: Weiping Yang <weiping.yang@gl-inet.com>
This adds support for the MikroTik RouterBOARD RBD53GR-5HacD2HnD
(hAP ac³ LTE6 kit), an indoor dual band, dual-radio 802.11ac
wireless AP with built-in Mini PCI-E LTE modem, one USB port, five
10/100/1000 Mbps Ethernet ports.
See https://mikrotik.com/product/hap_ac3_lte6_kit for more info.
Specifications:
- SoC: Qualcomm Atheros IPQ4019
- RAM: 256 MB
- Storage: 16 MB NOR
- Wireless:
· Built-in IPQ4019 (SoC) 802.11b/g/n 2x2:2, 3 dBi internal antennae
· Built-in IPQ4019 (SoC) 802.11a/n/ac 2x2:2, 5.5 dBi internal antennae
- Ethernet: Built-in IPQ4019 (SoC, QCA8075) , 5x 1000/100/10 port
- 1x USB Type A port
- 1x Mini PCI-E port (supporting USB)
- 1x Mini PCI-E LTE modem (MikroTik R11e-LTE6, Cat.6)
Installation:
Make sure your unit is runnning RouterOS v6 and RouterBOOT v6 (tested on 6.49.6).
0. Export your MikroTik license key (in case you want to use the device with RouterOS later)
1. Boot the initramfs image via TFTP
2. Upload the "openwrt-ipq40xx-mikrotik-mikrotik_hap-ac3-lte6-kit-squashfs-sysupgrade.bin" via SCP to the /tmp folder
3. Use sysupgrade to flash the image: sysupgrade -n /tmp/openwrt-ipq40xx-mikrotik-mikrotik_hap-ac3-lte6-kit-squashfs-sysupgrade.bin
4. Recovery to factory software is possible via Netinstall:
https://help.mikrotik.com/docs/display/ROS/Netinstall
Signed-off-by: Csaba Sipos <metro4@freemail.hu>
Undo parts of these:
116feb4a1c ipq40xx: remove non-converted network configs
db19efee95 ipq40xx: disable boards not converted to DSA
Reintroduce the DT paths /soc/edma@c080000/gmac{0,1}, because the stock
bootloader has memorized them (instead of following aliases); then plug
the MAC address back in via 05_set_iface_mac_ipq40xx.sh, since the
'local-mac-address' property is no longer in the correct node.
Cc: David Bauer <mail@david-bauer.net>
Cc: Robert Marko <robert.marko@sartura.hr>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Convert to DSA and enable the MobiPromo CM520-79F device again.
Signed-off-by: Jack Chen <redchenjs@live.com>
Reviewed-by: Robert Marko <robimarko@gmail.com>
This convert board asus,rt-ac42u to DSA and re-enable it
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
As done previously, this preserves the MAC addresses of they physical
Ethernet ports. The interfaces are renamed as eth0 is in use for the
native GMAC; the new interface naming matches the physical port labels.
- sw-eth1 corresponds to the physical port labeled ETH1 and has the
base MAC address. This port can be used to power the device.
- sw-eth2 corresponds to the physical port labeled ETH2 and has a MAC
address one greater than the base.
As this device has 2 physical ports, they are each connected to their
respective PHYs, allowing the link status to be visible to software.
Since they are not marked on the case with any role (such as LAN or
WAN), both are bridged to the lan network by default, although this can
easily be changed if needed.
Signed-off-by: Mark Mentovai <mark@mentovai.com>
Change GPIO from 10 to 35 to make it works as expected
Fixes: 0de6a3339f ("ipq40xx: Add ZTE MF289F")
Signed-off-by: Giammarco Marzano <stich86@gmail.com>
Reviewed-by: Robert Marko <robimarko@gmail.com>
This patch converts networking on Sony NCP-HG100/Cellular to DSA and
re-enables support for the device.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Convert ZTE MF289F device to DSA, re-order network ports to match the
labels on the case and re-enable the device.
