This backports a commit which fixes LEDs vor the RE200 like this:
Set power LED to gpio 43 instead of 44 for v3 and v4.
Set red wifi LED to gpio 40 (was assigned to `red:wifi5g`).
Tested by the author of the initial v3 and v4 commit.
Tested-by: Richard Fröhning <misanthropos@gmx.de>
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
(cherry picked from commit 02aa7a2bb9)
With initial support, the mapping of LAN1/WAN and LAN2 ports was
swapped. Fix it to match labels on the device, keeping the "WAN"
personality of the first port - in line with current state of DSA setup
in master for this device.
Tested-by: Marcin Gajda <mgajda@o2.pl>
Tested-by: Christian Heuff <christian@heuff.at>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Change GPIO from 10 to 35 to make it works as expected
Fixes: 0de6a3339f ("ipq40xx: Add ZTE MF289F")
Signed-off-by: Giammarco Marzano <stich86@gmail.com>
Reviewed-by: Robert Marko <robimarko@gmail.com>
(cherry picked from commit cd93980abb)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
It's a 4G Cat.20 router used by Vodafone Italy (called Vodafone FWA)
and Vodafone DE\T-Mobile PL (called GigaCube).
Modem is a MiniPCIe-to-USB based on Snapdragon X24,
it supports 4CA aggregation.
There are currently two hardware revisions, which
differ on the 5Ghz radio:
AT1 = QCA9984 5Ghz Radio on PCI-E bus
AT2 = IPQ4019 5Ghz Radio inside IPQ4019 like 2.4Ghz
Device specification
--------------------
SoC Type: Qualcomm IPQ4019
RAM: 256 MiB
Flash: 128 MiB SPI NAND (Winbond W25N01GV)
ROM: 2MiB SPI Flash (GD25Q16)
Wireless 2.4 GHz (IP4019): b/g/n, 2x2
Wireless 5 GHz:
(QCA9984): a/n/ac, 4x4 HW REV AT1
(IPA4019): a/n/ac, 2x2 HW REV AT2
Ethernet: 2xGbE (WAN/LAN1, LAN2)
USB ports: No
Button: 2 (Reset/WPS)
LEDs: 3 external leds: Network (white or red), Wifi, Power and 1 internal (blue)
Power: 12 VDC, 1 A
Connector type: Barrel
Bootloader: U-Boot
Installation
------------
1. Place OpenWrt initramfs image for the device on a TFTP
in the server's root. This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial connector
GND (which is right next to the thing with MF289F MIMO-V1.0), RX, TX
(refer to this image: https://ibb.co/31Gngpr).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. Stop in u-Boot (using ESC button) and run u-Boot commands:
setenv serverip 192.168.0.2
setenv ipaddr 192.168.0.1
set fdt_high 0x85000000
tftp openwrt-ipq40xx-generic-zte_mf289f-initramfs-fit-zImage.itb
bootm $loadaddr
5. Please make backup of original partitions, if you think about revert to
stock, specially mtd16 (Web UI) and mtd17 (rootFS).
Use /tmp as temporary storage and do:
WEB PARITION
--------------------------------------
cat /dev/mtd16 > /tmp/mtd16.bin
scp /tmp/mtd16.bin root@YOURSERVERIP:/
rm /tmp/mtd16.bin
ROOT PARITION
--------------------------------------
cat /dev/mtd17 > /tmp/mtd17.bin
scp /tmp/mtd17.bin root@YOURSERVERIP:/
rm /tmp/mtd17.bin
6. Login via ssh or serial and remove stock partitions
(default IP 192.168.0.1):
# this can return an error, if ubi was attached before
# or rootfs part was erased before.
ubiattach -m 17
# it could return error if rootfs part was erased before
ubirmvol /dev/ubi0 -N ubi_rootfs
# some devices doesn't have it
ubirmvol /dev/ubi0 -N ubi_rootfs_data
7. download and install image via sysupgrade -n
(either use wget/scp to copy the mf289f's squashfs-sysupgrade.bin
to the device's /tmp directory)
sysupgrade -n /tmp/openwrt-...-zte_mf289f-squashfs-sysupgrade.bin
Sometimes it could print ubi attach error, but please ignore it
if process goes forward.
