MT7981B /256MB /16MB SPI (XM25QH128C)
AX 2.4Ghz
AX 5Ghz 160Mhz wide
1Gbit LAN
OEM:
root@RE3000:~# ifconfig |grep HWaddr
br-lan Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0 (label)
br-wan Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
eth0 Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
ra0 Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
ra2 Link encap:Ethernet HWaddr 82:XX:XX:28:XX:X0
rax0 Link encap:Ethernet HWaddr 82:XX:XX:38:XX:X0
rax2 Link encap:Ethernet HWaddr 82:XX:XX:58:XX:X0
OpenWrt
root@OpenWrt:/# ifconfig |grep HW
br-lan Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
eth0 Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
phy0-ap0 Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
phy1-ap0 Link encap:Ethernet HWaddr 82:XX:XX:08:XX:X1
tftp Installation via u-boot:
Connect TTL3.3V converter
connector is under the radiator Set speed 115200 8 N 1
Interrupt boot process by holding down-arrow key during boot then
>> 6. Load image
>> 0 - TFTP client (Default)
enter IP adresses and initramfs-kernel.bin
write to flash via sysupgrade or gui
Signed-off-by: Robert Senderek <robert.senderek@10g.pl>
Use newly added support for NVMEM-on-UBI instead of extracting MAC
address and WiFi EEPROM data in userspace.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Use newly added support for NVMEM-on-UBI instead of extracting MAC
address and WiFi EEPROM data in userspace.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Use newly added support for NVMEM-on-UBI instead of extracting MAC
address and WiFi EEPROM data in userspace.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Now that we can reference MMC partitions in device tree, use that
to get rid of Wi-Fi EEPROM and MAC address setup in userspace.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Comfast CF-E393AX is a dual-band Wi-Fi 6 POE ceiling mount access point.
Oem firmware is a custom openwrt 21.02 snapshot version.
We can gain access via ssh once we remove the root password.
Hardware specification:
SoC: MediaTek MT7981A 2x A53
Flash: 128 MB SPI-NAND
RAM: 256MB DDR3
Ethernet: 1x 10/100/1000 Mbps built-in PHY (WAN)
1x 10/100/1000/2500 Mbps MaxLinear GPY211C (LAN)
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976D
LEDS: 1x (Red, Blue and Green)
Button: Reset
UART: 3.3v, 115200n8
--------------------------
| Layout |
| ----------------- |
| 4 | VCC GND TX RX | <= |
| ----------------- |
--------------------------
Gain SSH access:
1. Login into web interface (http://apipaddress/computer/login.html),
and download the
configuration(http://apipaddress/computer/config.html).
2. Rename downloaded backup config - 'backup.file to backup.tar.gz',
Enter 'fakeroot' command then decompress the configuration:
tar -zxf backup.tar.gz
3. Edit 'etc/shadow', update (remove) root password:
With password =
'root:$1$xf7D0Hfg$5gkjmvgQe4qJbe1fi/VLy1:19362:0:99999:7:::'
'root:$1$xf7D0Hfg$5gkjmvgQe4qJbe1fi/VLy1:19362:0:99999:7:::'
to
Without password =
'root::0:99999:7:::'
'root::0:99999:7:::'
4. Repack 'etc' directory back to a new backup file:
tar -zcf backup-ssh.tar.gz etc/
5. Rename new config tar.gz file to 'backup-ssh.file'
Exit fakeroot - 'exit'
6. Upload new configuration via web interface, now you
can SSH with the following:
'ssh -vv -o HostKeyAlgorithms=+ssh-rsa \
-o PubkeyAcceptedAlgorithms=+ssh-rsa root@192.168.10.1'.
Backup the mtd partitions
- https://openwrt.org/docs/guide-user/installation/generic.backup
7. Copy openwrt factory firmware to the tmp folder to install via ssh:
'scp -o HostKeyAlgorithms=+ssh-rsa \
-o PubkeyAcceptedAlgorithms=+ssh-rsa \
*-mediatek-filogic-comfast_cf-e393ax-squashfs-factory.bin \
root@192.168.10.1:/tmp/'
'sysupgrade -n -F \
/tmp/*--mediatek-filogic-comfast_cf-e393ax-squashfs-factory.bin'
8. Once led has stopped flashing - Connect via ssh with the
default openwrt ip address - 'ssh root@192.168.1.1'
9. SSH copy the openwrt sysupgrade firmware and upgrade
as per the default instructions.
Signed-off-by: David Bentham <db260179@gmail.com>
Setting/clearing bits on the first byte of the mac address causes collisions
when using multiple SSIDs on both PHYs. Change the allocation to alter the
last byte instead.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
(based on support for ASUS RT-AX59U by liushiyou006)
SOC: MediaTek MT7986
RAM: 512MB DDR4
FLASH: 128MB SPI-NAND (Winbond W25N01GV)
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH: MediaTek MT7531 Switch
UART: 3V3 115200 8N1 (Pinout silkscreened / Do not connect VCC)
Upgrade from AsusWRT to OpenWRT using UART
Download the OpenWrt initramfs image.
Copy the image to a TFTP server reachable at 192.168.1.70/24. Rename the image to rtax59u.bin.
Connect the PC with TFTP server to the RT-AX59U.
Set a static ip on the ethernet interface of your PC.
(ip address: 192.168.1.70, subnet mask:255.255.255.0)
Conect to the serial console, interrupt the autoboot process by pressing '4' when prompted.
Download & Boot the OpenWrt initramfs image.
$ setenv ipaddr 192.168.1.1
$ setenv serverip 192.168.1.70
$ tftpboot 0x46000000 rtax59u.bin
$ bootm 0x46000000
Wait for OpenWrt to boot. Transfer the sysupgrade image to the device using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Upgrade from AsusWRT to OpenWRT using WebUI
Download transit TRX file from https://drive.google.com/drive/folders/1A20QdjK7Udagu31FSszpWAk8-cGlCwsq
Upgrade firmware from WebUI (192.168.50.1) using downloaded TRX file
Wait for OpenWRT to boot (192.168.1.1).
Upgrade system with sysupgrade image using luci or uploading it through scp and executing sysupgrade command
MAC Address for WLAN 5g is not following the same algorithm as in AsusWRT.