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
Reviewed-by: Robert Marko <robimarko@gmail.com>
Reviewed-by: Lech Perczak <lech.perczak@gmail.com>
Convert pakedge_wr-1 device to DSA and enable it.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Reviewed-by: Robert Marko <robimarko@gmail.com>i
[ improve commit description ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Convert luma_wrtq-329acn device to DSA and enable it.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Reviewed-by: Robert Marko <robimarko@gmail.com>
[ improve commit description ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
When testing the DSA changes with 5.15.60 kernel, I've noticed, that the
MAC addresses are not properly configured, there is single MAC being
used for LAN and WAN interfaces:
eth0: 94:83:c4:XX:YY:4a (MAC on sticker)
lan1@eth0: 94:83:c4:XX:YY:4a
lan2@eth0: 94:83:c4:XX:YY:4a
wan@eth0: 94:83:c4:XX:YY:4a
wlan0: 94:83:c4:XX:YY:4a
wlan1: 94:83:c4:XX:YY:4b
The same config, prior to the DSA conversion:
lan/eth0: 94:83:c4:XX:YY:4a (MAC on sticker)
wan/eth1: 94:83:c4:XX:YY:4b
wlan0: 94:83:c4:XX:YY:4a
wlan1: 94:83:c4:XX:YY:4b
Settings in ART partition:
root@OpenWrt:/# hexdump -C /dev/mtd7 | grep '94 83'
00000000 94 83 c4 XX YY 4a 94 83 c4 0e YY 4b ff ff ff ff |.....J.....K....|
00001000 20 2f 8d 8c 01 01 94 83 c4 XX YY 4a 00 00 20 00 | /.........J.. .|
00005000 20 2f 5a 3a 01 01 94 83 c4 XX YY 4b 00 00 20 00 | /Z:.......K.. .|
So let's fix it by keeping same MAC address assigment as was done before
DSA conversion and while at it, define `label-mac-device` as well.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
This fixes assigning random MAC to br-lan interface upon boot.
While at that, rename at24@50 node to eeprom@50, to align with upstream
device tree style.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Convert IPQ40xx boards to DSA setup.
Signed-off-by: Leon M. George <leon@georgemail.eu>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: Nick Hainke <vincent@systemli.org>
Signed-off-by: ChunAm See <z1250747241@gmail.com>
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
Signed-off-by: Andrew Sim <andrewsimz@gmail.com>
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
It's a 4G Cat.20 router used by Vodafone Italy (called Vodafone FWA)
and Vodafone DE\T-Mobile PL (called GigaCube).
Modem is a MiniPCIe-to-USB based on Snapdragon X24,
it supports 4CA aggregation.
There are currently two hardware revisions, which
differ on the 5Ghz radio:
AT1 = QCA9984 5Ghz Radio on PCI-E bus
AT2 = IPQ4019 5Ghz Radio inside IPQ4019 like 2.4Ghz
Device specification
--------------------
SoC Type: Qualcomm IPQ4019
RAM: 256 MiB
Flash: 128 MiB SPI NAND (Winbond W25N01GV)
ROM: 2MiB SPI Flash (GD25Q16)
Wireless 2.4 GHz (IP4019): b/g/n, 2x2
Wireless 5 GHz:
(QCA9984): a/n/ac, 4x4 HW REV AT1
(IPA4019): a/n/ac, 2x2 HW REV AT2
Ethernet: 2xGbE (WAN/LAN1, LAN2)
USB ports: No
Button: 2 (Reset/WPS)
LEDs: 3 external leds: Network (white or red), Wifi, Power and 1 internal (blue)
Power: 12 VDC, 1 A
Connector type: Barrel
Bootloader: U-Boot
Installation
------------
1. Place OpenWrt initramfs image for the device on a TFTP
in the server's root. This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial connector
GND (which is right next to the thing with MF289F MIMO-V1.0), RX, TX
(refer to this image: https://ibb.co/31Gngpr).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. Stop in u-Boot (using ESC button) and run u-Boot commands:
setenv serverip 192.168.0.2
setenv ipaddr 192.168.0.1
set fdt_high 0x85000000
tftp openwrt-ipq40xx-generic-zte_mf289f-initramfs-fit-zImage.itb
bootm $loadaddr
5. Please make backup of original partitions, if you think about revert to
stock, specially mtd16 (Web UI) and mtd17 (rootFS).
Use /tmp as temporary storage and do:
WEB PARITION
--------------------------------------
cat /dev/mtd16 > /tmp/mtd16.bin
scp /tmp/mtd16.bin root@YOURSERVERIP:/
rm /tmp/mtd16.bin
ROOT PARITION
--------------------------------------
cat /dev/mtd17 > /tmp/mtd17.bin
scp /tmp/mtd17.bin root@YOURSERVERIP:/
rm /tmp/mtd17.bin
6. Login via ssh or serial and remove stock partitions
(default IP 192.168.0.1):
# this can return an error, if ubi was attached before
# or rootfs part was erased before.
ubiattach -m 17
# it could return error if rootfs part was erased before
ubirmvol /dev/ubi0 -N ubi_rootfs
# some devices doesn't have it
ubirmvol /dev/ubi0 -N ubi_rootfs_data
7. download and install image via sysupgrade -n
(either use wget/scp to copy the mf289f's squashfs-sysupgrade.bin
to the device's /tmp directory)
sysupgrade -n /tmp/openwrt-...-zte_mf289f-squashfs-sysupgrade.bin
Sometimes it could print ubi attach error, but please ignore it
if process goes forward.
