This commit fixes the script that sets the MAC address of the LAN
switch. The LAN MAC address should be the WAN MAC address plus one.
Without this patch the WAN and the LAN interface will use the same
MAC address and an error will be generated.
With this patch all interfaces will have a different MAC address,
consecutive in the following order: WAN, LAN, radio0 and radio1.
Signed-off-by: Oever González <notengobattery@gmail.com>
(original text here: https://patchwork.kernel.org/patch/8686761/)
On some SOCs PORTS_IMPL register value is never programmed by the BIOS
and left at zero value. Which means that no sata ports are avaiable for
software. AHCI driver used to cope up with this by fabricating the
port_map if the PORTS_IMPL register is read zero, but recent patch
broke this workaround as zero value was valid for nvme disks.
This patch adds ports-implemented dt bindings as workaround for this issue
in a way that DT can dictate the port_map incase where the SOCs does not
program it already.
This patch is equal to commits:
67f8425d0ee1 ("ipq8064: dts: force AP148 SATA port mapping")
2e7a2c91019c ("ARM: dts: qcom: Move common nodes to ipq8064-v.1.0.dtsi")
in the upstream linux kernel.
Signed-off-by: Roman Glova <roman_glova@epam.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[added upstream commits, reorg' commit message]
I-O DATA WN-AC1600DGR is a 2.4/5 GHz band 11ac router, based on
Qualcomm Atheros QCA9557.
Specification:
- SoC: Qualcomm Atheros QCA9557
- RAM: 128 MB
- Flash: 16 MB
- WLAN: 2.4/5 GHz
- 2.4 GHz: 2T2R (SoC internal)
- 5 GHz: 3T3R (QCA9880)
- Ethernet: 5x 10/100/1000 Mbps
- Switch: QCA8337N
- LED/key: 6x/6x(4x buttons, 1x slide switch)
- UART: through-hole on PCB
- Vcc, GND, TX, RX from ethernet port side
- 115200n8
Flash instruction using factory image:
1. Connect the computer to the LAN port of WN-AC1600DGR
2. Connect power cable to WN-AC1600DGR and turn on it
3. Access to "http://192.168.0.1/" and open firmware update page
("ファームウェア")
4. Select the OpenWrt factory image and click update ("更新") button
5. Wait ~150 seconds to complete flashing
Alternative flash instruction using initramfs image:
1. Prepare a computer and TFTP server software with the IP address
"192.168.99.8" and renamed OpenWrt initramfs image
"uImageWN-AC1600DGR"
2. Connect between WN-AC1600DGR and the computer with UART
3. Connect power cable to WN-AC1600DGR, press "4" on the serial
console and enter the U-Boot console
4. execute "tftpboot" command on the console and download initramfs
image from the TFTP server
5. execute "bootm" command and boot OpenWrt
6. On initramfs image, download the sysupgrade image to the device
and perform sysupgrade with it
7. Wait ~150 seconds to complete flashing
This commit also removes unnecessary "qca,no-eeprom" property from
the ath10k wifi node.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Tested with a dual pci QCA9558 board (LibreRouter v1) in three
configurations: enabling pcie0 only, pcie1 only and both enabled.
Signed-off-by: Santiago Piccinini <spiccinini@altermundi.net>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [removed ML notice]
Datasheet states that both PCI ranges are of 0x2000000 size:
0x1000_0000-0x11FF_FFF and 0x1200_0000-0x13FF_0000.