We have increased by one the WLAN 5g to avoid collisions with other networks from WLAN 2g
when bit 28 is already set.
: Stock : OpenWrt
WLAN 2g (1) : C8:xx:xx:0D:xx:D4 : C8:xx:xx:0D:xx:D4
WLAN 2g (2) : : CA:xx:xx:0D:xx:D4
WLAN 2g (3) : : CE:xx:xx:0D:xx:D4
WLAN 5g (1) : CA:xx:xx:1D:xx:D4 : CA:xx:xx:1D:xx:D5
WLAN 5g (2) : : CE:xx:xx:1D:xx:D5
WLAN 5g (3) : : C2:xx:xx:1D:xx:D5
WLAN 2g (1) : 08:xx:xx:76:xx:BE : 08:xx:xx:76:xx:BE
WLAN 2g (2) : : 0A:xx:xx:76:xx:BE
WLAN 2g (3) : : 0E:xx:xx:76:xx:BE
WLAN 5g (1) : 0A:xx:xx:76:xx:BE : 0A:xx:xx:76:xx:BF
WLAN 5g (2) : : 0E:xx:xx:76:xx:BF
WLAN 5g (3) : : 02:xx:xx:76:xx:BF
Signed-off-by: Xavier Franquet <xavier@franquet.es>
Specifications:
SoC: MediaTek MT7981B
RAM: 256MiB
Flash: SPI-NAND 128 MiB
Switch: 1 WAN, 3 LAN (Gigabit)
Buttons: Reset, Mesh
Power: DC 12V 1A
WiFi: MT7976CN
UART: 115200n8
UART Layout:
VCC-RX-TX-GND
No. of Antennas: 6
Note: Upon opening the router, only 5 antennas were connected
to the mainboard.
Led Layout:
Power-Mesh-5gwifi-WAN-LAN3-LAN2-LAN1-2gWiFi
Buttons:
Reset-Mesh
Installation:
A. Through OpenWrt Dashboard:
If your router comes with OpenWrt preinstalled (modified by the seller),
you can easily upgrade by going to the dashboard (192.168.1.1) and then
navigate to System -> Backup/Flash firmware, then flash the firmware
B. Through TFTP
Standard installation via UART:
1. Connect USB Serial Adapter to the UART, (NOTE: Don't connect the VCC pin).
2. Power on the router. Make sure that you can access your router via UART.
3. Restart the router then repeatedly press ctrl + c to skip default boot.
4. Type > bootmenu
5. Press '2' to select upgrade firmware
6. Press 'Y' on 'Run image after upgrading?'
7. Press '0' and hit 'enter' to select TFTP client (default)
8. Fill the U-Boot's IP address and TFTP server's IP address.
9. Finally, enter the 'firmware' filename.
Signed-off-by: Ian Oderon <ianoderon@gmail.com>
The Bonanza Peak series are a couple of MT7986-powered 2.5 GBit/s
Wi-Fi 6 residential gateway, access point and mesh router products.
All of them come with an eMMC to boot from, are powered via USB-C and
got a USB 3.0 type-A port. All of them got a Dialog (Renesas) DA14531
Bluetooth module connected via UART. If the device was previously
running stock firmware, the BT chip's internal flash has been loaded
with firmware and it can be attached using hciattach when using
OpenWrt.
SOC: MediaTek MT7986A
RAM: 2 GiB DDR4
eMMC: 8 GiB
Bluetooth: BLE5 (DA14531)
Serial: 3.3V level, 115200 8n1 on 4-pin connector
* SDG-8612 - Dual-band RJ-45 gateway
2x 2.5G MaxLinear PHY for WAN port
3x 1GE LAN ports via MT7531 switch
* SDG-8614 - Dual-band SFP gateway
1x SFP cage with up to 2.5G speed
1x 2.5G MaxLinear PHY for LAN port
3x 1GE LAN ports via MT7531 switch
* SDG-8622 - Tri-band mesh router
2x 2.5G MaxLinear PHY
The MT7986 2G and 5G are used as 2G and 5G high band.
There’s a MT7915 PCIe card for 5G low band.
* SDG-8632 - Tri-band mesh router with 6 GHz
2x 2.5G MaxLinear PHY
The MT7986 serves the 2G and 6G bands.
There’s a MT7915 PCIe card for 5G.
Installation via U-Boot serial console:
0. setup TFTP server with IP 192.168.1.10/24, place initramfs image
renamed to openwrt.XXX where XXX is the internal product number:
SDG-8612: XXX = 412
SDG-8614: XXX = 414
SDG-8622: XXX = 422
SDG-8632: XXX = 432
1. connect to the serial console and power on the device.
Interrupt the bootloader by pressing 'st'
2. setenv boot_mode openwrt ; saveenv
3. run boot1
Load firmware via TFTP and write to flash
4. run boot2
Now OpenWrt initramfs should boot
5. upload sysupgrade.bin via scp to /tmp
6. sysupgrade
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The flash procedure is similar to the Xiaomi AX6000 router.
Load openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-initramfs-recovery.itb from original Zyxel U-Boot:
tftpboot openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-initramfs-recovery.itb
bootm 0x46000000
Load mtd-rw
insmod /lib/modules/$(uname -r)/mtd-rw.ko i_want_a_brick=1
Format ubi and create ubootenv partitions
ubidetach -p /dev/mtd5; ubiformat /dev/mtd5 -y; ubiattach -p /dev/mtd5
ubimkvol /dev/ubi0 -n 0 -N ubootenv -s 128KiB
ubimkvol /dev/ubi0 -n 1 -N ubootenv2 -s 128KiB
Copy openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-initramfs-recovery.itb to /tmp and create recovery partition.
If your recovery image is larger than 10MiB, size the recovery partition accordingly to make it fit.
ubimkvol /dev/ubi0 -n 2 -N recovery -s 10MiB
ubiupdatevol /dev/ubi0_2 openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-initramfs-recovery.itb
Copy preloader and uboot to /tmp and write them in the mtd
mtd write /tmp/openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-preloader.bin bl2
mtd write /tmp/openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-bl31-uboot.fip fip
Now write the firmware:
sysupgrade -n /tmp/openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-squashfs-sysupgrade.itb
To create a correct BL2, I had to add a profile for 'spim:4k+256' as I could not find a way to value the variable 'NAND_TYPE'.