Flash Layout
NAND:
mtd8: 000a0000 00020000 "fota-flag"
mtd9: 00080000 00020000 "0:ART"
mtd10: 00080000 00020000 "mac"
mtd11: 000c0000 00020000 "reserved2"
mtd12: 00400000 00020000 "cfg-param"
mtd13: 00400000 00020000 "log"
mtd14: 000a0000 00020000 "oops"
mtd15: 00500000 00020000 "reserved3"
mtd16: 00800000 00020000 "web"
mtd17: 01d00000 00020000 "rootfs"
mtd18: 01900000 00020000 "data"
mtd19: 03200000 00020000 "fota"
mtd20: 0041e000 0001f000 "kernel"
mtd21: 0101b000 0001f000 "ubi_rootfs"
SPI:
mtd0: 00040000 00010000 "0:SBL1"
mtd1: 00020000 00010000 "0:MIBIB"
mtd2: 00060000 00010000 "0:QSEE"
mtd3: 00010000 00010000 "0:CDT"
mtd4: 00010000 00010000 "0:DDRPARAMS"
mtd5: 00010000 00010000 "0:APPSBLENV"
mtd6: 000c0000 00010000 "0:APPSBL"
mtd7: 00050000 00010000 "0:reserved1"
Back to Stock (!!! need original dump taken from initramfs !!!)
-------------
1. Place mtd16.bin and mtd17.bin initramfs image
for the device on a TFTP in the server's root.
This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial console
connector (refer to the pin-out from above).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. rename mtd16.bin to web.img and mtd17.bin to root_uImage_s
5. Stop in u-Boot (using ESC button) and run u-Boot commands:
This will erase RootFS+Web:
nand erase 0x1000000 0x800000
nand erase 0x1800000 0x1D00000
This will restore RootFS:
tftpboot 0x84000000 ${dir}root_uImage_s
nand erase 0x1800000 0x1D00000
nand write $fileaddr 0x1800000 $filesize
This will restore Web Interface:
tftpboot 0x84000000 ${dir}web.img
nand erase 0x1000000 0x800000
nand write $fileaddr 0x1000000 $filesize
After first boot on stock firwmare, do a factory reset.
Push reset button for 5 seconds so all parameters will
be reverted to the one printed on label on bottom of the router
Signed-off-by: Giammarco Marzano <stich86@gmail.com>
Reviewed-by: Lech Perczak <lech.perczak@gmail.com>
(Warning: commit message did not conform to UTF-8 - hopefully fixed?,
added description of the pin-out if image goes down, reformatted
commit message to be hopefully somewhat readable on git-web,
redid some of the gpio-buttons & leds DT nodes, etc.)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Sony NCP-HG100/Cellular is a IoT Gateway with 2.4/5 GHz band 11ac
(WiFi-5) wireless function, based on IPQ4019.
Specification:
- SoC : Qualcomm IPQ4019
- RAM : DDR3 512 MiB (H5TC4G63EFR)
- Flash : eMMC 4 GiB (THGBMNG5D1LBAIT)
- WLAN : 2.4/5 GHz 2T2R (IPQ4019)
- Ethernet : 10/100/1000 Mbps x2
- Transceiver : Qualcomm QCA8072
- WWAN : Telit LN940A9
- Z-Wave : Silicon Labs ZM5101
- Bluetooth : Qualcomm CSR8811
- Audio DAC : Realtek ALC5629
- Audio Amp. : Realtek ALC1304
- Voice Input Processor : Conexant CX20924
- Micro Controller Unit : Nuvoton MINI54FDE
- RGB LED, Fan, Temp. sensors
- Touch Sensor : Cypress CY8C4014LQI
- RGB LED driver : TI LP55231 (2x)
- LEDs/Keys : 11x, 6x
- UART : through-hole on PCB
- J1: 3.3V, TX, RX, GND from tri-angle marking
- 115200n8
- Power : 12 VDC, 2.5 A
Flash instruction using initramfs image:
1. Prepare TFTP server with the IP address 192.168.132.100 and place the
initramfs image to TFTP directory with the name "C0A88401.img"
2. Boot NCP-HG100/Cellular and interrupt after the message
"Hit any key to stop autoboot: 2"
3. Perform the following commands and set bootcmd to allow booting from
eMMC
setenv bootcmd "mmc read 0x84000000 0x2e22 0x4000 && bootm 0x84000000"
saveenv
4. Perform the following command to load/boot the OpenWrt initramfs image
tftpboot && bootm
5. On the initramfs image, perform sysupgrade with the sysupgrade image
(if needed, backup eMMC partitions by dd command and download to
other place before performing sysupgrade)
6. Wait for ~120 seconds to complete flashing
Known issues:
- There are no drivers for audio-related chips/functions in Linux Kernel
and OpenWrt, they cannot be used.
