This can be used to run a standalone EAP server that can be used from
other APs. It uses json as user database format and can automatically
handle reload.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Changelog from quic:
Bug fixes, stability improvements from previous releases
are present. There are no backward comatibility issues
with this release.
Reviewed-by: Robert Marko <robimarko@gmail.com>
Tested-by: Michał Kwiatek <michal@kwiatek.it> # Xiaomi AX3600
Signed-off-by: Michał Kwiatek <michal@kwiatek.it>
Add patch to fix build failure caused by a missing header which had
previously been implicitely included.
Fixes: 6ddb5f5a65 ("uboot-mediatek: update to version 2023.07.02")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Among the patches adding support for MT7988 also came the switch to
use fdtdec_setup_mem_size_base() and no longer rely on CFG_SYS_SDRAM_BASE.
Take care of our downstream boards which did not have a 'memory' node in
their device trees.
Fixes: 572ea68070 ("uboot-mediatek: add patches for MT7988 and builds for RFB")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Instead of using the hash of the Github-generated tarball use the
hash of the tarball generated by the OpenWrt build system (in this
case they are different, unfortunately).
Reported-by: Chen Minqiang <ptpt52@gmail.com>
Fixes: 07dbeb430e ("arm-trusted-firmware-mediatek: update to sources of 2023-07-24")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Add support for the SKBPRIO queuing discipline. This is subtly
different than prio as it also drops packets from the lower priority
flows.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Fix more compilation error with kernel 6.1 and make it possible to
compile.
Multiple fix are done due to kernel bump:
- PDE_DATA (now deprecated) to pde_data
- dev_addr now const and require some cast
- prandom_u32 (now deprecated) to get_random_u32
Also other minor fix for always true condition and tasklet type cast not
compatible.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Due to some hiccup my local urngd-2023-07-25-7aefb47b.tar.xz ended up
being different from archived one. Repackaging it locally confirmed the
previous hash was incorrect.
Fixes: c74b5e09e6 ("urngd: update to the latest master")
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
This patch makes some improvements to the MT7620 RF calibration.
1. Move MT7620 PA/LNA calibration code to dedicated functions.
2. Restore RF and BBP registers before R-Calibration.
3. Do Rx DCOC calibration again before RXIQ calibration.
4. Use SoC specific AGC initial LNA value.
5. Correct MAC_RX_EN mask in rt2800_r_calibration()[1].
[1] This change may fix the "BBP/RF register access failed" error:
ieee80211 phy0: rt2800_wait_bbp_rf_ready: Error - BBP/RF register access failed, aborting
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Import pending patches adding support for MT7988 and provide builds
for the reference board for all possible boot media.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Release 2023.07 got tagged wrongly and replaced by follow-up release
2023.07.02.
Now using upstream DTS for BPi-R3.
Removed two patches which made it upstream, refreshed the rest.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Use updated Trusted Firmware-A sources from MediaTek, now stacked
on top of the ARM Trusted Firmware-A v2.9 release.
Add builds for the newly added MT7988 SoC.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Since 2021.07 multiple bugs were introduced that made it impossible to
create a bootable target for mvebu. Those issues should be now fixed since
2023.07-rc1.
References: #11661
Signed-off-by: Oli Ze <olze@trustserv.de>
Reviewed-by: Robert Marko <robimarko@gmail.com>
Tested-by: Andre Heider <a.heider@gmail.com> # espressobin-v3-v5-1gb-2cs
Signed-off-by: Petr Štetiar <ynezz@true.cz> [facelift]
Because this device enable NMBM by default, most users use custom
U-Boot with NMBM-Enabled in Chinese forums.
This layout is the same as the ubootmod layout but enabling NMBM.
Signed-off-by: Hank Moretti <mchank9999@gmail.com>
The existing implementation incorrectly reported `running` for services
without any instances or with all instances stopped/terminated.
Improve the default implementation of `/etc/init.d/* status` to properly
report services with not running instances. In case a service exists,
but without running instance, the status call will now report
"not running" with exit code 5. In case some instances are running and
some are stopped/terminated, the call will report "running (X/Y)" where
`X` denoted the amount of running instances and `Y` the amount of total
registered ones.
Ref: https://forum.openwrt.org/t/x/159443
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
8667347 build: allow passing SOVERSION value for dynamic library
Also adjust packaging of the library to only ship the SOVERSION
suffixed library object, to allow for concurrent installation of
ABI-incompible versions in the future.
Fixes: #13082
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
350b960 add support for multi GNSS solutions
fb87d0f ugps: add baud rate command line option
a8171a0 main.c: -S does not take any options
Build-tested: ramips/ltap-2hnd
Run-tested: ramips/ltap-2hnd
Signed-off-by: Arne Zachlod <arne@nerdkeller.org>
At least Fedora and RHEL 9 set RSAMinSize=2048, so when trying to use
failsafe, we get 'Bad server host key: Invalid key length'
To workaround the issue, we can use: ssh -o RSAMinSize=1024 ...
Generating 2048 bits RSA is extremely slow, so add ed25519.
We keep RSA 1024 to be as compatible as possible.