Features and fixes from hitech95 tree has been squashed, I'm attaching his commit message:
The Power LED was not working correctly and not reacting
to the boot process and statuses.
The board has space (footprint) for an unpopulated Zigbee chip,
while we dont know the device model having this chip populated
we have to assure that the common dts doesnt enable
interfaces that share pins with such device.
In this instance the PCIe and the uart1 and uart2 are disabled.
Some of the control PCIE pins seems to be used for the Zigbee chip,
UART1 seems to be used as a flash port while UART2 should be the
main comunication interface of Zigbee chip.
The Zigbee chip should be a EFR32MG21. But the pins used for UART
seems to be not on standard PINS used by other adapters.
So it cannot run firmwares shared on the web.
But it should be possible to build a custom firmware with
the corrtect pinmux.
This commit also contains the following squashed commit from hitech95
- mediatek: fix sysupgrade for Zyxel EX7601-T0 ubootmod
Changes and fixes added in common board:
- added aliases for boot status leds.
- added aliases for the mac-label-device.
- added pin claims for core features (MDIO and UART 0)
- added default LEDs configuration (01_leds)
- added default network configuration (02_network)
- added missing kmod-usb3 module for USB3
- fixed LED names
- fixed reset pin for SLIC chip
- removed unused pinmux configurations and devices
- fix LAN (switch) port numbering
- using nvmem cells for wifi eeprom, dropping deprecated "mediatek,mtd-eeprom"
- proper factory partition and mac address handling
- cleaned up spi_nand sections and partition
Changes and fixxes added in stock layout:
- added NMBM, if u-boot has it, the kernel must be informed.
Co-authored-by: Nicolò Veronese <nicveronese@gmail.com>
Co-developed-by: Nicolò Veronese <nicveronese@gmail.com>
Signed-off-by: Nicolò Veronese <nicveronese@gmail.com>
Signed-off-by: Valerio 'ftp21' Mancini <ftp21@ftp21.eu>
Specifications:
SoC: MediaTek MT7981B
RAM: 1024MiB
Flash: SPI-NAND 128 MiB
Switch: 1 WAN, 4 LAN (Gigabit)
USB: two M.2 slots for 5G modems via USB 3.0 hub, external USB 3.0 port
Buttons: Reset, Mesh
Power: DC 12V 1A
WiFi: MT7976CN
UART: 115200n8
UART Layout:
VCC-RX-TX-GND
Installation:
A. Through OpenWrt Dashboard:
If your router comes with OpenWrt preinstalled (modified by the seller),
you can easily upgrade by going to the dashboard (192.168.1.1) and then
navigate to System -> Backup/Flash firmware, then flash the firmware
B. Through TFTP
Standard installation via UART:
1. Connect USB Serial Adapter to the UART, (NOTE: Don't connect the VCC pin).
2. Power on the router. Make sure that you can access your router via UART.
3. Restart the router then repeatedly press ctrl + c to skip default boot.
4. Type > bootmenu
5. Press '2' to select upgrade firmware
6. Press 'Y' on 'Run image after upgrading?'
7. Press '0' and hit 'enter' to select TFTP client (default)
8. Fill the U-Boot's IP address and TFTP server's IP address.
9. Finally, enter the 'firmware' filename.
Based on patch adding support for similar Zbtlink ZBT-Z8103AX device by
Ian Ishmael C. Oderon.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: Winbond 128MB
RAM: DDR3 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset
Power: DC 12V 1A
Flash instructions:
1. Connect to your PC via the Gigabit port of the router,
set a static ip on the ethernet interface of your PC.
(ip 192.168.1.254, gateway 192.168.1.1)
2. Attach UART, pause at u-boot menu.
3. Select "Upgrade ATF BL2", then use preloader.bin
4. Select "Upgrade ATF FIP", then use bl31-uboot.fip
5. Download the initramfs image, and type "reset",
waiting for tftp recovery to complete.
6. After openwrt boots up, perform sysupgrade.
Note:
1. Since NMBM is disabled, we must back up all partitions.
2. Although we can upgrade new firmware in the stock firmware,
we need the special fit image signature of MediaTek and
dual boot (hack kernel) to make u-boot boot it. So just
abandon these hacks and flash it via the serial port.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
The router use mt7986_eeprom_mt7976_dual.bin
Fixes: d522ccecb2 ("filogic: add support for ASUS TUF AX6000")
Signed-off-by: Patryk Kowalczyk <patryk@kowalczyk.ws>
Hardware
========
SOC: MediaTek MT7986
RAM: 512MB DDR3
FLASH: 256MB SPI-NAND
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz 4T4R
ETH: MediaTek MT7530 Switch (LAN)
MaxLinear GPY211C 2.5 N-Base-T PHY (WAN)
MaxLinear GPY211C 2.5 N-Base-T PHY (LAN)
UART: 3V3 115200 8N1 (Do not connect VCC)
USB 3.1
Installation
============
Download the OpenWrt initramfs image. Copy the image to a TFTP server
reachable at 192.168.1.70/24. Rename the image to TUF-AX6000.bin.
Connect to the serial console, interrupt the auto boot process by
pressing '4' when prompted or press '1' and set client IP, server
IP and name of the image.
yOU don't need to open the case or even soldering anything.
use three goldpin wires, remove their plastic cover and connect
them to the console pinout via the case holes.
You can see three holes
From Bottom: RX, TX, Ground - partially covered
Download & Boot the OpenWrt initramfs image.
In case of option '4'
$ setenv ipaddr 192.168.1.1
$ setenv serverip 192.168.1.70
$ tftpboot 0x46000000 TUF-AX6000.bin
$ bootm 0x46000000
In case of option '1'
1: Load System code to SDRAM via TFTP.