- There is no driver for MINI54FDE Micro-Controller Unit, customized for
this device by the firmware in the MCU. This chip controls the
following functions, but they cannot be controlled in OpenWrt.
- RGB LED
- Fan
this fan is controlled automatically by MCU by default, without
driver
- Thermal Sensors (2x)
- Currently, there is no driver or tool for CY8C4014LQI and cannot be
controlled. It cannot be exited from "booting mode" and moved to "normal
op mode" after booting. And also, the 4x buttons (mic mute, vol down,
vol up, alexa trigger) connected to the IC cannot be controlled.
- it can be exited from "booting mode" by installing and executing
i2cset command:
opkg update
opkg install i2c-tools
i2cset -y 1 0x14 0xf 1
- There is a connection issue on the control by uqmi for the WWAN module.
But modemmanager can be used without any issues and the use of it is
recommended.
- With the F2FS format, too many errors are reported on erasing eMMC
partition "rootfs_data" while booting:
[ 1.360270] sdhci: Secure Digital Host Controller Interface driver
[ 1.363636] sdhci: Copyright(c) Pierre Ossman
[ 1.369730] sdhci-pltfm: SDHCI platform and OF driver helper
[ 1.374729] sdhci_msm 7824900.sdhci: Got CD GPIO
...
[ 1.413552] mmc0: SDHCI controller on 7824900.sdhci [7824900.sdhci] using ADMA 64-bit
[ 1.528325] mmc0: new HS200 MMC card at address 0001
[ 1.530627] mmcblk0: mmc0:0001 004GA0 3.69 GiB
[ 1.533530] mmcblk0boot0: mmc0:0001 004GA0 partition 1 2.00 MiB
[ 1.537831] mmcblk0boot1: mmc0:0001 004GA0 partition 2 2.00 MiB
[ 1.542918] mmcblk0rpmb: mmc0:0001 004GA0 partition 3 512 KiB, chardev (247:0)
[ 1.550323] Alternate GPT is invalid, using primary GPT.
[ 1.561669] mmcblk0: p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17
...
[ 8.841400] mount_root: loading kmods from internal overlay
[ 8.860241] kmodloader: loading kernel modules from //etc/modules-boot.d/*
[ 8.863746] kmodloader: done loading kernel modules from //etc/modules-boot.d/*
[ 9.240465] block: attempting to load /etc/config/fstab
[ 9.246722] block: unable to load configuration (fstab: Entry not found)
[ 9.246863] block: no usable configuration
[ 9.254883] mount_root: overlay filesystem in /dev/mmcblk0p17 has not been formatted yet
[ 9.438915] urandom_read: 5 callbacks suppressed
[ 9.438924] random: mkfs.f2fs: uninitialized urandom read (16 bytes read)
[ 12.243332] mmc_erase: erase error -110, status 0x800
[ 12.246638] mmc0: cache flush error -110
[ 15.134585] mmc_erase: erase error -110, status 0x800
[ 15.135891] mmc_erase: group start error -110, status 0x0
[ 15.139850] mmc_erase: group start error -110, status 0x0
...(too many the same errors)...