Signed-off-by: Etienne Champetier <champetier.etienne@gmail.com>
53edfc7aaa34 wifi: mt76: mt7603: fix beacon interval after disabling a single vif
7ef4dd12d982 wifi: mt76: mt7603: fix tx filter/flush function
152608a40aa7 wifi: mt76: mt7615: do not advertise 5 GHz on first phy of MT7615D (DBDC)
cacac3902a63 wifi: mt76: split get_of_eeprom in subfunction
cd3dfe392769 wifi: mt76: add support for providing eeprom in nvmem cells
Signed-off-by: Felix Fietkau <nbd@nbd.name>
7aefb47 jitterentropy-rngd: update to the v1.2.0
What's interesting about jitterentropy-rngd v1.2.0 release is that it
bumps its copy of jitterentropy-library from v2.2.0 to the v3.0.0. That
bump includes a relevant commit 3130cd9 ("replace LSFR with SHA-3 256").
When initializing entropy jent calculates time delta. Time values are
obtained using clock_gettime() + CLOCK_REALTIME. There is no guarantee
from CLOCK_REALTIME of unique values and slow devices often return
duplicated ones.
A switch from jent_lfsr_time() to jent_hash_time() resulted in many less
cases of zero delta and avoids ECOARSETIME.
Long story short: on some system this fixes:
[ 6.722725] urngd: jent-rng init failed, err: 2
This is important change for BCM53573 which doesn't include hwrng and
seems to have arch_timer running at 36,8 Hz.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Kernel 6.1 have renamed complete_and_exit to kthread_complete_and_exit.
This was just a rename and nothing is changed implementation wise.
Fix compilation error by using the new symbol name.
Fix compilation error:
In file included from /builder/shared-workdir/build/sdk/build_dir/target-aarch64_cortex-a53_musl/linux-bcm27xx_bcm2710/rtl8812au-ct-2021-11-07-39df5596/include/osdep_service.h:41,
from /builder/shared-workdir/build/sdk/build_dir/target-aarch64_cortex-a53_musl/linux-bcm27xx_bcm2710/rtl8812au-ct-2021-11-07-39df5596/include/drv_types.h:32,
from /builder/shared-workdir/build/sdk/build_dir/target-aarch64_cortex-a53_musl/linux-bcm27xx_bcm2710/rtl8812au-ct-2021-11-07-39df5596/core/rtw_cmd.c:22:
/builder/shared-workdir/build/sdk/build_dir/target-aarch64_cortex-a53_musl/linux-bcm27xx_bcm2710/rtl8812au-ct-2021-11-07-39df5596/core/rtw_cmd.c: In function 'rtw_cmd_thread':
/builder/shared-workdir/build/sdk/build_dir/target-aarch64_cortex-a53_musl/linux-bcm27xx_bcm2710/rtl8812au-ct-2021-11-07-39df5596/include/osdep_service_linux.h:166:23: error: implicit declaration of function 'complete_and_exit' [-Werror=implicit-function-declaration]
166 | #define thread_exit() complete_and_exit(NULL, 0)
| ^~~~~~~~~~~~~~~~~
/builder/shared-workdir/build/sdk/build_dir/target-aarch64_cortex-a53_musl/linux-bcm27xx_bcm2710/rtl8812au-ct-2021-11-07-39df5596/core/rtw_cmd.c:706:9: note: in expansion of macro 'thread_exit'
706 | thread_exit();
| ^~~~~~~~~~~
/builder/shared-workdir/build/sdk/build_dir/target-aarch64_cortex-a53_musl/linux-bcm27xx_bcm2710/rtl8812au-ct-2021-11-07-39df5596/core/rtw_cmd.c:708:1: error: control reaches end of non-void function [-Werror=return-type]
708 | }
| ^
cc1: all warnings being treated as errors
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
This patch adds basic TX power control for the MT7620 and limits its
maximum TX power. This can avoid the link speed decrease caused by
chip overheating.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Hardware
--------
CPU: Mediatek MT7981
RAM: 512M DDR4
FLASH: 256M NAND
ETH: MaxLinear GPY211 (2.5GbE N Base-T)
WiFi: Mediatek MT7981 (2.4GHz 2T2R:2 5GHz 3T3R:2 802.11ax)
BTN: 1x Reset
LED: 1x Multi-Color
UART Console
------------
Available below the rubber cover next to the ethernet port.
Settings: 115200 8N1
Layout:
<12V> <LAN> GND-RX-TX-VCC
Logic-Level is 3V3. Don't connect VCC to your UART adapter!
Installation Web-UI
-------------------
Upload the Factory image using the devices Web-Interface.
As the device uses a dual-image partition layout, OpenWrt can only
installed on Slot A. This requires the current active image prior
flashing the device to be on Slot B.
In case this is not the case, OpenWrt will boot only one time, returning
to the ZyXEL firmware the second boot.
If this happens, first install a ZyXEL firmware upgrade of any version
and install OpenWrt after that.
Installation TFTP / Recovery
----------------------------
This installation routine is especially useful in case of a bricked
device.
Attach to the UART console header of the device. Interrupt the boot
procedure by pressing Enter.
The bootloader has a reduced command-set available from CLI, but more
commands can be executed by abusing the atns command.
Boot a OpenWrt initramfs image available on a TFTP server at
192.168.1.66. Rename the image to nwa50axpro-openwrt-initramfs.bin.
$ atnf nwa50axpro-openwrt-initramfs.bin
$ atna 192.168.1.88
$ atns "192.168.1.66; tftpboot; setenv fdt_high 0xffffffffffffffff;
bootm"
Upon booting, set the booted image to the correct slot:
$ zyxel-bootconfig /dev/mtd9 get-status
$ zyxel-bootconfig /dev/mtd9 set-image-status 0 valid
$ zyxel-bootconfig /dev/mtd9 set-active-image 0
Copy the OpenWrt sysupgrade image to the device using scp.
Write the sysupgrade image to NAND using sysupgrade.