Please Input new ones /or Ctrl-C to discard
Input device IP (192.168.1.1) ==:
Input server IP (192.168.1.70) ==:
Input Linux Kernel filename (TUF-AX6000.trx) ==:
Wait for OpenWrt to boot. Transfer the sysupgrade
image to the device using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Missing features
================
2.5Gb LAN port LED is ON during boot or when the LAN cable is disconnected
The cover yellow light is not supported. (only blue one)
Signed-off-by: Patryk Kowalczyk <patryk@kowalczyk.ws>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 64GB eMMC or 128 MB SPI-NAND
RAM: 512MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, Mesh
Power: DC 12V 1A
- UART: 3.3v, 115200n8
--------------------------
| Layout |
| ----------------- |
| 4 | GND TX VCC RX | <= |
| ----------------- |
--------------------------
Gain SSH access:
1. Login into web interface, and download the configuration.
2. Enter fakeroot, decompress the configuration:
tar -zxf cfg_export_config_file.conf
3. Edit 'etc/config/dropbear', set 'enable' to '1'.
4. Edit 'etc/shadow', update (remove) root password:
'root::19523:0:99999:7:::'
5. Repack 'etc' directory:
tar -zcf cfg_export_config_file.conf etc/
* If you find an error about 'etc/wireless/mediatek/DBDC_card0.dat',
just ignore it.
6. Upload new configuration via web interface, now you can SSH to RAX3000M.
Check stroage type:
Check the label on the back of the device:
"CH EC CMIIT ID: xxxx" is eMMC version
"CH CMIIT ID: xxxx" is NAND version
eMMC Flash instructions:
1. SSH to RAX3000M, and backup everything, especially 'factory' part.
('data' partition can be ignored, it's useless.)
2. Write new GPT table:
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-gpt.bin of=/dev/mmcblk0 bs=512 seek=0 count=34 conv=fsync
3. Erase and write new BL2:
echo 0 > /sys/block/mmcblk0boot0/force_ro
dd if=/dev/zero of=/dev/mmcblk0boot0 bs=512 count=8192 conv=fsync
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-preloader.bin of=/dev/mmcblk0boot0 bs=512 conv=fsync
4. Erase and write new FIP:
dd if=/dev/zero of=/dev/mmcblk0 bs=512 seek=13312 count=8192 conv=fsync
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-bl31-uboot.fip of=/dev/mmcblk0 bs=512 seek=13312 conv=fsync
5. Set static IP on your PC:
IP 192.168.1.254, GW 192.168.1.1
6. Serve OpenWrt initramfs image using TFTP server.
7. Cut off the power and re-engage, wait for TFTP recovery to complete.
8. After OpenWrt has booted, perform sysupgrade.
9. Additionally, if you want to have eMMC recovery boot feature:
(Don't worry! You will always have TFTP recovery boot feature.)
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-initramfs-recovery.itb of=/dev/mmcblk0p4 bs=512 conv=fsync
NAND Flash instructions:
1. SSH to RAX3000M, and backup everything, especially 'Factory' part.
2. Erase and write new BL2:
mtd erase BL2
mtd write openwrt-mediatek-filogic-cmcc_rax3000m-nand-preloader.bin BL2
3. Erase and write new FIP:
mtd erase FIP
mtd write openwrt-mediatek-filogic-cmcc_rax3000m-nand-bl31-uboot.fip FIP
4. Set static IP on your PC:
IP 192.168.1.254, GW 192.168.1.1
5. Serve OpenWrt initramfs image using TFTP server.
6. Cut off the power and re-engage, wait for TFTP recovery to complete.
7. After OpenWrt has booted, erase UBI volumes:
ubidetach -p /dev/mtd0
ubiformat -y /dev/mtd0
ubiattach -p /dev/mtd0
8. Create new ubootenv volumes:
ubimkvol /dev/ubi0 -n 0 -N ubootenv -s 128KiB
ubimkvol /dev/ubi0 -n 1 -N ubootenv2 -s 128KiB
9. Additionally, if you want to have NAND recovery boot feature:
(Don't worry! You will always have TFTP recovery boot feature.)
ubimkvol /dev/ubi0 -n 2 -N recovery -s 20MiB
ubiupdatevol /dev/ubi0_2 openwrt-mediatek-filogic-cmcc_rax3000m-initramfs-recovery.itb
10. Perform sysupgrade.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Commit mt76: drop default eeprom file for mt7986-firmware
(e3aa645b26) breaks eeprom loading for
Mercusys MR90X v1. As a result WiFi is not working at all.
This commit adds Mercusus MR90x to the caldata script (it works after the
commit mentioned above). And we can safely drop "81_fix_eeprom" script
as it's no longer required.
Fixes: e3aa645b26
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
**Hardware specification:**
- SoC: MediaTek MT7981B 2x A53
- Flash: ESMT F50L1G41LB 128MB
- RAM: Nanya NT5CC128M16JR-EK 256MB
- Ethernet: 4 x 10/100/1000 Mbps
- Switch: MediaTek MT7531AE
- WiFi: MediaTek MT7976C
- Button: Reset, Mesh
- Power: DC 12V 1A
- UART: 3.3v, 115200n8
| Layout: |
| :-------- |
| <Antenna> |
| VCC |
| GND |
| Tx |
| Rx |
**Flash instructions:**
1. Rename `openwrt-mediatek-filogic-cetron_ct3003-squashfs-factory.bin` to `factory.bin`.
2. Upload the `factory.bin` using the device's Web interface.
3. Click the upgrade button and wait for the process to finish.
4. Access the OpenWrt interface using the same password.
5. Use the 'Restore' function to reset the firmware to its initial state.
**Notes:**
If you plan to recovery the stock firmware in the future, it's advisable
to connect the device via the serial port and enter failsafe mode to
back up all the MTD partitions before proceeding the steps above.
Signed-off-by: Patricia Lee <patricialee320@gmail.com>
Hardware
--------
SOC: MediaTek MT7986A
RAM: 1GB DDR4
FLASH: 4GB eMMC
WiFi: 2x2 2.4 GHz 802.11 b/g/n/ax MT7916 DBDC
4x4 5 GHz 802.11 a/n/ac/ax MT7986
2x2 6 GHz 802.11ax MT7916 DBDC
ETH: 4x LAN 1Gbit/s (MT7531)
1x WAN 2.5Gbit/s (GPY211)
BTN: RESET, WPS
LED: Antenna LEDs (GPIO)
Mood-LED (Kinetic KTD2601) - unsupported
UART: Header nest to USB port - 3V3 115200 8N1
[BUTTON] GND - RX - TX [USB]
Installation
------------
1. Connect to the device using serial console.
2. Interrupt the Autoboot process when promted by sending '0' twice.
3. Serve the OpenWrt initramfs image using TFTP at 192.168.1.66. Name
the image "predator.bin" and conenct the TFTP server to the routers
LAN port.