[ 17.350811] mmc_erase: group start error -110, status 0x0
[ 17.356197] mmc_erase: group start error -110, status 0x0
[ 17.439498] sdhci_msm 7824900.sdhci: Card stuck in wrong state! card_busy_detect status: 0xe00
[ 17.446910] mmc0: tuning execution failed: -5
[ 17.447111] mmc0: cache flush error -110
[ 18.012440] F2FS-fs (mmcblk0p17): Found nat_bits in checkpoint
[ 18.062652] F2FS-fs (mmcblk0p17): Mounted with checkpoint version = 428fa16b
[ 18.198691] block: attempting to load /etc/config/fstab
[ 18.198972] block: unable to load configuration (fstab: Entry not found)
[ 18.203029] block: no usable configuration
[ 18.211371] mount_root: overlay filesystem has not been fully initialized yet
[ 18.214487] mount_root: switching to f2fs overlay
So, this support uses ext4 format instead which has no errors.
Note:
- The primary uart is shared for debug console and Z-Wave chip. The
function is switched by GPIO15 (Linux: 427).
value:
1: debug console
0: Z-Wave
- NCP-HG100/Cellular has 2x os-image pairs in eMMC.
- 0:HLOS, rootfs
- 0:HLOS_1, rootfs_1
In OpenWrt, the first image pair is used.
- "bootipq" command in U-Boot requires authentication with signed-image
by default. To boot unsigned image of OpenWrt, use "mmc read" and
"bootm" command instead.
- This support is for "Cellular" variant of NCP-HG100 and not tested on
"WLAN" (non-cellular) variant.
- The board files of ipq-wifi may also be used in "WLAN" variant of
NCP-HG100, but unconfirmed and add files as for "Cellular" variant.
- "NET" LED is used to indicate WWAN status in stock firmware.
- There is no MAC address information in the label on the case, use the
address included in UUID in the label as "label-MAC" instead.
- The "CLOUD" LEDs are partially used for indication of system status in
stock firmware, use they as status LEDs in OpenWrt instead of RGB LED
connected to the MCU.
MAC addresses:
LAN : 5C:FF:35:**:**:ED (ART, 0x6 (hex))
WAN : 5C:FF:35:**:**:EF (ART, 0x0 (hex))
2.4 GHz: 5C:FF:35:**:**:ED (ART, 0x1006 (hex))
5 GHz : 5C:FF:35:**:**:EE (ART, 0x5006 (hex))
partition layout in eMMC (by fdisk, GPT):
Disk /dev/mmcblk0: 7733248 sectors, 3776M
Logical sector size: 512
Disk identifier (GUID): ****
Partition table holds up to 20 entries
First usable sector is 34, last usable sector is 7634910
Number Start (sector) End (sector) Size Name
1 34 1057 512K 0:SBL1
2 1058 2081 512K 0:BOOTCONFIG
3 2082 3105 512K 0:QSEE
4 3106 4129 512K 0:QSEE_1
5 4130 4641 256K 0:CDT
6 4642 5153 256K 0:CDT_1
7 5154 6177 512K 0:BOOTCONFIG1
8 6178 6689 256K 0:APPSBLENV
9 6690 8737 1024K 0:APPSBL
10 8738 10785 1024K 0:APPSBL_1
11 10786 11297 256K 0:ART
12 11298 11809 256K 0:HSEE
13 11810 28193 8192K 0:HLOS
14 28194 44577 8192K 0:HLOS_1
15 44578 306721 128M rootfs
16 306722 568865 128M rootfs_1
17 568866 3958065 1654M rootfs_data
[initial work]
Signed-off-by: Iwao Yuki <dev.clef@gmail.com>
Co-developed-by: Iwao Yuki <dev.clef@gmail.com>
[adjustments, cleanups, commit message, sending patch]
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
(dropped clk_unused_ignore, dropped 901-* patches, renamed
key nodes, changed LEDs chan/labels to match func-en, made
:net -> (w)wan leds)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
On OEM firmware both addresses for In and Out ports are different. Set
them as such also in OpenWrt.
Fixes: e24635710c (" ipq40xx: add support for Luma Home WRTQ-329ACN")
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Pakedge WR-1 is a dual-band wireless router.
Specification
SoC: Qualcomm Atheros IPQ4018
RAM: 256 MB DDR3
Flash: 32 MB SPI NOR
WIFI: 2.4 GHz 2T2R integrated
5 GHz 2T2R integrated
Ethernet: 5x 10/100/1000 Mbps QCA8075
USB: 1x 2.0
LEDS: 8x (3 GPIO controlled, 5 connected to switch)
Buttons: 1x GPIO controlled
UART: pin header J5
1. 3.3V, 2. GND, 3. TX, 4. RX
baud: 115200, parity: none, flow control: none
Installation
1. Rename initramfs image to:
openwrt-ipq806x-qcom-ipq40xx-ap.dk01.1-c1-fit-uImage-initramfs.itb
and copy it to USB flash drive with FAT32 file system.