Signed-off-by: Santiago Piccinini <spiccinini@altermundi.net>
Reviewed-by: Daniel Golle <daniel@makrotopia.org>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [removed ML notice]
SoC: Qualcomm IPQ4019 (Dakota) 717 MHz, 4 cores
RAM: 256 MiB (Nanya NT5CC128M16IP-DI)
FLASH: 128 MiB (Macronix NAND)
WiFi0: Qualcomm IPQ4019 b/g/n 2x2
WiFi1: Qualcomm IPQ4019 a/n/ac 2x2
WiFi2: Qualcomm Atheros QCA9886 a/n/ac
BT: Atheros AR3012
IN: WPS Button, Reset Button
OUT: RGB-LED via TI LP5523 9-channel Controller
UART: Front of Device - 115200 N-8
Pinout 3.3v - RX - TX - GND (Square is VCC)
Installation:
1. Transfer OpenWRT-initramfs image to the device via SSH to /tmp.
Login credentials are identical to the Web UI.
2. Login to the device via SSH.
3. Flash the initramfs image using
> mtd-write -d linux -i openwrt-image-file
4. Power-cycle the device and wait for OpenWRT to boot.
5. From there flash the OpenWRT-sysupgrade image.
Ethernet-Ports: Although labeled identically, the port next to
the power socket is the LAN port and the other one is WAN. This
is the same behavior as in the stock firmware.
Signed-off-by: Marius Genheimer <mail@f0wl.cc>
[Dropped setup_mac 02_network in favour of 05_set_iface_mac_ipq40xx.sh,
reorderd 02_network entries, added board.bin WA for the QCA9886 from ath79,
minor dts touchup, added rng to 4.19 dts]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Robert Marko made a big effort to enable the rng on all
ipq40xx for 4.19, so let's continue the quest.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This factory binary i supposed to actually be unzipped and
untarred by the user as part of the installation process
(this NAS boots from harddisk), so name it "bootpart.tar.gz"
and not "factory.bin" so it is helpful for users.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
OCEDO Panda was added in b368373f, but only for
4.14 config. This patch fix 4.19 build for generic
and p2020 subtarget.
Signed-off-by: Pawel Dembicki <p.dembicki@wb.com.pl>
Buffalo WHR-G300N has a LED for power status indication, but it is not
connected to the GPIO and cannot be controlled by the kernel. So,
WHR-G300N uses "ROUTER" LED as the system status LED instead.
This commit changes it to use "DIAG" LED insted of "ROUTER" like
WHR-G301N in ath79 target.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
The R6120 has no 5GHz WLAN LED, the assigned GPIO in fact controls
the WAN LED.
Renames the LED accordingly in the device-tree.
Removes the 5GHz WLAN LED trigger.
Adds the correct WAN port LED trigger.
----
Currently, the MAC address for the Netgear R6120 is read from the NVRAM
partition. The offset for the MAC address however is not consistent
across devices or firmware versions.
Switch to using the factory partition like all other Netgear devices do.
----
The LAN ports of the R6120 are labled in reverse on the casing.
Adjust LuCI switchport numbering accordingly.
----
The WiFi eeprom offsets for the R6120 are currently wrong (5GHz offset
is bigger than the partition itself).
Fixes poor performance on 2.4 and 5 GHz.
Signed-off-by: David Bauer <mail@david-bauer.net>
The switch ports are seen one to one on the case.
Also remove unneeded secondary port numbers in this
case statement.
Signed-off-by: Paul Wassi <p.wassi@gmx.at>
Change the ledtrig for LAN from netdev to switch.
Although eth1 comes out of the device at a single port,
this port is a switch-port and therefore the LED
must be triggered by that.
Signed-off-by: Paul Wassi <p.wassi@gmx.at>
Enable the built-in BPF JIT compiler for all 4.9, 4.14 and 4.19 kernels,
which should speed up cBPF and eBPF-based packet filtering (tc, iptables)
and packet sniffing (libpcap, tcpdump, fwknopd, etc).
This has minimal kernel size impact, increasing the size of uImage-lzma
(normally ~2 MB on mips_24kc or mips64el_mips64) by 5 KB for the MIPS32
arch cBPF JIT and by 9 KB for the MIPS64 arch eBPF JIT, on kernel 4.14.
With JIT enabled (cBPF only), the standard BPF test module (test_bpf.ko)
running on a DIR-835 (mips_24kc) used 33 CPU seconds, but 68 without JIT.