4. Configure U-Boot to allow loading unsigned images from MMC
$ setenv bootcmd 'mmc read 0x40000000 0x00004400 0x0010000;
fdt addr $(fdtcontroladdr); fdt rm /signature; bootm 0x40000000';
saveenv
5. Transfer the image from U-Boot
$ setenv serverip 192.168.1.66; setenv ipaddr 192.168.1.1;
tftpboot 0x46000000 predator.bin; fdt addr $(fdtcontroladdr);
fdt rm /signature; bootm
6. Wait for OpenWrt to boot
7. Transfer the OpenWrt sysupgrade image to the router using scp.
8. Install OpenWrt using sysupgrade.
Signed-off-by: David Bauer <mail@david-bauer.net>
Hardware
--------
CPU: Mediatek MT7981
RAM: 512M DDR4
FLASH: 256M NAND
ETH: MaxLinear GPY211 (2.5GbE N Base-T)
WiFi: Mediatek MT7981 (2.4GHz 2T2R:2 5GHz 3T3R:2 802.11ax)
BTN: 1x Reset
LED: 1x Multi-Color
UART Console
------------
Available below the rubber cover next to the ethernet port.
Settings: 115200 8N1
Layout:
<12V> <LAN> GND-RX-TX-VCC
Logic-Level is 3V3. Don't connect VCC to your UART adapter!
Installation Web-UI
-------------------
Upload the Factory image using the devices Web-Interface.
As the device uses a dual-image partition layout, OpenWrt can only
installed on Slot A. This requires the current active image prior
flashing the device to be on Slot B.
In case this is not the case, OpenWrt will boot only one time, returning
to the ZyXEL firmware the second boot.
If this happens, first install a ZyXEL firmware upgrade of any version
and install OpenWrt after that.
Installation TFTP / Recovery
----------------------------
This installation routine is especially useful in case of a bricked
device.
Attach to the UART console header of the device. Interrupt the boot
procedure by pressing Enter.
The bootloader has a reduced command-set available from CLI, but more
commands can be executed by abusing the atns command.
Boot a OpenWrt initramfs image available on a TFTP server at
192.168.1.66. Rename the image to nwa50axpro-openwrt-initramfs.bin.
$ atnf nwa50axpro-openwrt-initramfs.bin
$ atna 192.168.1.88
$ atns "192.168.1.66; tftpboot; setenv fdt_high 0xffffffffffffffff;
bootm"
Upon booting, set the booted image to the correct slot:
$ zyxel-bootconfig /dev/mtd9 get-status
$ zyxel-bootconfig /dev/mtd9 set-image-status 0 valid
$ zyxel-bootconfig /dev/mtd9 set-active-image 0
Copy the OpenWrt sysupgrade image to the device using scp.
Write the sysupgrade image to NAND using sysupgrade.
$ sysupgrade -n image.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: W25N01GVZEIG 128MB
RAM: NT5CB128M16JR-FL 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, WPS
Power: DC 12V 1A
Flash instructions:
1. PC run command: "telnet 192.168.124.1 99"
Username: H3C, password is the web login
password of the router.
2. Download preloader.bin and bl31-uboot.fip
3. PC run command: "python3 -m http.server 80"
4. Download files in the telnet window:
"wget http://192.168.124.xx/xxx.bin"
Replace xx with your PC's IP and
the preloader.bin and bl31-uboot.fip.
5. Flushing openwrt's uboot:
"mtd write xxx-preloader.bin BL2"
"mtd write xxx-bl31-uboot.fip FIP"
6. Connect to the router via the Lan port,
set a static ip of your PC.
(ip 192.168.1.254, gateway 192.168.1.1)
7. Download initramfs image, reboot router,
waiting for tftp recovery to complete.
8. After openwrt boots up, perform sysupgrade.
Note:
1. The u-boot-env partition on mtd is empty,
OEM stores their env on ubi:u-boot-env.
2. Back up all mtd partitions before flashing.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
This commit adds support for Mercusys MR90X(EU) v1 router.
Device specification
--------------------
SoC Type: MediaTek MT7986BLA, Cortex-A53, 64-bit
RAM: MediaTek MT7986BLA (512MB)
Flash: SPI NAND GigaDevice GD5F1GQ5UEYIGY (128 MB)
Ethernet: MediaTek MT7531AE + 2.5GbE MaxLinear GPY211C0VC (SLNW8)
Ethernet: 1x2.5Gbe (WAN/LAN 2.5Gbps), 3xGbE (WAN/LAN 1Gbps, LAN1, LAN2)
WLAN 2g: MediaTek MT7975N, b/g/n/ax, MIMO 4x4
WLAN 5g: MediaTek MT7975P(N), a/n/ac/ax, MIMO 4x4
LEDs: 1 orange and 1 green status LEDs, 4 green gpio-controlled
LEDs on ethernet ports
Button: 1 (Reset)
USB ports: No
Power: 12 VDC, 2 A
Connector: Barrel
Bootloader: Main U-Boot - U-Boot 2022.01-rc4. Additionally, both UBI
slots contain "seconduboot" (also U-Boot 2022.01-rc4)
Serial console (UART)
---------------------
V
+-------+-------+-------+-------+
| +3.3V | GND | TX | RX |
+---+---+-------+-------+-------+
|
+--- Don't connect
The R3 (TX line) and R6 (RX line) are absent on the PCB. You should
solder them or solder the jumpers.