$ sysupgrade -n image.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
ChangeLog:
125b080 Release version 6.4.
5660918 update UAPI header copies
f493e63 netlink: fix duplex setting
b3e341c cmis: report LOL / LOS / Tx Fault
045d8db sff-8636: report LOL / LOS / Tx Fault
a6505f3 drop checks for macros provided in UAPI header copies
86c0c41 do not check for strtol() function
dd8e3ae actually check for C11 compiler
43e4d30 add local copies of macros from autoconf-archive
faa4700 drop check for big endian types
31b7b5e Require a compiler with support for C11 features
946d18b update UAPI header copies
eebf01f ethtool: Add support for configuring tx-push-buf-len
2782ea8 update UAPI header copies
Signed-off-by: Nick Hainke <vincent@systemli.org>
The duplicate sections are caused by a race condition at boot, when board.json
is not available. In that case, the final phy name cannot be resolved, and extra
sections referring to the path are created.
Fix this by making sure that wifi config is not being run before board.json
is created.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Changelog from quic:
Bug fixes, stability improvements from previous releases
are present. There are no backward comatibility issues
with this release.
Tested-by: Michał Kwiatek <michal@kwiatek.it> # Xiaomi AX3600
Signed-off-by: Michał Kwiatek <michal@kwiatek.it>
[ improve commit description ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
This is the first commit to introduce the base for the N821 board used
in Cisco vEdge 1000.
This commit does not include the custom CPLD drivers but rather
everything else that is already present in the upstream kernel.
This results in an image that boots, but e.g. the SFP ports are not
usable.
Hardware:
- CPU: Cavium Networks CN6130, 4 cores @ 1.0 GHz
- Flash:
- 16 MiB SPI NOR presented as 2x8 MiB for A/B boot recovery
- 8192 MiB eMMC
- RAM: 4096 MiB
- Ethernet 1Gbit ports: 1x
- Ethernet SFP ports: 8x
- USB ports: 2x 3.0 Type-A on front panel
- Serial: Two, one internal and one external
- JTAG: Yes
- LED count: 18x
- Button count: 1x
- GPIOs: 1x
- Power: 2x redundant DC 12V barrel plug
- Extra: Slot for SD card on front
See the OpenWrt wiki for more hardware details.
Installation:
- Flash squashfs to /dev/sda2 and put kernel on /dev/sda1.
- Update uboot's bootcmd environment variable to match.
Full installation guide will be added to OpenWrt wiki when sysupgrade
support is added.
Signed-off-by: Christian Svensson <blue@cmd.nu>
Signed-off-by: Tommy Nevtelen <tommy@nevtelen.com>
Tested-by: Viktor Ekmark <viktor@ekmark.se>
Tested-by: Daniel Wennberg <github@networkninja.se>
colrm is already built, package just isn't generated.
colrm can be used to remove columns from file/stdin.
Use cases vary, personally I needed it because I build openwrt
natively - and wolfssl configure script wants either colrm, or cut
but busybox's cut isn't accepted.
Built: x86_64, latest git
Tested: x86_64, latest git
Signed-off-by: Oskari Rauta <oskari.rauta@gmail.com>
The side-effect and main motivation is to also drop the FIT structure size
limit because with multiple device tree overlays it may easily grow beyond
the previous 4kB limit in the future.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
ASUS RT-AC59U / RT-AC59U v2 are wi-fi routers with a large number of
alternate names, including RT-AC1200GE, RT-AC1300G PLUS, RT-AC1500UHP,
RT-AC57U v2/v3, RT-AC58U v2/v3, and RT-ACRH12.
ASUS ZenWiFi AC Mini(CD6) is a mesh wifi system. The unit labeled CD6R
is the router, and CD6N is the node.
Hardware:
- SoC: QCN5502
- RAM: 128 MiB
- UART: 115200 baud (labeled on boards)
- Wireless:
- 2.4GHz: QCN5502 on-chip 4x4 802.11b/g/n
currently unsupported due to missing support for QCN550x in ath9k
- 5GHz: QCA9888 pcie 5GHz 2x2 802.11a/n/ac
- Flash: SPI NOR
- RT-AC59U / CD6N: 16 MiB
- RT-AC59U v2 / CD6R: 32 MiB
- Ethernet: gigabit
- RT-AC59U / RT-AC59U v2: 4x LAN 1x WAN
- CD6R: 3x LAN 1x WAN
- CD6N: 2x LAN
- USB:
- RT-AC59U / RT-AC59U v2: 1 port USB 2.0
- CD6R / CD6N: none
WiFi calibration data contains valid MAC addresses.
The initramfs image is uncompressed because I was unable to boot a
compressed initramfs from memory (gzip or lzma). Booting a compressed
image from flash works fine.
Installation:
To install without opening the case:
- Set your computer IP address to 192.168.1.10/24
- Power up with the Reset button pressed
- Release the Reset button after about 5 seconds or until you see the
power LED blinking slowly
- Upload OpenWRT factory image via TFTP client to 192.168.1.1
Revert to stock firmware using the same TFTP method.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
Safely detect integer overflow in try_addint() and try_subint().
Old code relied on undefined behavior, and recent versions of GCC on x86
optimized away the if-statements.
This caused integer overflow in Lua code instead of falling back to
floating-point numbers.
Signed-off-by: Adam Bailey <aebailey@gmail.com>
commit c0611b45a9 ("e2fsprogs: symlink e2fsck to fsck.ext{2, 3, 4},
and tune2fs to findfs") introduced a symlink from tune2fs to findfs.