Flash Layout
NAND:
mtd8: 000a0000 00020000 "fota-flag"
mtd9: 00080000 00020000 "0:ART"
mtd10: 00080000 00020000 "mac"
mtd11: 000c0000 00020000 "reserved2"
mtd12: 00400000 00020000 "cfg-param"
mtd13: 00400000 00020000 "log"
mtd14: 000a0000 00020000 "oops"
mtd15: 00500000 00020000 "reserved3"
mtd16: 00800000 00020000 "web"
mtd17: 01d00000 00020000 "rootfs"
mtd18: 01900000 00020000 "data"
mtd19: 03200000 00020000 "fota"
mtd20: 0041e000 0001f000 "kernel"
mtd21: 0101b000 0001f000 "ubi_rootfs"
SPI:
mtd0: 00040000 00010000 "0:SBL1"
mtd1: 00020000 00010000 "0:MIBIB"
mtd2: 00060000 00010000 "0:QSEE"
mtd3: 00010000 00010000 "0:CDT"
mtd4: 00010000 00010000 "0:DDRPARAMS"
mtd5: 00010000 00010000 "0:APPSBLENV"
mtd6: 000c0000 00010000 "0:APPSBL"
mtd7: 00050000 00010000 "0:reserved1"
Back to Stock (!!! need original dump taken from initramfs !!!)
-------------
1. Place mtd16.bin and mtd17.bin initramfs image
for the device on a TFTP in the server's root.
This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial console
connector (refer to the pin-out from above).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. rename mtd16.bin to web.img and mtd17.bin to root_uImage_s
5. Stop in u-Boot (using ESC button) and run u-Boot commands:
This will erase RootFS+Web:
nand erase 0x1000000 0x800000
nand erase 0x1800000 0x1D00000
This will restore RootFS:
tftpboot 0x84000000 ${dir}root_uImage_s
nand erase 0x1800000 0x1D00000
nand write $fileaddr 0x1800000 $filesize
This will restore Web Interface:
tftpboot 0x84000000 ${dir}web.img
nand erase 0x1000000 0x800000
nand write $fileaddr 0x1000000 $filesize
After first boot on stock firwmare, do a factory reset.
Push reset button for 5 seconds so all parameters will
be reverted to the one printed on label on bottom of the router
Signed-off-by: Giammarco Marzano <stich86@gmail.com>
Reviewed-by: Lech Perczak <lech.perczak@gmail.com>
(Warning: commit message did not conform to UTF-8 - hopefully fixed?,
added description of the pin-out if image goes down, reformatted
commit message to be hopefully somewhat readable on git-web,
redid some of the gpio-buttons & leds DT nodes, etc.)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
(cherry picked from commit 0de6a3339f)
[Backported to 22.03: added DTS to the makefile patch, fixed ipq-wifi
inclusion for MF286D]
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Manually rebased:
bcm53xx/patches-5.10/180-usb-xhci-add-support-for-performing-fake-doorbell.patch
All patches automatically rebased.
Signed-off-by: John Audia <therealgraysky@proton.me>
[Move gro_skip in 680-NET-skip-GRO-for-foreign-MAC-addresses.patch to old position]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
(cherry picked from commit aa2fa2eb76)
Recent backport patch b5cb5f352d had missed changing the macaddr_factory address location.
This patch corrects the address location.
Fixes: b5cb5f352d ("ramips: fix WAN mac address allocation for Unielec 01 and 06 models")
Signed-off-by: David Bentham <db260179@gmail.com>
[Fix dts node name too]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This should slightly improve performance thanks to the better cache
usage.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
(cherry picked from commit 6a02205a4d)
This gets rid of "nvmem-cells" limitation. Dynamic partitions can be
defined for any (sub)partitions layout.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
(cherry picked from commit 4eda414b09)
This fixes reference clock frequency of RB912. 25 MHz frequency leads
to system clock running too fast, uptime incrementing too fast and
delays (like `sleep 10`) returning too early.
Board has quartz with NSK 3KHAA Z 40 000 marking.
Signed-off-by: Pavel Kamaev <pavel@kamaev.me>
(cherry picked from commit a716ac5564)
Manufacturer has predetermined mac address values for lan and wan ports.
This change keeps inline with other mt7621 devices mac address allocation
from factory mtd partition.
Example from hexdump output:
0xe000 0x6 (lan) - 0xe006 0x6 (wan)
0000e000 70 b3 d5 10 02 96 70 b3 d5 10 02 95 ff ff ff ff
Previous change had created an overlapping mac address situation as it
would increment by one based on the lan mac address location found in the
factory partition, which would sometimes increment to the same as the
mt7603 wifi chip.