This change aligns with the notion of OpenWRT as the network go-to swiss
army knife for packet handling, especially on CPU-constrained platforms.
Signed-off-by: Tony Ambardar <itugrok@yahoo.com>
Hardware
--------
CPU: Qualcomm Atheros QCA9561
RAM: 64M DDR2
FLASH: 16M SPI-NOR
ETH: 1x WAN - 2x LAN
WiFi: QCA9561 3T3R
BTN: 1x Reset - 1x WPS
LED: 1x Blue - 1x Red - 1x Yellow
UART: TX - GND - RX - VCC (From ethernet port)
115200n8 - 3.3V
Installation
------------
1. Connect to the device via UART.
2. Interrupt the U-Boot on power-on by pressing enter when prompted.
3. Connect you computer to one of the routers LAN ports.
Assign yourself the IP 192.168.31.10/24.
Copy the OpenWRT initramfs image to a tftp server root directory.
Rename the image to 'x4q.bin'.
4. Load the initramfs image to the router by executing following command
in U-Boot. The image will boot afterwards.
> tftpboot 0x81000000 x4q.bin; bootm
5. SCP the sysupgrade-image into '/tmp'.
Remember to assign yourself an IP in 192.168.1.0/24 for this step!
6. Install OpenWRT permanently by executing
> sysupgrade -n /tmp/<OpenWRT-sysupgrade-image>
Signed-off-by: David Bauer <mail@david-bauer.net>
Commit 7ebbbda293 ("ar71xx: ubnt-(xm,xw): fix LED RSSI indication")
adds support for using the RSSI strenght via LEDS.
The rssileds package addition got lost during altering the patch.
Add it again to fix this.
Fixes: 7ebbbda293 ("ar71xx: ubnt-(xm,xw): fix LED RSSI indication")
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
This patch uses nfct_help() to detect whether an established connection
needs conntrack helper instead of using test_bit(IPS_HELPER_BIT,
&ct->status).
The reason for this modification is that IPS_HELPER_BIT is only set when
the conntrack helper is attached by explicit CT target.
However, in the case that a device enables conntrack helper via the other
ways (e.g., command "echo 1 > /proc/sys/net/netfilter/nf_conntrack_helper")
, the status of IPS_HELPER_BIT will not present any change. That means the
IPS_HELPER_BIT might lose the checking ability in the context.
Signed-off-by: HsiuWen Yen <y.hsiuwen@gmail.com>
When mapping for RSSI LEDs was defined for interface wlan0 on
Ubiquiti XM and XW family, it missed connection to actual interface.
Therefore create the mapping to interface, so RSSI LEDs work without
additional configuration, after starting rssileds service.
Also add the required package for this.
While at that, remove coefficients needed for PWM LEDs, as XM and XW
boards do not support PWM LEDs.
Tested-by: Petr Štetiar <ynezz@true.cz>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[Squashed commits + remove custom device_packages + slighty rewrite the commit msg]
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
Some hAP lite routers aren't detected because
/proc/cpuinfo shows "RouterBOARD RB941-2nD"
instead of "RouterBOARD 941-2nD".
Fix that.
Signed-off-by: Julien Rabier <taziden@flexiden.org>
[Alter string to include all flavours + slight rewrite of commit msg]
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
While preparing 4.19 for imx6 and test building it with
CONFIG_ALL_KMODS=y with verbose mode enabled, I was asked by kernel
config about few missing symbols/modules
Let's add them to the generic config.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
[slight rewrite of commit log]
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
On ath79 and UBNT Bullet M XW (ar9342) I was experiencing weird issues during
network setup[1] which I was able to reproduce easily with following commands:
uci set network.lan.ipaddr='192.168.1.20'
uci commit network
ifup lan
Which resulted after some time in:
...