This only works when the included private libblkid library is used, but
commit 5b1660a538 ("utils/e2fsprogs: Update to 1.43.6") disabled the
usage of this private lib and enabled the shared lib support.
Removing this symlink makes it possible to install tune2fs and findfs
package.
Signed-off-by: Martin Schiller <ms@dev.tdt.de>
The return value of the .remove function pointer has changed from
int to void with Linux 5.18. Use a precompiler macro to allow building
the leds-ws2812b module with both, Linux 5.15 and Linux 6.1.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This adds support for the i.MX Pixel Pipeline IP block
which is available on some imx6 flavours [1]
This allows to use hardware offloading for operations like:
- Colour conversion
- Scaling
- Rotation
[1] https://en.wikipedia.org/wiki/I.MX#i.MX_6_series
Signed-off-by: Koen Vandeputte <koen.vandeputte@citymesh.com>
This adds support for the Video Processing Unit IP block
which is present in certain i.MX SOC's.
The vpu used in imx6 is the coda960 which supports:
- h264 enc
- h264 dec
- jpeg enc
- jpeg dec
Please note that the required firmware needs to be added
by yourself as it's not available currently in linux-firmware upstream.
The firmware package can be found on the internet
and it will decompress itself exposing all binaries
after accepting the EULA.
The binaries should be placed at exactly these paths:
- /lib/firmware/vpu_fw_imx6d.bin
- /lib/firmware/vpu_fw_imx6q.bin
Following output will be printed at boottime if all is well:
[ 9.769638] coda 2040000.vpu: Firmware code revision: 46076
[ 9.775277] coda 2040000.vpu: Initialized CODA960.
[ 9.780082] coda 2040000.vpu: Firmware version: 3.1.1
[ 9.785312] coda 2040000.vpu: coda-jpeg-encoder registered as video0
[ 9.791859] coda 2040000.vpu: coda-jpeg-decoder registered as video1
[ 9.798375] coda 2040000.vpu: coda-video-encoder registered as video2
[ 9.805013] coda 2040000.vpu: coda-video-decoder registered as video3
gstreamer will automatically detect and use all encoders/decoders.
Please note that a FILES catch-all is required for the videobuf-dma objects
as some modules enabling this could require (and thus generating) only 1 of them.
Signed-off-by: Koen Vandeputte <koen.vandeputte@citymesh.com>
This adds support for videobuf2-dma driver.
This module contains following flavors:
- Contiguous
- Scatter/Gather
Drivers using this can enable 1 of the, or both, depending on their needs.
Due to this, a FILES catch-all is required for the videobuf-dma objects
as depending on requirements, only 1 of them could get generated.
Signed-off-by: Koen Vandeputte <koen.vandeputte@citymesh.com>
This allows addition of devices which use these kernel
modules.
This also adds a package for handling dma within video2buf.
These are only build when selected by a caller
Signed-off-by: Koen Vandeputte <koen.vandeputte@citymesh.com>
All patches automatically rebased.
Acknowledgment to @john-tho for the changes to fs.mk to accommodate new paths
introduced in 29429a1f58
Build system: x86_64
Build-tested: bcm2711/RPi4B
Run-tested: bcm2711/RPi4B
Signed-off-by: John Audia <therealgraysky@proton.me>
This patch will only force mac80211 loss detection upon ath10k by
masking the driver-specific loss-detection bit.
Ref: commit ed816f6ba8 ("mac80211: always use mac80211 loss detection")
Signed-off-by: David Bauer <mail@david-bauer.net>
The upstream board-2.bin file in the linux-firmware.git
repository for the QCA4019 contains a packed board-2.bin
for this device for both 2.4G and 5G wifis. This isn't
something that the ath10k driver supports.
Until this feature either gets implemented - which is
very unlikely -, or the upstream boardfile is mended
(both, the original submitter and ath10k-firmware
custodian have been notified). OpenWrt will go back
and use its own bespoke boardfile. This unfortunately
means that 2.4G and on some revisions the 5G WiFi is
not available in the initramfs image for this device.
Fixes: #12886
Reported-by: Christian Heuff <christian@heuff.at>
Debugged-by: Georgios Kourachanis <geo.kourachanis@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This commit adds support for following wireless routers:
- Beeline SmartBox PRO (Serсomm S1500 AWI)
- WiFire S1500.NBN (Serсomm S1500 BUC)
This commit is based on this PR:
- Link: https://github.com/openwrt/openwrt/pull/4770
- Author: Maximilian Weinmann <x1@disroot.org>
The opening of this PR was agreed with author.