2. Connect USB flash drive to the router and apply power while pressing
reset button. Hold the button, on the lates bootloader version, when
Power and WiFi-5 LEDs will start blinking release it. For the older
bootloader holding it for 15 seconds should suffice.
3. Now the router boots the initramfs image, at some point (close to one
minute) the Power LED will start blinking, when stops, router is fully
booted.
4. Connect to one of LAN ports and use SSH to open the shell at
192.168.1.1.
5. ATTENTION! now backup the mtd8 and mtd9 partitions, it's necessary if,
at some point, You want to go back to original firmware. The firmware
provided by manufacturer on its site is encrypted and U-Boot accepts
only decrypted factory images, so there's no way to restore original
firmware.
6. If the backup is prepared, transfer the sysupgrade image to the router
and use 'sysupgrade' command to flash it.
7. After successful flashing router will reboot. At some point the Power
LED will start blinking, wait till it stops, then router is ready for
configuration.
Additional information
U-Boot command line is password protected. Password is unknown.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Hardware
--------
Qualcomm IPQ4029 WiSoC
2T2R 802.11 abgn
2T2R 802.11 nac
Macronix MX25L25635E SPI-NOR (32M)
512M DDR3 RAM
1x Gigabit LAN
1x Cisco RJ-45 Console port
Settings: 115200 8N1
Installation
------------
1. Attach to the Console port. Power up the device and press the s key
to interrupt autoboot.
2. The default username / password to the bootloader is admin / new2day
3. Update the bootcommand to allow loading OpenWrt.
$ setenv ramboot_openwrt "setenv serverip 192.168.1.66;
setenv ipaddr 192.168.1.1; tftpboot 0x86000000 openwrt-3915.bin;
bootm"
$ setenv boot_openwrt "sf probe;
sf read 0x88000000 0x280000 0xc00000; bootm 0x88000000"
$ setenv bootcmd "run boot_openwrt"
$ saveenv
4. Download the OpenWrt initramfs image. Serve it using a TFTP server as
"openwrt-3915.bin" at 192.1681.66.
5. Download & boot the OpenWrt initramfs image on the access point.
$ run ramboot_openwrt
6. Wait for OpenWrt to start.
7. Download and transfer the sysupgrade image to the device using e.g.
SCP.
8. Install OpenWrt to the device using "sysupgrade"
$ sysupgrade -n /path/to/openwrt.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
The MikroTik wAP ac (RBwAPG-5HacD2HnD) is a dual-band dual-radio
802.11ac wireless access point with integrated antenna and two Ethernet
ports in a weatherproof enclosure. See
https://mikrotik.com/product/wap_ac for more information.
Important: this is the new ipq40xx-based wAP ac, not the older
ath79-based wAP ac (RBwAPG-5HacT2HnD), already supported in OpenWrt.
Specifications:
- SoC: Qualcomm Atheros IPQ4018
- CPU: 4x ARM Cortex A7
- RAM: 128MB
- Storage: 16MB NOR flash
- Wireless
- 2.4GHz: Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 2.5 dBi antennae
- 5GHz: Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 2.5 dBi antennae
- Ethernet: Built-in IPQ4018 (SoC, QCA8075), 2x 1000/100/10Mb/s ports,
one with 802.3af/at PoE in
Installation:
Boot the initramfs image via TFTP, then flash the sysupgrade image using
sysupgrade. Details at https://openwrt.org/toh/mikrotik/common.
Notes:
This preserves the MAC addresses of the physical Ethernet ports:
- eth0 corresponds to the physical port labeled ETH1 and has the base
MAC address. This port can be used to power the device.
- eth1 corresponds to the physical port labeled ETH2 and has a MAC
address one greater than the base.
MAC addresses are set from /lib/preinit/05_set_iface_mac_ipq40xx.sh
rather than /etc/board.d/02_network so that they are in effect for
preinit. This should likely be done for other MikroTik devices and
possibly other non-MikroTik devices as well.
As this device has 2 physical ports, they are each connected to their
respective PHYs, allowing the link status to be visible to software.
Since they are not marked on the case with any role (such as LAN or
WAN), both are bridged to the lan network by default, although this can
easily be changed if needed.
Signed-off-by: Mark Mentovai <mark@mentovai.com>
Kalle:
"I see that variant has a space in it, does that work it correctly? My
original idea was that spaces would not be allowed, but didn't realise
to add a check for that."