Tested on Unielec u7621-01 model
Signed-off-by: David Bentham <db260179@gmail.com>
(cherry picked from commit 67660d3667)
Fixes boot loader LZMA decompression issues.
Without this change the board end up in a boot loop.
Signed-off-by: Alex Khodin <mxktz1@gmail.com>
(cherry picked from commit f6099d7974)
On some of the hardware revisions of Asus RT-AC88U, brcmfmac detects the
4366b1 wireless chip and tries to load the firmware file which doesn't
exist because it's not included in the image.
Therefore, include firmware for 4366b1 along with 4366c0. This way, all
hardware revisions of the router will be supported by having brcmfmac use
the firmware file for the wireless chip it detects.
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
(cherry picked from commit 2b9bb5b187)
The generic imagebuilder does not have a generic in the name, although
this is the default naming scheme. Use bcm53xx as template for this fix.
Before the fix:
openwrt-imagebuilder-octeon.Linux-x86_64.tar.xz
After:
openwrt-imagebuilder-octeon-generic.Linux-x86_64.tar.xz
Signed-off-by: Nick Hainke <vincent@systemli.org>
(cherry picked from commit a67f484e67)
Ruckus ZoneFlex 7321 is a dual-band, single radio 802.11n 2x2 MIMO enterprise
access point. It is very similar to its bigger brother, ZoneFlex 7372.
Hardware highligts:
- CPU: Atheros AR9342 SoC at 533 MHz
- RAM: 64MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi: AR9342 built-in dual-band 2x2 MIMO radio
- Ethernet: single Gigabit Ethernet port through AR8035 gigabit PHY
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the 7321-U variant.
Serial console: 115200-8-N-1 on internal H1 header.
Pinout:
H1 ----------
|1|x3|4|5|
----------
Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX
JTAG: Connector H5, unpopulated, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:
------- H5
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------
3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected
Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
adapter, TFTP server, and removing a single T10 screw,
but with much less manual steps, and is generally recommended, being
safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
work on some rare versions of stock firmware. A more involved, and
requires installing `mkenvimage` from u-boot-tools package if you
choose to rebuild your own environment, but can be used without
disassembly or removal from installation point, if you have the
credentials.
If for some reason, size of your sysupgrade image exceeds 13312kB,
proceed with method [1]. For official images this is not likely to
happen ever.
[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
does not back-power the board, otherwise it will fail to boot.
1. Power-on the board. Then quickly connect serial converter to PC and
hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
you'll enter U-boot shell. Then skip to point 3.
Connection parameters are 115200-8-N-1.
2. Allow the board to boot. Press the reset button, so the board
reboots into U-boot again and go back to point 1.
3. Set the "bootcmd" variable to disable the dual-boot feature of the
system and ensure that uImage is loaded. This is critical step, and
needs to be done only on initial installation.
> setenv bootcmd "bootm 0x9f040000"
> saveenv
4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:
> setenv serverip 192.168.1.2
> setenv ipaddr 192.168.1.1
> tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7321-initramfs-kernel.bin
> bootm 0x81000000
5. Optional, but highly recommended: back up contents of "firmware" partition:
$ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7321_fw1_backup.bin
$ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7321_fw2_backup.bin
6. Copy over sysupgrade image, and perform actual installation. OpenWrt
shall boot from flash afterwards:
$ ssh root@192.168.1.1
# sysupgrade -n openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin
[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
it boots, hold the reset button near Ethernet connectors for 5
seconds.
1. Connect the device to the network. It will acquire address over DHCP,
so either find its address using list of DHCP leases by looking for
label MAC address, or try finding it by scanning for SSH port:
$ nmap 10.42.0.0/24 -p22
From now on, we assume your computer has address 10.42.0.1 and the device
has address 10.42.0.254.
2. Set up a TFTP server on your computer. We assume that TFTP server
root is at /srv/tftp.
3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
frmware is pretty ancient and requires enabling HMAC-MD5.
$ ssh 10.42.0.254 \
-o UserKnownHostsFile=/dev/null \
-o StrictHostKeyCheking=no \
-o MACs=hmac-md5
Login. User is "super", password is "sp-admin".
Now execute a hidden command:
Ruckus
It is case-sensitive. Copy and paste the following string,
including quotes. There will be no output on the console for that.