My changes:
- Sorting, minor changes and some movings between dts and dtsi
- Move leds to dts when possible
- Recipes for the factory image
- Update of the installation/recovery/return to stock guides
- Add reset GPIO for the pcie1
Common specification
--------------------
SoC: MediaTek MT7621AT (880 MHz, 2 cores)
Switch: MediaTek MT7530 (via SoC MT7621AT)
Wireless: 2.4 GHz, MT7602EN, b/g/n, 2x2
Wireless: 5 GHz, MT7612EN, a/n/ac, 2x2
Ethernet: 5 ports - 5×GbE (WAN, LAN1-4)
Mini PCIe: via J2 on PCB, not soldered on the board
UART: J4 -> GND[], TX, VCC(3.3V), RX
BootLoader: U-Boot SerComm/Mediatek
Beeline SmartBox PRO specification
----------------------------------
RAM (Nanya NT5CB128M16FP): 256 MiB
NAND-Flash (ESMT F59L2G81A): 256 MiB
USB ports: 2xUSB2.0
LEDs: Status (white), WPS (blue), 2g (white), 5g (white) + 10 LED Ethernet
Buttons: 2 button (reset, wps), 1 switch button (ROUT<->REP)
Power: 12 VDC, 1.5 A
PCB Sticker: 970AWI0QW00N256SMT Ver. 1.0
CSN: SG15********
MAC LAN: 94:4A:0C:**:**:**
Manufacturer's code: 0AWI0500QW1
WiFire S1500.NBN specification
------------------------------
RAM (Nanya NT5CC64M16GP): 128 MiB
NAND-Flash (ESMT F59L1G81MA): 128 MiB
USB ports: 1xUSB2.0
LEDs: Status (white), WPS (white), 2g (white), 5g (white) + 10 LED Ethernet
Buttons: 2 button (RESET, WPS)
Power: 12 VDC, 1.0 A
PCB Sticker: 970BUC0RW00N128SMT Ver. 1.0
CSN: MH16********
MAC WAN: E0:60:66:**:**:**
Manufacturer's code: 0BUC0500RW1
MAC address table (PRO)
-----------------------
use address source
LAN *:23 factory 0x1000 (label)
WAN *:24 factory $label +1
2g *:23 factory $label
5g *:25 factory $label +2
MAC addresses (NBN)
-------------------
use address source
LAN *:0e factory 0x1000
WAN *:0f LAN +1 (label)
2g *:0f LAN +1
5g *:10 LAN +2
OEM easy installation
---------------------
1. Remove all dots from the factory image filename (except the dot
before file extension)
2. Upload and update the firmware via the original web interface
3. Two options are possible after the reboot:
a. OpenWrt - that's OK, the mission accomplished
b. Stock firmware - install Stock firmware (to switch booflag from
Sercomm0 to Sercomm1) and then OpenWrt factory image.
Return to Stock
---------------
1. Change the bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock2
reboot
2. Install stock firmware via the web OEM firmware interface
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
Tested-by: Pavel Ivanov <pi635v@gmail.com>
Tested-by: Denis Myshaev <denis.myshaev@gmail.com>
Tested-by: Oleg Galeev <olegingaleev@gmail.com>
Tested-By: Ivan Pavlov <AuthorReflex@gmail.com>
Co-authored-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
The Traverse LS1043 boards were not publicly released,
all the production has been going to OEM customers who
do not use the image format defined in the OpenWrt tree.
Only a few samples were circulated outside Traverse
and our OEM customers. The public release (then called
Five64) of this series was cancelled in favour of our
LS1088A based design (Ten64).
It is best to remove these boards to avoid wasting
OpenWrt project and contributor resources.
Signed-off-by: Mathew McBride <matt@traverse.com.au>
Netgear EX6250v2, EX6400v3, EX6410v2, EX6470 are wall-plug 802.11ac
(Wi-Fi 5) extenders. Like other MT7629 devices, Wi-Fi does not work
currently as there is no driver.
Related: https://github.com/openwrt/openwrt/pull/5084
For future reference, 2.4GHz MAC = LAN+1, 5GHz MAC = LAN+2.
Specifications:
* MT7629, 256 MiB RAM, 16 MiB SPI NOR
* MT7761N (2.4GHz) / MT7762N (5GHz) - no driver
* Ethernet: 1 port 10/100/1000
* UART: 115200 baud (labeled on board)
Installation:
* Flash the factory image through the stock web interface, or TFTP to
the bootloader. NMRP can be used to TFTP without opening the case.
* After installation, perform a factory reset. Wait for the device to
boot, then hold the reset button for 10 seconds. This is needed
because sysupgrade in the stock firmware will attempt to preserve its
configuration using sysupgrade.tgz.
See https://github.com/openwrt/openwrt/pull/4182
Revert to stock firmware:
* Flash the stock firmware to the bootloader using TFTP/NMRP.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
Netgear EAX12, EAX11v2, EAX15v2 are wall-plug 802.11ax (Wi-Fi 6)
extenders that share the SoC, WiFi chip, and image format with the
WAX202.
Specifications:
* MT7621, 256 MiB RAM, 128 MiB NAND
* MT7915: 2.4/5 GHz 2x2 802.11ax (DBDC)
* Ethernet: 1 port 10/100/1000
* UART: 115200 baud (labeled on board)
All LEDs and buttons appear to work without state_default.
Installation:
* Flash the factory image through the stock web interface, or TFTP to
the bootloader. NMRP can be used to TFTP without opening the case.
Revert to stock firmware:
* Flash the stock firmware to the bootloader using TFTP/NMRP.
References in GPL source:
https://www.downloads.netgear.com/files/GPL/EAX12_EAX11v2_EAX15v2_GPL_V1.0.3.34_src.tar.gz
* target/linux/ramips/dts/mt7621-rfb-ax-nand.dts
DTS file for this device.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
In the recent NSS-DP update FDB roaming fix we had was removed as in
testing no issue were reported, but after it was merged the old duplicate
MAC issue reappeared so lets port the previous FDB fix to work with newer
NSS-DP.
Fixes: 4ee444b5da ("kernel: qca-nss-dp: update to 12.4.5.r1")
Signed-off-by: Robert Marko <robimarko@gmail.com>
d1f07cf devices: add device id for Atheros AR9287 and AR9380
65ea345 nl80211: constify a few arrays
ca79f64 lib: report byte counters as 64 bit values
This contains an ABI change, increase the ABI version too.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
When using an Intel AX210 card, the Bluetooth hci interface failed
to start due to a missing "ibt-0041-0041.sfi" file.