WARNING: CPU: 0 PID: 0 at net/sched/sch_generic.c:461 dev_watchdog+0x16c/0x280
NETDEV WATCHDOG: eth0 (ag71xx): transmit queue 0 timed out
...
Sometimes I wasn't able to use networking anymore, sometimes it was enough to
just ifdown/ifup lan and network was backup. On ar71xx it was all working just
fine.
I've found out, that it was happening because ag71xx_poll() wasn't called, thus
the TX queue wasn't emptied. The ag71xx_poll() is being called from napi
hrtimer, which is enabled by napi_schedule() in ar71xx_interrupt(), but since
no interrupts were ever fired again after ag71xx_stop() was called, it was
always leading to tx queue timeouts:
*** ag71xx_hard_start_xmit()
eth0: packet injected into TX queue
eth0: raw intr=00000001 TXPS POLL
eth0: enable polling mode
eth0: processing TX ring, flush=no
eth0: disable polling mode, rx=1, tx=1,limit=32
( `ifup lan done here` )
*** ag71xx_stop()
*** ag71xx_open()
*** ag71xx_hw_enable()
IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready
IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready
*** ag71xx_hard_start_xmit()
eth0: packet injected into TX queue
*** ag71xx_hard_start_xmit()
eth0: packet injected into TX queue
...
WARNING: CPU: 0 PID: 0 at net/sched/sch_generic.c:320 dev_watchdog+0x164/0x274
So I've looked at ag71xx_stop() in ar71xx, added the missing bits to ath79 and
fixed this issue.
1. https://github.com/openwrt/openwrt/pull/1635#issuecomment-448638246
Signed-off-by: Petr Štetiar <ynezz@true.cz>
[move ag->link before ag71xx_hw_disable to retain ordering as original]
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
Restoring the bootloader config before rebooting fails:
tar: invalid tar magic
Add the -z option to the tar command to fix this.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
TP-Link Archer C7 v4 is a dual-band AC1750 router, based on the
Qualcomm/Atheros QCA9561 SoC + QCA9880.
Specification:
- 775/650/258 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 3T3R 5 GHz
- 5x 10/100/1000 Mbps Ethernet
- 7x LED, 2x button
- UART header on PCB
Flash instruction:
1. Upload openwrt-ath79-generic-tplink_archer-c7-v4-squashfs-factory.bin
via Web interface
Flash instruction using TFTP recovery:
1. Set PC to fixed ip address 192.168.0.66
2. Download openwrt-ath79-generic-tplink_archer-c7-v4-squashfs-factory.bin
and rename it to ArcherC7v4_tp_recovery.bin
3. Start a tftp server with the file tp_recovery.bin in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
Signed-off-by: Oldřich Jedlička <oldium.pro@gmail.com>
This option was a spi nor hack which is dropped in commit
bcf4a5f474 ("ramips: remove chunked-io patch and set spi->max_transfer_size instead")
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [edit message]
The WeVo 11AC NAS has a MT7612E 802.11ac chip on the PCB.
Signed-off-by: Ju Se Hoon <joosahoon@gmail.com>
[renamed author from Albis-dev to real name, editted commit message]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This patch fixes the ASUS' RT-AC58U port order by
unifying the configuration with the NBG6617.
Reported-by: Roberto Socrates (rtac58u-user on the forum)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This patch splits the big board case switch in 02_network in
two functions ipq40xx_setup_interfaces() and ipq40xx_setup_macs()
just like ath79 and ramips do.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Building ar71xx currently fails with:
In file included from ./include/linux/ipv6.h:5,
from ./include/net/ipv6.h:16,
from ./include/net/inetpeer.h:16,
from ./include/net/ip_fib.h:24,
from ./include/net/switchdev.h:17,
from ./include/net/dsa.h:23,
from arch/mips/ath79/dev-dsa.h:15,
from arch/mips/ath79/dev-dsa.c:17:
./include/uapi/linux/ipv6.h:107:1: error: alignment 1 of 'struct ipv6_destopt_hao' is less than 2 [-Werror=packed-not-aligned]
} __attribute__((packed));
Address this issue by correcting the alignment of the struct packing
pragma accordingly.