Installation (UART)
-------------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot initramfs-kernel.bin
bootm
4. Once inside OpenWrt, set / update env variables:
fw_setenv baudrate 115200
fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
fw_setenv fdtcontroladdr 5ffc0e70
fw_setenv ipaddr 192.168.1.1
fw_setenv loadaddr 0x46000000
fw_setenv mtdids "spi-nand0=spi-nand0"
fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
fw_setenv netmask 255.255.255.0
fw_setenv serverip 192.168.1.2
fw_setenv stderr serial@11002000
fw_setenv stdin serial@11002000
fw_setenv stdout serial@11002000
fw_setenv tp_boot_idx 0
5. Run 'sysupgrade -n' with the sysupgrade OpenWrt image
Installation (without UART)
---------------------------
1. Login as root via SSH (router IP, port 20001, password - your web
interface password)
2. Open for editing /etc/hotplug.d/iface/65-iptv (e.g., using WinSCP and
SSH settings from the p.1)
3. Add a newline after "#!/bin/sh":
telnetd -l /bin/login.sh
4. Save "65-iptv" file
5. Toggle "IPTV/VLAN Enable" checkbox in the router web interface and
save
6. Make sure that telnetd is running:
netstat -ltunp | grep 23
7. Login via telnet to router IP, port 23 (no username and password are
required)
8 Upload OpenWrt "initramfs-kernel.bin" to the "/tmp" folder of the
router (e.g., using WinSCP and SSH settings from the p.1)
9. Stock busybox doesn't contain ubiupdatevol command. Hence, we need to
download and upload the full version of busybox to the router. For
example, from here:
https://github.com/xerta555/Busybox-Binaries/raw/master/busybox-arm64
Upload busybox-arm64 to the /tmp dir of the router and run:
in the telnet shell:
cd /tmp
chmod a+x busybox-arm64
10. Check "initramfs-kernel.bin" size:
du -h initramfs-kernel.bin
11. Delete old and create new "kernel" volume with appropriate size
(greater than "initramfs-kernel.bin" size):
ubirmvol /dev/ubi0 -N kernel
ubimkvol /dev/ubi0 -n 1 -N kernel -s 9MiB
12. Write OpenWrt "initramfs-kernel.bin" to the flash:
./busybox-arm64 ubiupdatevol /dev/ubi0_1 /tmp/initramfs-kernel.bin
13. u-boot-env can be empty so lets create it (or overwrite it if it
already exists) with the necessary values:
fw_setenv baudrate 115200
fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
fw_setenv fdtcontroladdr 5ffc0e70
fw_setenv ipaddr 192.168.1.1
fw_setenv loadaddr 0x46000000
fw_setenv mtdids "spi-nand0=spi-nand0"
fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
fw_setenv netmask 255.255.255.0
fw_setenv serverip 192.168.1.2
fw_setenv stderr serial@11002000
fw_setenv stdin serial@11002000
fw_setenv stdout serial@11002000
fw_setenv tp_boot_idx 0
14. Reboot to OpenWrt initramfs:
reboot
15. Login as root via SSH (IP 192.168.1.1, port 22)
16. Upload OpenWrt sysupgrade.bin image to the /tmp dir of the router
17. Run sysupgrade:
sysupgrade -n /tmp/sysupgrade.bin
Recovery
--------
1. Press Reset button and power on the router
2. Navigate to U-Boot recovery web server (http://192.168.1.1/) and
upload the OEM firmware
Recovery (UART)
---------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot initramfs-kernel.bin
bootm
4. Do what you need (restore partitions from a backup, install OpenWrt
etc.)
Stock layout
------------
0x000000000000-0x000000200000 : "boot"
0x000000200000-0x000000300000 : "u-boot-env"
0x000000300000-0x000003500000 : "ubi0"
0x000003500000-0x000006700000 : "ubi1"
0x000006700000-0x000006f00000 : "userconfig"
0x000006f00000-0x000007300000 : "tp_data"
ubi0/ubi1 format
----------------
U-Boot at boot checks that all volumes are in place:
+-------------------------------+
| Volume Name: uboot Vol ID: 0|
| Volume Name: kernel Vol ID: 1|
| Volume Name: rootfs Vol ID: 2|
+-------------------------------+
MAC addresses
-------------
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| label | 00:eb:xx:xx:xx:be | label |
| LAN | 00:eb:xx:xx:xx:be | label |
| WAN | 00:eb:xx:xx:xx:bf | label+1 |
| WLAN 2g | 00:eb:xx:xx:xx:be | label |
| WLAN 5g | 00:eb:xx:xx:xx:bd | label-1 |
+---------+-------------------+-----------+
label MAC address was found in UBI partition "tp_data", file
"default-mac". OEM wireless eeprom is also there (file
"MT7986_EEPROM.bin").
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Hardware
--------
SOC: MediaTek MT7986
RAM: 1024MB DDR3
FLASH: 128MB SPI-NAND (Winbond)
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH: Realtek RTL8221B-VB-CG 2.5 N-Base-T PHY with PoE
UART: 3V3 115200 8N1 (Pinout silkscreened / Do not connect VCC)
Installation
------------
1. Download the OpenWrt initramfs image. Copy the image to a TFTP server
2. Connect the TFTP server to the WAX220. Conect to the serial console,
interrupt the autoboot process by pressing '0' when prompted.
3. Download & Boot the OpenWrt initramfs image.
$ setenv ipaddr 192.168.2.1
$ setenv serverip 192.168.2.2
$ tftpboot openwrt.bin
$ bootm
4. Wait for OpenWrt to boot. Transfer the sysupgrade image to the device
using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Signed-off-by: Flole Systems <flole@flole.de>
Signed-off-by: Stefan Agner <stefan@agner.ch>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: ESMT F50L1G41LB 128MB
RAM: MT5CC128M16JR-EK 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, WPS
Power: DC 12V 1A
Flash instructions:
1. Attach UART, boot the stock firmware until
the message about failsafe mode appears.
2. Enter failsafe mode by pressing "f" and "Enter"
3. Type "mount_root", then run
"fw_setenv bootmenu_delay 3"
4. Back up all mtd partitions before flashing.
5. Reboot, U-Boot now presents a menu.
6. Connect to your PC via the Gigabit port of the router,
set a static ip on the ethernet interface of your PC.
(ip 192.168.1.254, gateway 192.168.1.1)
7. Select "Upgrade ATF BL2", then use this file:
openwrt-mediatek-filogic-qihoo_360t7-preloader.bin
8. Select "Upgrade ATF FIP", then use this file:
openwrt-mediatek-filogic-qihoo_360t7-bl31-uboot.fip
9. Download the initramfs image, and type "reset",
waiting for tftp recovery to complete.
a. After openwrt boots up, perform sysupgrade.