Bluetooth: hci0: Failed to load Intel firmware file intel/ibt-0041-0041.sfi (-2)
A device specific configuration file (DDC) is also required:
Bluetooth: hci0: Found device firmware: intel/ibt-0041-0041.sfi
Bluetooth: hci0: Waiting for firmware download to complete
...
Bluetooth: hci0: Found Intel DDC parameters: intel/ibt-0041-0041.ddc
Bluetooth: hci0: Applying Intel DDC parameters completed
Bluetooth: hci0: Firmware timestamp 2023.13 buildtype 1 build 62562
Fixes: #8558
Signed-off-by: Mathew McBride <matt@traverse.com.au>
Migrate to "new" image generation method. Device profiles will be generated
based on image/Makefile instead of profiles/ , which will also allow to
automatically build images for all supported devices via buildbot.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
493e1589bc8b bridge: fix coverity false positive report
03a619947717 bridge: add support for configuring extra vlans for the bridge itself
4bea6d21a9ab wireless: fix changing reconf/serialize options in configuration
255b4d5c472e wireless: fix handling config reload with reconf=1
1ab992a74b43 wireless: fix another reconf issue
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Qualcomm has finally started the preparatory work in order to support
kernel 6.1, so lets make use of that and update NSS-DP 12.4.5.r1 which
allows us to drop almost some of the patches.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Qualcomm has finally started the preparatory work in order to support
kernel 6.1, so lets make use of that and update SSDK 12.4.5.r1 which
allows us to drop almost all of the patches.
Lets also install the forgotten SSDK netlink header.
Signed-off-by: Robert Marko <robimarko@gmail.com>
rk3399 ATF requires arm toolchain to build the m0 pmu driver.
As OpenWrt doesn't ship this toolchain so download the prebuilt one
just like what we did in arm-trusted-firmware-mvebu.
Fixes: 5d1cb52da0 ("arm-trusted-firmware-rockchip: Update to 2.9")
Reported-by: Wurzer Juergen <wurzer.juergen@gmail.com>
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
General specification:
SoC Type: MediaTek MT7620A (580MHz)
ROM: 8 MB SPI-NOR (MX25L6406E)
RAM: 64 MB DDR (W9751G6KB-25)
Switch: MediaTek MT7530
Ethernet: 5 ports - 5×100MbE (WAN, LAN1-4)
Wireless: 2.4 GHz (MediaTek RT5390): b/g/n
Wireless: 5 GHz (MediaTek MT7610EN): ac/n
Buttons: 2 button (POWER, WPS/RESET)
Bootloader: U-Boot 1.1.3
Power: 12 VDC, 0.5 A
MACs:
| LAN | [Factory + 0x04] - 2 |
| WLAN 2.4g | [Factory + 0x04] - 1 |
| WLAN 5g | [Factory + 0x8004] - 3 |
| WAN | [Factory + 0x04] - 2 |
OEM easy installation:
1. Use a PC to browse to http://192.168.0.1.
2. Go to the System section and open the Firmware Update section.
3. Under the Local Update at the right, click on the CHOOSE FILE...
4. When a modal window appears, choose the firmware file and click on
the Open.
5. Next click on the UPDATE FIRMWARE button and upload the firmware image.
Wait for the router to flash and reboot.
OEM installation using the TFTP method (need level converter):
1. Download the latest firmware image.
2. Set up a Tftp server on a PC (e.g. Tftpd32) and place the firmware
image to the root directory of the server.
3. Power off the router and use a twisted pair cable to connect the PC
to any of the router's LAN ports.
4. Configure the network adapter of the PC to use IP address 192.168.0.180
and subnet mask 255.255.255.0.
5. Connect serial port (57600 8N1) and turn on the router.
6. Then interrupt "U-Boot Boot Menu" by hitting 2 key (select "2: Load
system code then write to Flash via TFTP.").
7. Press Y key when show "Warning!! Erase Linux in Flash then burn new
one. Are you sure? (Y/N)"
Input device IP (192.168.0.1) ==:192.168.0.1
Input server IP (192.168.0.180) ==:192.168.0.180
Input Linux Kernel filename () ==:firmware_name
The router should download the firmware via TFTP and complete flashing in
a few minutes.
After flashing is complete, use the PC to browse to http://192.168.1.1 or
ssh to proceed with the configuration.
Signed-off-by: Alexey Bartenev <41exey@proton.me>
The Ten64 board[1] is based around NXP's Layerscape LS1088A SoC.
It is capable of booting both standard Linux distributions
from disk devices, using EFI, and booting OpenWrt
from NAND.
See the online manual for more information, including the
flash layout[2].
This patchset adds support for generating Ten64 images
for NAND boot.
For disk boot, one can use the EFI support that was
recently added to the armvirt target.
We previously supported NAND users by building
inside our armvirt/EFI target[3], but this approach
is not suitable for OpenWrt upstream. Users who
used our supplied NAND images will be able to upgrade
to this via sysupgrade.