Fixes: FS#1805
Reported-by: Pascal Ernster <git@hardfalcon.net>
[reword subject, rewrap commit message]
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
The correct MAC address for this device is lan_mac +1, there is no
need to set lan_mac so use base_mac variable instead lan_mac.
Based on this PR for ath79:
https://github.com/openwrt/openwrt/pull/1726
Signed-off-by: David Santamaría Rogado <howl.nsp@gmail.com>
[fix alphabetical ordering, reword subject]
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
Kernel 4.14.96 got the new configuration option
CIFS_ALLOW_INSECURE_LEGACY which allows to deactivate support for old
and insecure SMB versions like 1.0 and 2.0. Still allow these old SMB
version and fix build problems which occurred because this option was
not defined.
This was found by build bot.
Fixes: 3662157d8b ("kernel: bump 4.14 to 4.14.96")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
upstream commit 802b7c06adc7 ("ARM: cns3xxx: Convert PCI to use generic config accessors")
reimplemented cns3xxx_pci_read_config() using pci_generic_config_read32(),
which preserved the property of only doing 32-bit reads.
It also replaced cns3xxx_pci_write_config() with pci_generic_config_write(),
so it changed writes from always being 32 bits to being the actual size,
which works just fine.
Due to:
- The documentation does not mention that only 32 bit access is allowed.
- Writes are already executed using the actual size
- Extensive testing shows that 8b, 16b and 32b reads work as intended
It makes perfectly sense to also swap 32 bit reading in favor of actual size.
also backport this patch to kernel 4.19
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
There are more regmap dependencies missing in the brcm2708 target.
Fixes: fd5c168701 ("kernel: Build: Split kmod-regmap")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add missing pin controls for the Observa VH4032N router.
This fixes the wifi radio and ethernet LAN LEDs.
Signed-off-by: Daniel Gonzalez Cabanelas <dgcbueu@gmail.com>
- use the blue LED for power, since the red LED is already used by
CFE in emergency mode.
- use the correct code for the wlan button
Signed-off-by: Daniel Gonzalez Cabanelas <dgcbueu@gmail.com>
kmod-sound-soc-3dlab-nano-player was in the global kernel menu before,
add the dependency to sound to move it to the correct category.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Two regmap dependencies were wrong, this patch fixes them.
This was detected by the build bots.
Fixes: fd5c168701 ("kernel: Build: Split kmod-regmap")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
In the upstream netdev led trigger the one mode file was replaced by 3
files named rx, tx and link. Fix the netdev trigger configuration code
to use the modified API.
This fix is based on 201058b35c ("base-files: Fix netdev led trigger")
Fixes: aa3b6a08c5 ("kernel: Replace ledtrig-netdev with upstream backport")
Signed-off-by: Martin Schiller <ms@dev.tdt.de>
Add support for Silergy SY8106A voltage regulator which is
needed for cpufreq support on boards such as Orange Pi PC
Signed-off-by: Daniel Engberg <daniel.engberg.lists@pyret.net>
[Remove CONFIG_REGULATOR_SY8106A from cortexa7]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Drop customizations in:
508-arm64-dts-armada-3720-espressobin-wire-up-spi-flash.patch
and move them to separate patch, with broader explanation.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
This symbol is enabled in all subtargets, move it to common kernel
config.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
Acked-by: Rosen Penev <rosenp@gmail.com>
This reduces the needed modifications to the mainline Linux kernel and
also makes the regmap package work with an out of tree kernel which
does not have these modifications.
The regmap-core is only added when it is really build as a module.
The regmap-core is normally bool so it cannot be built as a module in an
unmodified kernel. When it is selected by on other kernel module it will
always be selected as build in and it also does not show up in
$(LINUX_DIR)/modules.builtin as it is not supposed to be a kernel module.