Is this an easy change? Because the original author (Tim Davis) noted:
"You may substitute the & and space with something else saner if they
prove to be problematic."
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Linux MTD requires the parent partition be writable for a child
partition to be allowed write permission.
In order for soft_config to be writeable (and modifiable via sysfs),
the parent RouterBoot partition must be writeable
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
The Meraki MR74 is part of the "Insect" series. This device is
essentially an outdoor variant of the MR33 with identical hardware, but
requiring a config@3 DTS option to be set to allow booting with the
stock u-boot.
The install procedure is replicated from the MR33, with the exception
being that the MR74 sysupgrade image must be used.
Signed-off-by: Matthew Hagan <mnhagan88@gmail.com>
This patch adds support for Linksys WHW01 v1 ("Velop") [FCC ID Q87-03331].
Specification
-------------
SOC: Qualcomm IPQ4018
WiFi 1: Qualcomm QCA4019 IEEE 802.11b/g/n
WiFi 2: Qualcomm QCA4019 IEEE 802.11a/n/ac
Bluetooth: Qualcomm CSR8811 (A12U)
Ethernet: Qualcomm QCA8072 (2-port)
SPI Flash 1: Mactronix MX25L1605D (2MB)
SPI Flash 2: Winbond W25M02GV (256MB)
DRAM: Nanya NT5CC128M16IP-DI (256MB)
LED Controller: NXP PCA963x (I2C)
Buttons: Single reset button (GPIO).
Notes
-----
There does not appear to be a way to trigger TFTP recovery without entering
U-Boot. The device must be opened to access the serial console in order to
first flash OpenWrt onto a device from factory.
The device has automatic recovery backed by a second set of partitions on
the larger of the two SPI flash ICs. Both the primary and secondary must
be flashed to prevent accidental rollback to "factory" after 3 failed boot
attempts.
Serial console
--------------
A serial console is available on the following pins of the populated J2
connector on the device mainboard (115200 8n1).
(<-- Top of PCB / Device)
J2
[o o o o o o]
| | |
| | `-- GND
| `---- TX
`--------- RX
Installation instructions
-------------------------
1. Setup TFTP server with server IP set to 192.168.1.236.
2. Copy compiled `...squashfs-factory.bin` to `nodes-jr.img` in tftp root.
3. Connect to console using pinout detailed in the serial console section.
4. Power on device and press enter when prompted to drop into U-Boot.
5. Flash first partition device via `run flashimg`.
6. Once complete, reset device and allow to power up completely.
7. Once comfortable with device upgrade reboot and drop back into U-Boot.
8. Flash the second partition (recovery) via `run flashimg2`.
Revert to "factory"
-------------------
1. Download latest firmware update from vendor support site.
2. Copy extracted `.img` file to `nodes-jr.img` in tftp root.
3. Connect to console using pinout detailed in the serial console section.
4. Power on device and press enter when prompted to drop into U-Boot.
5. Flash first partition device via `run flashimg`.
6. Once complete, reset device and allow to power up completely.
7. Once comfortable with device upgrade reboot and drop back into U-Boot.
8. Flash the second partition (recovery) via `run flashimg2`.
Link: https://github.com/openwrt/openwrt/pull/3682
Signed-off-by: Peter Adkins <peter@sunkenlab.com>
(calibration from nvmem, updated to 5.10+5.15)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Aruba deploys a BDF in the root filesystem, however this matches the one
used for the DK04 reference board.
The board-specific BDFs are built into the kernel. The AP-365 shows
sinificant degraded performance with increased range when used with the
reference BDF.
Replace the BDF with the one extracted from Arubas kernel.
Signed-off-by: David Bauer <mail@david-bauer.net>
Some revisions of the FRITZ!7530 use a Toshiba NAND with 8 bit ECC in
contrast to the Macronix NAND with 4 bit ECC. This removes the hardcoded
ECC strength and step size as set in qcom-ipq4019.dtsi, thus relying on the
kernel NAND detection routines to correclty set up the ECC parameters.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
removes usb-port remains as neither the WAC510 nor the WAC505
come with a USB port. Update the LED properties to phase out
labels and introduce generic node-names as well as adding
the color, function and function-enumerator properties.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Modified the radio frequency hardware part of e2600ac c1/c2,
need to cooperate with the modified board.bin file, the device
can work normally.