Signed-off-by: Mathew McBride <matt@traverse.com.au>
[1] - https://www.traverse.com.au/hardware/ten64
[2] - https://ten64doc.traverse.com.au/hardware/flash/
[3] - Example:
285e4360e1
The ZTE MF287+ is a LTE router used (exclusively?) by the network operator
"3". The MF287 (i.e. non-plus aka 3Neo) is also supported (the only
difference is the LTE modem)
Specifications
==============
SoC: IPQ4018
RAM: 256MiB
Flash: 8MiB SPI-NOR + 128MiB SPI-NAND
LAN: 4x GBit LAN
LTE: ZTE Cat12 (MF287+) / ZTE Cat6 (MF287)
WiFi: 802.11a/b/g/n/ac SoC-integrated
MAC addresses
=============
LAN: from config + 2
WiFi 1: from config
WiFi 2: from config + 1
Installation
============
Option 1 - TFTP
---------------
TFTP installation using UART is preferred. Disassemble the device and
connect serial. Put the initramfs image as openwrt.bin to your TFTP server
and configure a static IP of 192.168.1.100. Load the initramfs image by
typing:
setenv serverip 192.168.1.100
setenv ipaddr 192.168.1.1
tftpboot 0x82000000 openwrt.bin
bootm 0x82000000
From this intiramfs boot you can take a backup of the currently installed
partitions as no vendor firmware is available for download:
ubiattach -m14
cat /dev/ubi0_0 > /tmp/ubi0_0
cat /dev/ubi0_1 > /tmp/ubi0_1
Copy the files /tmp/ubi0_0 and /tmp/ubi0_1 somewhere save.
Once booted, transfer the sysupgrade image and run sysupgrade. You might
have to delete the stock volumes first:
ubirmvol /dev/ubi0 -N ubi_rootfs
ubirmvol /dev/ubi0 -N kernel
Option 2 - From stock firmware
------------------------------
The installation from stock requires an exploit first. The exploit consists
of a backup file that forces the firmware to download telnetd via TFTP from
192.168.0.22 and run it. Once exploited, you can connect via telnet and
login as admin:admin.
The exploit will be available at the device wiki page.
Once inside the stock firmware, you can transfer the -factory.bin file to
/tmp by using "scp" from the stock frmware or "tftp".
ZTE has blocked writing to the NAND. Fortunately, it's easy to allow write
access - you need to read from one file in /proc. Once done, you need to
erase the UBI partition and flash OpenWrt. Before performing the operation,
make sure that mtd13 is the partition labelled "rootfs" by calling
"cat /proc/mtd".
Complete commands:
cd /tmp
tftp -g -r factory.bin 192.168.0.22
cat /proc/driver/sensor_id
flash_erase /dev/mtd13 0 0
dd if=/tmp/factory.bin of=/dev/mtdblock13 bs=131072
Afterwards, reboot your device and you should have a working OpenWrt
installation.
Restore Stock
=============
Option 1 - via UART
-------------------
Boot an OpenWrt initramfs image via TFTP as for the initial installation.
Transfer the two backed-up files to your box to /tmp.
Then, run the following commands - replace $kernel_length and $rootfs_size
by the size of ubi0_0 and ubi0_1 in bytes.
ubiattach -m 14
ubirmvol /dev/ubi0 -N kernel
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N rootfs_data
ubimkvol /dev/ubi0 -N kernel -s $kernel_length
ubimkvol /dev/ubi0 -N ubi_rootfs -s $rootfs_size
ubiupdatevol /dev/ubi0_0 /tmp/ubi0_0
ubiupdatevol /dev/ubi0_1 /tmp/ubi0_1
Option 2 - from within OpenWrt
------------------------------
This option requires to flash an initramfs version first so that access
to the flash is possible. This can be achieved by sysupgrading to the
recovery.bin version and rebooting. Once rebooted, you are again in a
default OpenWrt installation, but no partition is mounted.
Follow the commands from Option 1 to flash back to stock.
LTE Modem
=========
The LTE modem is similar to other ZTE devices and controls some more LEDs
and battery management.
Configuring the connection using uqmi works properly, the modem
provides three serial ports and a QMI CDC ethernet interface.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Device specifications:
======================
* Qualcomm/Atheros AR9344
* 128 MB of RAM
* 16 MB of SPI NOR flash
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4/5 GHz Wi-Fi
* 4x GPIO-LEDs (1x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* 2x fast ethernet
- lan1
+ builtin switch port 1
+ used as WAN interface
- lan2
+ builtin switch port 2
+ used as LAN interface
* 9-30V DC
* external antennas
Flashing instructions:
======================
Log in to https://192.168.127.253/
Username: admin
Password: moxa
Open Maintenance > Firmware Upgrade and install the factory image.
Serial console access:
======================
Connect a RS232-USB converter to the maintenance port.
Pinout: (reset button left) [GND] [NC] [RX] [TX]
Firmware Recovery:
==================
When the WLAN and SYS LEDs are flashing, the device is in recovery mode.
Serial console access is required to proceed with recovery.
Download the original image from MOXA and rename it to 'awk-1137c.rom'.
Set up a TFTP server at 192.168.127.1 and connect to a lan port.
Follow the instructions on the serial console to start the recovery.
Signed-off-by: Maximilian Martin <mm@simonwunderlich.de>
This commit adds support for Mercusys MR90X(EU) v1 router.