When it is not in $(LINUX_DIR)/modules.builtin the build system expects
it to be built as a .ko file.
Just check if the module is really there and only add it in that case.
This splits the regmap package into multiple packages, one for each bus type.
This way only the bus maps which are really needed have to be added.
This also splits the I2C, SPI and MMIO regmap into separate packages to not
require all these subsystems to build them, on an unmodified upstream kernel
this also causes problems in some situations.
Signed-off-by: Hauke Mehrtens <hauke.mehrtens@intel.com>
Some of sunxi devices have onboard SPI flash.
Enable SPI NOR support and MTD fit split in kernel config.
Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
Hardware
--------
CPU: Qualcomm Atheros QCA9558
RAM: 128M DDR2
FLASH: 16MiB
ETH: 1x Atheros AR8035 (PoE in)
1x Atheros AR8033
WiFi2: QCA9558 3T3R (SiGE SE2565T 2.4 GHz power amp x3)
WiFi5: QCA9880 3T3R (Skyworks 5003L1 5 GHz power amp x3)
BTN: 1x Reset
1x WPS
1x USB eject
LED: 1x LED blue
1x LED red
BEEP: 1x GPIO attached piezo beeper
UART: 3.3V GND TX RX (115200-N-8) (3.3V is pin closest to rear ports)
Dupont 4 pin header
Rear RJ45 serial port non-functional
USB: 1x v2.0
Installation
------------
Make sure you set a password for the root user as prompted on first
setup!
1. Upload OpenWRT sysupgrade image via SSH to the device.
Use /tmp as the destination folder on the device.
User is root, password previously set in the web interface.
2. Install OpenWRT with
> sysupgrade -n -F /tmp/<openwrt-image-name>
Signed-off-by: Django Armstrong <iamdjango@hotmail.com>
It's no longer needed as all mt7621 devices use DT binding (supported by
upstream mtd code) for specifying "firmware" part format explicitly.
Signed-off-by: Mathias Kresin <dev@kresin.me>
It results in calling the right MTD parser directly instead of trying
them one by one.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
[use the lzma splitter for the AR670W]
Signed-off-by: Mathias Kresin <dev@kresin.me>
This is the remainder of kernel patches for the v4.19
kernel. A whole slew of the previous patch stack is now
upstream, so this mainly contains the stuff that was
added upstream between v4.19 and v5.0-rc1, and then
the USB FOTG201 patches from Hans.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
This adds support for the TP-Link Archer C50 v4.
It uses the same hardware as the v3 variant, sharing the same FCC-ID.
CPU: MediaTek MT7628 (580MHz)
RAM: 64M DDR2
FLASH: 8M SPI
WiFi: 2.4GHz 2x2 MT7628 b/g/n integrated
WiFI: 5GHz 2x2 MT7612 a/n/ac
ETH: 1x WAN 4x LAN
LED: Power, WiFi2, WiFi5, LAN, WAN, WPS
BTN: WPS/WiFi, RESET
UART: Near ETH ports, 115200 8n1, TP-Link pinout
Create Factory image
--------------------
As all installation methods require a U-Boot to be integrated into the
Image (and we do not ship one with the image) we are not able to create
an image in the OpenWRT build-process.
Download a TP-Link image from their Wesite and a OpenWRT sysupgrade
image for the device and build yourself a factory image like following:
TP-Link image: tpl.bin
OpenWRT sysupgrade image: owrt.bin
> dd if=tpl.bin of=boot.bin bs=131584 count=1
> cat owrt.bin >> boot.bin
Installing via Web-UI
---------------------
Upload the boot.bin via TP-Links firmware upgrade tool in the
web-interface.
Installing via Recovery
-----------------------
Activate Web-Recovery by beginning the upgrade Process with a
Firmware-Image from TP-Link. After starting the Firmware Upgrade,
wait ~3 seconds (When update status is switching to 0%), then
disconnect the power supply from the device. Upgrade flag (which
activates Web-Recovery) is written before the OS-image is touched and
removed after write is succesfull, so this procedure should be safe.