";/bin/sh;"
Hit "enter". The AP will respond with:
grrrr
OK
Now execute another hidden command:
!v54!
At "What's your chow?" prompt just hit "enter".
Congratulations, you should now be dropped to Busybox shell with root
permissions.
4. Optional, but highly recommended: backup the flash contents before
installation. At your PC ensure the device can write the firmware
over TFTP:
$ sudo touch /srv/tftp/ruckus_zf7321_firmware{1,2}.bin
$ sudo chmod 666 /srv/tftp/ruckus_zf7321_firmware{1,2}.bin
Locate partitions for primary and secondary firmware image.
NEVER blindly copy over MTD nodes, because MTD indices change
depending on the currently active firmware, and all partitions are
writable!
# grep rcks_wlan /proc/mtd
Copy over both images using TFTP, this will be useful in case you'd
like to return to stock FW in future. Make sure to backup both, as
OpenWrt uses bot firmwre partitions for storage!
# tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7321_firmware1.bin -p 10.42.0.1
# tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7321_firmware2.bin -p 10.42.0.1
When the command finishes, copy over the dump to a safe place for
storage.
$ cp /srv/tftp/ruckus_zf7321_firmware{1,2}.bin ~/
5. Ensure the system is running from the BACKUP image, i.e. from
rcks_wlan.bkup partition or "image 2". Otherwise the installation
WILL fail, and you will need to access mtd0 device to write image
which risks overwriting the bootloader, and so is not covered here
and not supported.
Switching to backup firmware can be achieved by executing a few
consecutive reboots of the device, or by updating the stock firmware. The
system will boot from the image it was not running from previously.
Stock firmware available to update was conveniently dumped in point 4 :-)
6. Prepare U-boot environment image.
Install u-boot-tools package. Alternatively, if you build your own
images, OpenWrt provides mkenvimage in host staging directory as well.
It is recommended to extract environment from the device, and modify
it, rather then relying on defaults:
$ sudo touch /srv/tftp/u-boot-env.bin
$ sudo chmod 666 /srv/tftp/u-boot-env.bin
On the device, find the MTD partition on which environment resides.
Beware, it may change depending on currently active firmware image!
# grep u-boot-env /proc/mtd
Now, copy over the partition
# tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1
Store the stock environment in a safe place:
$ cp /srv/tftp/u-boot-env.bin ~/
Extract the values from the dump:
$ strings u-boot-env.bin | tee u-boot-env.txt
Now clean up the debris at the end of output, you should end up with
each variable defined once. After that, set the bootcmd variable like
this:
bootcmd=bootm 0x9f040000
You should end up with something like this:
bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
mtdids=nor0=ar7100-nor0
bootdelay=2
ethact=eth0
filesize=78a000
fileaddr=81000000
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
ipaddr=10.0.0.1
serverip=10.0.0.5
stdin=serial
stdout=serial
stderr=serial
These are the defaults, you can use most likely just this as input to
mkenvimage.
Now, create environment image and copy it over to TFTP root:
$ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
$ sudo cp u-boot-env.bin /srv/tftp
This is the same image, gzipped and base64-encoded:
H4sIAAAAAAAAA+3QQW7TQBQAUF8EKRtQI6XtJDS0VJoN4gYcAE3iCbWS2MF2Sss1ORDYqVq6YMEB3rP0
Z/7Yf+aP3/56827VNP16X8Zx3E/Cw8dNuAqDYlxI7bcurpu6a3Y59v3jlzCbz5eLECbt8HbT9Y+HHLvv
x9TdbbpJVVd9vOxWVX05TotVOpZt6nN8qilyf5fKso3hIYTb8JDSEFarIazXQyjLIeRc7PvykNq+iy+T
1F7PQzivmzbcLpYftmfH87G56Wz+/v18sT1r19vu649dqi/2qaqns0W4utmelalPm27I/lac5/p+OluO
NZ+a1JaTz8M3/9hmtT0epmMjVdnF8djXLZx+TJl36TEuTlda93EYQrGpdrmrfuZ4fZPGHzjmp/vezMNJ
MV6n6qumPm06C+MRZb6vj/v4Mk/7HJ+6LarDqXweLsZnXnS5vc9tdXheWRbd0GIdh/Uq7cakOfavsty2
z1nxGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAD+1x9eTkHLAAAEAA==
7. Perform actual installation. Copy over OpenWrt sysupgrade image to
TFTP root:
$ sudo cp openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin /srv/tftp
Now load both to the device over TFTP:
# tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
# tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin -g 10.42.0.1
Vverify checksums of both images to ensure the transfer over TFTP
was completed:
# sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin
And compare it against source images:
$ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin
Locate MTD partition of the primary image:
# grep rcks_wlan.main /proc/mtd
Now, write the images in place. Write U-boot environment last, so
unit still can boot from backup image, should power failure occur during
this. Replace MTD placeholders with real MTD nodes:
# flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
# flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>
Finally, reboot the device. The device should directly boot into
OpenWrt. Look for the characteristic power LED blinking pattern.