Device specification
--------------------
SoC Type: MediaTek MT7986BLA, Cortex-A53, 64-bit
RAM: MediaTek MT7986BLA (512MB)
Flash: SPI NAND GigaDevice GD5F1GQ5UEYIGY (128 MB)
Ethernet: MediaTek MT7531AE + 2.5GbE MaxLinear GPY211C0VC (SLNW8)
Ethernet: 1x2.5Gbe (WAN/LAN 2.5Gbps), 3xGbE (WAN/LAN 1Gbps, LAN1, LAN2)
WLAN 2g: MediaTek MT7975N, b/g/n/ax, MIMO 4x4
WLAN 5g: MediaTek MT7975P(N), a/n/ac/ax, MIMO 4x4
LEDs: 1 orange and 1 green status LEDs, 4 green gpio-controlled
LEDs on ethernet ports
Button: 1 (Reset)
USB ports: No
Power: 12 VDC, 2 A
Connector: Barrel
Bootloader: Main U-Boot - U-Boot 2022.01-rc4. Additionally, both UBI
slots contain "seconduboot" (also U-Boot 2022.01-rc4)
Serial console (UART)
---------------------
V
+-------+-------+-------+-------+
| +3.3V | GND | TX | RX |
+---+---+-------+-------+-------+
|
+--- Don't connect
The R3 (TX line) and R6 (RX line) are absent on the PCB. You should
solder them or solder the jumpers.
Installation (UART)
-------------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot initramfs-kernel.bin
bootm
4. Once inside OpenWrt, set / update env variables:
fw_setenv baudrate 115200
fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
fw_setenv fdtcontroladdr 5ffc0e70
fw_setenv ipaddr 192.168.1.1
fw_setenv loadaddr 0x46000000
fw_setenv mtdids "spi-nand0=spi-nand0"
fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
fw_setenv netmask 255.255.255.0
fw_setenv serverip 192.168.1.2
fw_setenv stderr serial@11002000
fw_setenv stdin serial@11002000
fw_setenv stdout serial@11002000
fw_setenv tp_boot_idx 0
5. Run 'sysupgrade -n' with the sysupgrade OpenWrt image
Installation (without UART)
---------------------------
1. Login as root via SSH (router IP, port 20001, password - your web
interface password)
2. Open for editing /etc/hotplug.d/iface/65-iptv (e.g., using WinSCP and
SSH settings from the p.1)
3. Add a newline after "#!/bin/sh":
telnetd -l /bin/login.sh
4. Save "65-iptv" file
5. Toggle "IPTV/VLAN Enable" checkbox in the router web interface and
save
6. Make sure that telnetd is running:
netstat -ltunp | grep 23
7. Login via telnet to router IP, port 23 (no username and password are
required)
8 Upload OpenWrt "initramfs-kernel.bin" to the "/tmp" folder of the
router (e.g., using WinSCP and SSH settings from the p.1)
9. Stock busybox doesn't contain ubiupdatevol command. Hence, we need to
download and upload the full version of busybox to the router. For
example, from here:
https://github.com/xerta555/Busybox-Binaries/raw/master/busybox-arm64
Upload busybox-arm64 to the /tmp dir of the router and run:
in the telnet shell:
cd /tmp
chmod a+x busybox-arm64
10. Check "initramfs-kernel.bin" size:
du -h initramfs-kernel.bin
11. Delete old and create new "kernel" volume with appropriate size
(greater than "initramfs-kernel.bin" size):
ubirmvol /dev/ubi0 -N kernel
ubimkvol /dev/ubi0 -n 1 -N kernel -s 9MiB
12. Write OpenWrt "initramfs-kernel.bin" to the flash:
./busybox-arm64 ubiupdatevol /dev/ubi0_1 /tmp/initramfs-kernel.bin
13. u-boot-env can be empty so lets create it (or overwrite it if it
already exists) with the necessary values:
fw_setenv baudrate 115200
fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
fw_setenv fdtcontroladdr 5ffc0e70
fw_setenv ipaddr 192.168.1.1
fw_setenv loadaddr 0x46000000
fw_setenv mtdids "spi-nand0=spi-nand0"
fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
fw_setenv netmask 255.255.255.0
fw_setenv serverip 192.168.1.2
fw_setenv stderr serial@11002000
fw_setenv stdin serial@11002000
fw_setenv stdout serial@11002000
fw_setenv tp_boot_idx 0
14. Reboot to OpenWrt initramfs:
reboot
15. Login as root via SSH (IP 192.168.1.1, port 22)
16. Upload OpenWrt sysupgrade.bin image to the /tmp dir of the router
17. Run sysupgrade:
sysupgrade -n /tmp/sysupgrade.bin
Recovery
--------
1. Press Reset button and power on the router
2. Navigate to U-Boot recovery web server (http://192.168.1.1/) and
upload the OEM firmware
Recovery (UART)
---------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot initramfs-kernel.bin
bootm
4. Do what you need (restore partitions from a backup, install OpenWrt
etc.)
Stock layout
------------
0x000000000000-0x000000200000 : "boot"
0x000000200000-0x000000300000 : "u-boot-env"
0x000000300000-0x000003500000 : "ubi0"
0x000003500000-0x000006700000 : "ubi1"
0x000006700000-0x000006f00000 : "userconfig"
0x000006f00000-0x000007300000 : "tp_data"
ubi0/ubi1 format
----------------
U-Boot at boot checks that all volumes are in place:
+-------------------------------+
| Volume Name: uboot Vol ID: 0|
| Volume Name: kernel Vol ID: 1|
| Volume Name: rootfs Vol ID: 2|
+-------------------------------+
MAC addresses
-------------
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| label | 00:eb:xx:xx:xx:be | label |
| LAN | 00:eb:xx:xx:xx:be | label |
| WAN | 00:eb:xx:xx:xx:bf | label+1 |
| WLAN 2g | 00:eb:xx:xx:xx:be | label |
| WLAN 5g | 00:eb:xx:xx:xx:bd | label-1 |
+---------+-------------------+-----------+
label MAC address was found in UBI partition "tp_data", file
"default-mac". OEM wireless eeprom is also there (file
"MT7986_EEPROM.bin").
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>