Plug the power back in. It will come up in Recovery-Mode on 192.168.0.1.
When active, all LEDs but the WPS LED are off.
Remeber to assign yourself a static IP-address as DHCP is not active in
this mode.
The boot.bin can now be uploaded and flashed using the web-recovery.
Installing via TFTP
-------------------
Prepare an image like following (Filenames from factory image steps
apply here)
> dd if=/dev/zero of=tp_recovery.bin bs=196608 count=1
> dd if=tpl.bin of=tmp.bin bs=131584 count=1
> dd if=tmp.bin of=boot.bin bs=512 skip=1
> cat boot.bin >> tp_recovery.bin
> cat owrt.bin >> tp_recovery.bin
Place tp_recovery.bin in root directory of TFTP server and listen on
192.168.0.66/24.
Connect router LAN ports with your computer and power up the router
while pressing the reset button. The router will download the image via
tftp and after ~1 Minute reboot into OpenWRT.
U-Boot CLI
----------
U-Boot CLI can be activated by holding down '4' on bootup.
Dual U-Boot
-----------
This is the first TP-Link MediaTek device to feature a split-uboot
design. The first (factory-uboot) provides recovery via TFTP and HTTP,
jumping straight into the second (firmware-uboot) if no recovery needs
to be performed. The firmware-uboot unpacks and executed the kernel.
Web-Recovery
------------
TP-Link integrated a new Web-Recovery like the one on the Archer C7v4 /
TL-WR1043v5. Stock-firmware sets a flag in the "romfile" partition
before beginning to write and removes it afterwards. If the router boots
with this flag set, bootloader will automatically start Web-recovery and
listens on 192.168.0.1. This way, the vendor-firmware or an OpenWRT
factory image can be written.
By doing the same while performing sysupgrade, we can take advantage of
the Web-recovery in OpenWRT.
It is important to note that Web-Recovery is only based on this flag. It
can't detect e.g. a crashing kernel or other means. Once activated it
won't boot the OS before a recovery action (either via TFTP or HTTP) is
performed. This recovery-mode is indicated by an illuminated WPS-LED on
boot.
Signed-off-by: David Bauer <mail@david-bauer.net>
Specifications:
SOC: Qualcomm IPQ4018
RAM: 256 MiB Samsung K4B2G1646F-BYK0
FLASH1: MX25L1605D 2 MB
FLASH2: Winbond W25N01GV 128Mb
ETH: Qualcomm QCA8075
WLAN0: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2
WLAN1: Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2
INPUT: WPS, Reset
LED: Status - Green
SERIAL: Header at J19, Beneath DC Power Jack
1-VCC ; 2-TX ; 3-RX; 4-GND;
Serial 115200-8-N-1.
Tested and working:
- USB (requires extra packages)
- LAN Ethernet (Correct MAC-address)
- WAN Ethernet (Correct MAC-address)
- 2.4 GHz WiFi (Correct MAC-address)
- 5 GHz WiFi (Correct MAC-address)
- Factory installation from Web UI
- OpenWRT sysupgrade
- LED
- Reset Button
Need Testing:
- WPS button
Install via Web UI:
- Attach to a LAN port on the router.
- Connect to the Linksys Smart WiFi Page (default 192.168.1.1) and login
- Select the connectivity tab on the left
- In the manual update box on the right
- Select browse, and browse to
openwrt-ipq40xx-linksys_ea6350v3-squashfs-factory.bin
- Click update.
- Read and accept the warning
- The router LED will start blinking. When the router LED goes solid, you
can now navigate to 192.168.1.1 to your new OpenWrt installation.
Sysupgrade:
- Flash the sysupgrade image as usual. Please: try to do a reset everytime
you can (doing it with LuCI is easy and can be done in the same step).