# reboot -f
After unit boots, it should be available at the usual 192.168.1.1/24.
Return to factory firmware:
1. Boot into OpenWrt initramfs as for initial installation. To do that
without disassembly, you can write an initramfs image to the device
using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
before installation:
mtd write ruckus_zf7321_fw1_backup.bin /dev/mtd1
mtd write ruckus_zf7321_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.
Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
partitions for storage using mtd-concat, and uImage format is used to
actually boot the system, which rules out the dual-boot capability.
- The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
OpenWrt by choice.
It is controlled by data in the top 64kB of RAM which is unmapped,
to avoid the interference in the boot process and accidental
switch to the inactive image, although boot script presence in
form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
execute the following command before booting:
mw.l 1804006c 40
And also you need to disable the reset button in device tree if you
intend to debug Linux, because reset button on GPIO0 shares the TCK
pin.
- On some versions of stock firmware, it is possible to obtain root shell,
however not much is available in terms of debugging facitilies.
1. Login to the rkscli
2. Execute hidden command "Ruckus"
3. Copy and paste ";/bin/sh;" including quotes. This is required only
once, the payload will be stored in writable filesystem.
4. Execute hidden command "!v54!". Press Enter leaving empty reply for
"What's your chow?" prompt.
5. Busybox shell shall open.
Source: https://alephsecurity.com/vulns/aleph-2019014
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit f1d112ee5a)
Ruckus ZoneFlex 7372 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point.
Ruckus ZoneFlex 7352 is also supported, lacking the 5GHz radio part.
Hardware highligts:
- CPU: Atheros AR9344 SoC at 560 MHz
- RAM: 128MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: AR9344 built-in 2x2 MIMO radio
- Wi-Fi 5Ghz: AR9582 2x2 MIMO radio (Only in ZF7372)
- Antennas:
- Separate internal active antennas with beamforming support on both
bands with 7 elements per band, each controlled by 74LV164 GPIO
expanders, attached to GPIOs of each radio.
- Two dual-band external RP-SMA antenna connections on "7372-E"
variant.
- Ethernet 1: single Gigabit Ethernet port through AR8035 gigabit PHY
- Ethernet 2: single Fast Ethernet port through AR9344 built-in switch
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on "-U" variants.
The same image should support:
- ZoneFlex 7372E (variant with external antennas, without beamforming
capability)
- ZoneFlex 7352 (single-band, 2.4GHz-only variant).
which are based on same baseboard (codename St. Bernard),
with different populated components.
Serial console: 115200-8-N-1 on internal H1 header.
Pinout:
H1
---
|5|
---
|4|
---
|3|
---
|x|
---
|1|
---
Pin 5 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX
JTAG: Connector H2, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:
------- H2
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------
3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected
Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
adapter, TFTP server, and removing a single T10 screw,
but with much less manual steps, and is generally recommended, being
safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
work on some rare versions of stock firmware. A more involved, and
requires installing `mkenvimage` from u-boot-tools package if you
choose to rebuild your own environment, but can be used without
disassembly or removal from installation point, if you have the
credentials.
If for some reason, size of your sysupgrade image exceeds 13312kB,
proceed with method [1]. For official images this is not likely to
happen ever.
[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
does not back-power the board, otherwise it will fail to boot.
1. Power-on the board. Then quickly connect serial converter to PC and
hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
you'll enter U-boot shell. Then skip to point 3.
Connection parameters are 115200-8-N-1.
2. Allow the board to boot. Press the reset button, so the board
reboots into U-boot again and go back to point 1.
3. Set the "bootcmd" variable to disable the dual-boot feature of the
system and ensure that uImage is loaded. This is critical step, and
needs to be done only on initial installation.