Note:
1. Since NMBM is disabled, we must back up all partitions.
2. Flash instructions is based on commit 28df7f7.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Zyxel EX5601-T0 specifics
--------------
The operator specific firmware running on the Zyxel branded
EX5601-T0 includes U-Boot modifications affecting the OpenWrt
installation.
Partition Table
| dev | size | erasesize | name |
| ---- | -------- | --------- | ------------- |
| mtd0 | 20000000 | 00040000 | "spi0.1" |
| mtd1 | 00100000 | 00040000 | "BL2" |
| mtd2 | 00080000 | 00040000 | "u-boot-env" |
| mtd3 | 00200000 | 00040000 | "Factory" |
| mtd4 | 001c0000 | 00040000 | "FIP" |
| mtd5 | 00040000 | 00040000 | "zloader" |
| mtd6 | 04000000 | 00040000 | "ubi" |
| mtd7 | 04000000 | 00040000 | "ubi2" |
| mtd8 | 15a80000 | 00040000 | "zyubi" |
The router boots BL2 which than loads FIP (u-boot).
U-boot has hardcoded a command to always launch Zloader "mtd read zloader 0x46000000" and than "bootm". Bootargs are deactivated.
Zloader is the zyxel booloader which allow to dual-boot ubi or ubi2, by default access to zloader is blocked.
Too zloader checks that the firmware contains a particolar file called zyfwinfo.
Additional details regarding Zloader can be found here:
https://hack-gpon.github.io/zyxel/https://forum.openwrt.org/t/adding-openwrt-support-for-zyxel-ex5601-t0/155914
Hardware
--------
SOC: MediaTek MT7986a
CPU: 4 core cortex-a53 (2000MHz)
RAM: 1GB DDR4
FLASH: 512MB SPI-NAND (Micron xxx)
WIFI: Wifi6 Mediatek MT7976 802.11ax 5 GHz 4x4 + 2.4GHZ 4x4
ETH: MediaTek MT7531 Switch + SoC
3 x builtin 1G phy (lan1, lan2, lan3)
1 x MaxLinear GPY211B 2.5 N-Base-T phy5 (lan4)
1 x MaxLinear GPY211B 2.5Gbit xor SFP/N-Base-T phy6 (wan)
USB: 1 x USB 3.2 Enhanced SuperSpeed port
UART: 3V3 115200 8N1 (Pinout: GND KEY RX TX VCC)
VOIP: 2 FXS ports for analog phones
MAC Address Table
-----------------
eth0/lan Factory 0x002a
eth1/wan Factory 0x0024
wifi 2.4Ghz Factory 0x0004
wifi 5Ghz Factory 0x0004 + 1
Serial console (UART)
---------------------
+-------+-------+-------+-------+-------+
| +3.3V | RX | TX | KEY | GND |
+---+---+-------+-------+-------+-------+
|
+--- Don't connect
Installation
------------
Keep in mind that openwrt can only run on the UBI partition, the openwrt firmware is not able to understand the zloader bootargs.
The procedure allows restoring the UBI partition with the Zyxel firmware and retains all the OEM functionalities.
1. Unlock Zloader (this will allow to swap manually between partitions UBI and UBI2):
- Attach a usb-ttl adapter to your computer and boot the router.
- While the router is booting at some point you will read the following: `Please press Enter to activate this console.`
- As soon as you read that press enter, type root and than press enter again (just do it, don't care about the logs scrolling).
- Most likely the router is still printing the boot log, leave it boot until it stops.
- If everything went ok you should have full root access "root@EX5601-T0:/#".
- Type the following command and press enter: "fw_setenv EngDebugFlag 0x1".
- Reboot the router.
- As soon as you read `Hit any key to stop autoboot:` press Enter.
- If everything went ok you should have the following prompt: "ZHAL>".
- You have successfully unlocked zloader access, this procedure must be done only once.
2. Check the current active partition:
- Boot the router and repeat the steps above to gain root access.
- Type the following command to check the current active image: "cat /proc/cmdline".
- If `rootubi=ubi` it means that the active partition is `mtd6`
- If `rootubi=ubi2` it means that the active partition is `mtd7`
- As mentioned earlier we need to flash openwrt into ubi/mtd6 and never overwrite ubi2/mtd7 to be able to fully roll-back.
- To activate and boot from mtd7 (ubi2) enter into ZHAL> command prompt and type the following commands:
atbt 1 # unlock write
atsw # swap boot partition
atsr # reboot the router
- After rebooting check again with "cat /proc/cmdline" that you are correctly booting from mtd7/ubi2
- If yes proceed with the installation guide. If not probably you don't have a firmware into ubi2 or you did something wrong.
3. Flashing:
- Download the sysupgrade file for the router from openwrt, than we need to add the zyfwinfo file into the sysupgrade tar.
Zloader only checks for the magic (which is a fixed value 'EXYZ') and the crc of the file itself (256bytes).
I created a script to create a valid zyfwinfo file but you can use anything that does exactly the same:
https://raw.githubusercontent.com/pameruoso/OpenWRT-Zyxel-EX5601-T0/main/gen_zyfwinfo.sh
- Add the zyfwinfo file into the sysupgrade tar.
- Enter via telnet or ssh into the router with admin credentials
- Enter the following commands to disable the firmware and model checks
"zycli fwidcheck off" and "zycli modelcheck off"
- Open the router web interface and in the update firmware page select the "restore default settings option"
- Select the sysupgrade file and click on upload.
- The router will flash and reboot itself into openwrt from UBI
4. Restoring and going back to Zyxel firmware.
- Use the ZHAL> command line to manually swap the boot parition to UBI2 with the following:
atbt 1 # unlock write
atsw # swap boot partition
atsr # reboot the router
- You will boot again the Zyxel firmware you have into UBI2 and you can flash the zyxel firmware to overwrite the UBI partition and openwrt.
Working features
----------------
3 gbit lan ports
Wifi
Zyxel partitioning for coexistance with Zloader and dual boot.