Signed-off-by: 张 鹏 <sd20@qxwlan.com>
Google WiFi (codename: Gale) is an IPQ4019-based AP, with 2 Ethernet
ports, 2x2 2.4+5GHz WiFi, 512 MB RAM, 4 GB eMMC, and a USB type C port.
In its stock configuration, it runs a Chromium OS-based system, but you
wouldn't know it, since you can only manage it via a "cloud" +
mobile-app system.
The "v2" label is coded into the bootloader, which prefers the
"google,gale-v2" compatible string. I believe "v1" must have been
pre-release hardware.
Note: this is *not* the Google Nest WiFi, released in 2019.
I include "factory.bin" support, where we generate a GPT-based disk
image with 2 partitions -- a kernel partition (using the custom "Chrome
OS kernel" GUID type) and a root filesystem partition. See below for
flashing instructions.
Sysupgrade is supported via recent emmc_do_upgrade() helper.
This is a subtarget because it enables different features
(FEATURES=boot-part rootfs-part) whose configurations don't make sense
in the "generic" target, and because it builds in a few USB drivers,
which are necessary for installation (installation is performed by
booting from USB storage, and so these drivers cannot be built as
modules, since we need to load modules from USB storage).
Flashing instructions
=====================
Documented here:
https://openwrt.org/inbox/toh/google/google_wifi
Note this requires booting from USB storage.
Features
========
I've tested:
* Ethernet, both WAN and LAN ports
* eMMC
* USB-C (hub, power-delivery, peripherals)
* LED0 (R/G/B)
* WiFi (limited testing)
* SPI flash
* Serial console: once in developer mode, console can be accessed via
the USB-C port with SuzyQable, or other similar "Closed Case
Debugging" tools:
https://chromium.googlesource.com/chromiumos/third_party/hdctools/+/master/docs/ccd.md#suzyq-suzyqable
* Sysupgrade
Not tested:
* TPM
Known not working:
* Reboot: this requires some additional TrustZone / SCM
configuration to disable Qualcomm's SDI. I have a proposal upstream,
and based on IRC chats, this might be acceptable with additional DT
logic:
[RFC PATCH] firmware: qcom_scm: disable SDI at boot
https://lore.kernel.org/linux-arm-msm/20200721080054.2803881-1-computersforpeace@gmail.com/
* SMP: enabling secondary CPUs doesn't currently work using the stock
bootloader, as the qcom_scm driver assumes newer features than this
TrustZone firmware has. I posted notes here:
[RFC] qcom_scm: IPQ4019 firmware does not support atomic API?
https://lore.kernel.org/linux-arm-msm/20200913201608.GA3162100@bDebian/
* There's a single external button, and a few useful internal GPIO
switches. I haven't hooked them up.
The first two are fixed with subsequent commits.
Additional notes
================
Much of the DTS is pulled from the Chrome OS kernel 3.18 branch, which
the manufacturer image uses.
Note: the manufacturer bootloader knows how to patch in calibration data
via the wifi{0,1} aliases in the DTB, so while these properties aren't
present in the DTS, they are available at runtime:
# ls -l
/sys/firmware/devicetree/base/soc/wifi@a*/qcom,ath10k-pre-calibration-data
-r--r--r-- 1 root root 12064 Jul 15 19:11 /sys/firmware/devicetree/base/soc/wifi@a000000/qcom,ath10k-pre-calibration-data
-r--r--r-- 1 root root 12064 Jul 15 19:11 /sys/firmware/devicetree/base/soc/wifi@a800000/qcom,ath10k-pre-calibration-data
Ethernet MAC addresses are similarly patched in via the ethernet{0,1} aliases.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
(updated 901 - x1pro moved in the process)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Telco X1 Pro is a Cat12 LTE-A Pro modem router.
Vendor firmware is based on a recent version of OpenWrt.
Flashing is possible via CLI using sysupgrade -F -n
The serial headers allow bootloader and console access
Serial setting: 115200 8N1
Brief Specifications:
IPQ4019 SoC
32MB flash
512MB RAM
4x gigabit LAN
1x gigabit WAN
Dual-band Wave-2 wifi
2x SMA LTE antenna connectors
2x RP-SMA wifi antennas
1x USB 2.0 port
1x Reset button
Serial headers installed
1x Nano SIM tray
1x Quectel EM-12G LTE-A Pro modem
1x M.2 slot attached to USB 3.0
1x internal micro SD card slot
Signed-off-by: Nicholas Smith <nicholas@nbembedded.com>