Recovery (Automatic):
- If the device fails to boot after install or upgrade, whilst the unit is
turned on:
1 - Wait 15 seconds
2 - Switch Off and Wait 10 seconds
3 - Switch on
4 - Repeat steps 1 to 3, 3 times then go to 5.
5 - U-boot will have now erased the failed update and switched back to the
last working firmware - you should be able to access your router on
LAN.
Recovery (Manual):
- The steps for manual recovery are the same as the generic u-boot tftp
client method.
Back To Stock:
- Use the generic recovery using the tftp client method to flash the
"civic.img". Also you can strip-and-pad the original image and use
the generic "mtd" method by flashing over the "kernel" partition.
* Just be careful to flash in the partition that the device is currently
booted.
Signed-off-by: Ryan Pannell <ryan@osukl.com>
Signed-off-by: Oever González <notengobattery@gmail.com>
[minor edits, removed second compatible of nand, added dtb entry to 4.19]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Patch picked from commit 82618062cf
This enables 4B opcodes for MX25L25635F, to fix the reboot crash
issue (FS#1120) At least 3 devices are using this flash
- GeHua GHL-R-001
- Youku YK1
- Newifi D1
Now the MX25L25635F can be correctly detected without breaking MX25L25635E
[ 3.034324] spi-mt7621 1e000b00.spi: sys_freq: 220000000
[ 3.045962] m25p80 spi0.0: mx25l25635f (32768 Kbytes)
[ 3.056098] 4 fixed-partitions partitions found on MTD device spi0.0
[ 3.068748] Creating 4 MTD partitions on "spi0.0":
Signed-off-by: Deng Qingfang <dengqf6@mail2.sysu.edu.cn>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [added deprecation notice]
CPU: FSL P1020 (2x 800MHz E500 PPC)
RAM: 1GB DDR3
FLASH: 256MiB NAND
WiFi: 2x Atheros AR9382 2x2:2 abgn
ETH: 2x BCM54616S - 1x BCM53128 8-port switch
LED: 5x LEDs (Power, WiFi1, WiFi2, N/D, SYS)
BTN: 1x RESET
Installation
------------
1. Download initrams kernel image, dtb binary and sysupgrade image.
2. Place initramfs kernel into tftp root directory. Rename to
"panda-uimage-factory".
3. Place dtb binary into tftp root directory. Rename to "panda.fdt".
4. Start tftp server on 192.168.100.8/24.
5. Power up the device with the reset button pressed. It will download
the initrams and dtb via tftp and boot into OpenWRT in RAM.
6. SSH into the device and remove the factory partitions.
> ubirmvol /dev/ubi0 --name=kernel1
> ubirmvol /dev/ubi0 --name=rootfs1
> ubirmvol /dev/ubi0 --name=devicetree1
You will have around 60 MiB of free space with that.
You can also delete "kernel2", "devicetree2", "rootfs2" and "storage"
respectively in case you do not want to go back to the vendor firmware.
7. Modify the U-Boot bootcmd to allow for booting OpenWRT
> fw_setenv bootcmd_owrt "ubi part ubi && ubi read 0x1000000 kernel
&& bootm 0x1000000"
> fw_setenv bootargs_owrt "setenv bootargs console=ttyS0,115200
ubi.mtd=3,2048"
> fw_setenv bootcmd "run bootargs_owrt; run bootcmd_owrt"
8. Transfer the sysupgrade image via scp into the /tmp directory.
9. Upgrade the device
> sysupgrade -n /tmp/<imagename>
Signed-off-by: David Bauer <mail@david-bauer.net>
This commit removes the target-specific diag.sh script. This way, the
generic one is used for the target, which uses DT-aliases to specify the
LEDs used.
This way, we are also able to use different LEDs to indicate different
states. We use green status LEDs for indicating boot and a running
system. Where possible, the red status LED is used to indicate failsafe
mode and a running upgrade.
Signed-off-by: David Bauer <mail@david-bauer.net>