WAN SFP port (only after exporting pins 57 and 10. gpiobase411)
leds
reset button
serial interface
usb port
lan ethernet 2.5 gbit port (autosense)
wan ethernet 2.5 gbit port (autosense)
Not working
----------------
voip (missing drivers or proper zyxel platform software)
Swapping the wan ethernet/sfp xor port
----------------
The way to swap the wan port between sfp and ethernet is the following:
export the pins 57 and 10.
Pin 57 is used to probe if an sfp is present.
If pin 57 value is 0 it means that an sfp is present into the cage (cat /sys/class/gpio/gpio468/value).
If pin 57 value is 1 it means that no sfp is inserted into the cage.
In conclusion by default both 57 an 10 pins are by default 1, which means that the active port is the ethernet one.
After inserting an SFP pin 57 will become 0 and you have to manually change the value of pin 10 to 0 too.
This is totally scriptable of course.
Leds description
------------
All the leds are working out of the box but the leds managed by the 2 maxlinear phy (phy 5 lan, phy6 wan).
To activate the phy5 led (rj45 ethernet port led on the back of the router) you have to use mdio-tools.
To activate the phy6 led (led on the front of the router for 2.5gbit link) you have to use mdio-tools.
Example:
Set lan5 led to fast blink on 2500/1000, slow blink on 10/100:
mdio mdio-bus mmd 5:30 raw 0x0001 0x33FC
Set wan 2.5gbit led to constant on when wan is 2.5gbit:
mdio mdio-bus mmd 6:30 raw 0x0001 0x0080
Signed-off-by: Pietro Ameruoso <p.ameruoso@live.it>
Hardware
--------
MediaTek MT7981 WiSoC
256MB DDR3 RAM
16MB SPI-NOR (XMC XM25QH128C)
MediaTek MT7981 2x2 DBDC 802.11ax 2T2R (2.4 / 5)
UART: 115200 8N1 3.3V
[LEDS] VCC-GND-RX-TX [ETH]
Header is located below the heatsink
Case
----
Unscrew the 4 bottom screws. Remove the top of the case by inserting a
small screwdriver into the ventilation holes and lift the top cover.
This works best by beginning near the ETH-ports. The top is clipped on
the front near the LEDs with two plastic clips. The back has a single
clip in the middle. Start at one of the back edges.
MAC-Addresses
-------------
80:AF:CA:00:F9:C6 LAN
80:AF:CA:00:F9:C7 WAN
80:AF:CA:00:F9:C6 W2
82:AF:CA:30:F9:C6 W5
Installation
------------
1. Connect to the serial port as described in the "Hardware" section.
2. Power on the device. Keep pressing the "0" key to enter the U-Boot
shell.
3. Download the OpenWrt initramfs image. Place it on an TFTP server
connected to the Cudy LAN ports. Make sure the server is reachable at
192.168.1.2. Rename the image to "cudy3000.bin"
4. Download and boot the OpenWrt initramfs image.
$ tftpboot 0x46000000 cudy3000.bin; bootm 0x46000000
5. Transfer the OpenWrt sysupgrade image to the device using scp.
Install with sysupgrade.
Note: Cudy does not yet provide a image for disabling their
signature-protection. This has happened in the past. Make sure to check
the wiki for a possible easier installation method.
Signed-off-by: David Bauer <mail@david-bauer.net>
Hardware specification:
SoC: MediaTek MT7986A 4x A53
Flash: ESMT F50L1G41LB 128MB
RAM: ESMT M15T4G16256A 512MB
Ethernet (Max Speed):
XDR4288: 1x 2.5G Wan, 1x 2.5G Lan, 4x 1G Lan
XDR6086: 1x 2.5G Wan, 1x 2.5G Lan, 1x 1G Lan
XDR6088: 1x 2.5G Wan, 1x 2.5G Lan, 4x 1G Lan
WiFi:
XDR4288: MT7976DAN (2.4G 2T2R, 5G 3T3R)
XDR6086/XDR6088:
WiFi1: MT7976GN 2.4GHz 4T4R
WiFi2: MT7976AN 5GHz 4T4R
Button: Reset, WPS, Turbo
USB: 1 x USB 3.0
Power: DC 12V 4A
Flash instructions:
1. Execute the following operation to open nc shell:
https://openwrt.org/inbox/toh/tp-link/xdr-6086#rooting
2. Replace the stock bootloader to OpenWrt's:
dd bs=131072 conv=sync of=/dev/mtdblock9 if=/tmp/xxx-preloader.bin
dd bs=131072 conv=sync of=/dev/mtdblock9 seek=28 if=/tmp/xxx-bl31-uboot.fip
3. Connect to your PC via the Gigabit port of the router,
set a static ip on the ethernet interface of your PC.
(ip 192.168.1.254, gateway 192.168.1.1)
4. Download the initramfs image, and restart the router,
waiting for tftp recovery to complete.
5. After openwrt boots up, perform sysupgrade.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
[Add uboot build, fit and sysupgrade support, fix RealTek PHYs]
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware
--------
SOC: MediaTek MT7986
RAM: 512MB DDR3
FLASH: 256MB SPI-NAND (Winbond W25N02KV)
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH: MediaTek MT7531 Switch
MaxLinear GPY211C 2.5 N-Base-T PHY
UART: 3V3 115200 8N1 (Pinout silkscreened / Do not ocnnect VCC)
Installation
------------
1. Download the OpenWrt initramfs image. Copy the image to a TFTP server
reachable at 192.168.1.66/24. Rename the image to tufax4200.bin.
2. Connect the TFTP server to the AX4200. Conect to the serial console,
interrupt the autoboot process by pressing '4' when prompted.
3. Download & Boot the OpenWrt initramfs image.
$ setenv ipaddr 192.168.1.1
$ setenv serverip 192.168.1.66
$ tftpboot 0x46000000 tufax4200.bin
$ bootm 0x46000000
4. Wait for OpenWrt to boot. Transfer the sysupgrade image to the device
using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Missing features
----------------
- The LAN port LEDs are driven by the switch but OpenWrt does not
correctly configure the output.
Signed-off-by: David Bauer <mail@david-bauer.net>
Use persistent MAC address for the built-in wireless interfaces of the
BPi-R64 and BPi-R3 development boards.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>