> setenv bootcmd "bootm 0x9f040000"
> saveenv
4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:
> setenv serverip 192.168.1.2
> setenv ipaddr 192.168.1.1
> tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7372-initramfs-kernel.bin
> bootm 0x81000000
5. Optional, but highly recommended: back up contents of "firmware" partition:
$ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7372_fw1_backup.bin
$ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7372_fw2_backup.bin
6. Copy over sysupgrade image, and perform actual installation. OpenWrt
shall boot from flash afterwards:
$ ssh root@192.168.1.1
# sysupgrade -n openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin
[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
it boots, hold the reset button near Ethernet connectors for 5
seconds.
1. Connect the device to the network. It will acquire address over DHCP,
so either find its address using list of DHCP leases by looking for
label MAC address, or try finding it by scanning for SSH port:
$ nmap 10.42.0.0/24 -p22
From now on, we assume your computer has address 10.42.0.1 and the device
has address 10.42.0.254.
2. Set up a TFTP server on your computer. We assume that TFTP server
root is at /srv/tftp.
3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
frmware is pretty ancient and requires enabling HMAC-MD5.
$ ssh 10.42.0.254 \
-o UserKnownHostsFile=/dev/null \
-o StrictHostKeyCheking=no \
-o MACs=hmac-md5
Login. User is "super", password is "sp-admin".
Now execute a hidden command:
Ruckus
It is case-sensitive. Copy and paste the following string,
including quotes. There will be no output on the console for that.
";/bin/sh;"
Hit "enter". The AP will respond with:
grrrr
OK
Now execute another hidden command:
!v54!
At "What's your chow?" prompt just hit "enter".
Congratulations, you should now be dropped to Busybox shell with root
permissions.
4. Optional, but highly recommended: backup the flash contents before
installation. At your PC ensure the device can write the firmware
over TFTP:
$ sudo touch /srv/tftp/ruckus_zf7372_firmware{1,2}.bin
$ sudo chmod 666 /srv/tftp/ruckus_zf7372_firmware{1,2}.bin
Locate partitions for primary and secondary firmware image.
NEVER blindly copy over MTD nodes, because MTD indices change
depending on the currently active firmware, and all partitions are
writable!
# grep rcks_wlan /proc/mtd
Copy over both images using TFTP, this will be useful in case you'd
like to return to stock FW in future. Make sure to backup both, as
OpenWrt uses bot firmwre partitions for storage!
# tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7372_firmware1.bin -p 10.42.0.1
# tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7372_firmware2.bin -p 10.42.0.1
When the command finishes, copy over the dump to a safe place for
storage.
$ cp /srv/tftp/ruckus_zf7372_firmware{1,2}.bin ~/
5. Ensure the system is running from the BACKUP image, i.e. from
rcks_wlan.bkup partition or "image 2". Otherwise the installation
WILL fail, and you will need to access mtd0 device to write image
which risks overwriting the bootloader, and so is not covered here
and not supported.
Switching to backup firmware can be achieved by executing a few
consecutive reboots of the device, or by updating the stock firmware. The
system will boot from the image it was not running from previously.
Stock firmware available to update was conveniently dumped in point 4 :-)
6. Prepare U-boot environment image.
Install u-boot-tools package. Alternatively, if you build your own
images, OpenWrt provides mkenvimage in host staging directory as well.
It is recommended to extract environment from the device, and modify
it, rather then relying on defaults:
$ sudo touch /srv/tftp/u-boot-env.bin
$ sudo chmod 666 /srv/tftp/u-boot-env.bin
On the device, find the MTD partition on which environment resides.
Beware, it may change depending on currently active firmware image!
# grep u-boot-env /proc/mtd
Now, copy over the partition
# tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1
Store the stock environment in a safe place:
$ cp /srv/tftp/u-boot-env.bin ~/
Extract the values from the dump:
$ strings u-boot-env.bin | tee u-boot-env.txt
Now clean up the debris at the end of output, you should end up with
each variable defined once. After that, set the bootcmd variable like
this:
bootcmd=bootm 0x9f040000
You should end up with something like this:
bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
bootdelay=2
mtdids=nor0=ar7100-nor0
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
ethact=eth0
filesize=1000000
fileaddr=81000000
ipaddr=192.168.0.7
serverip=192.168.0.51
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
stdin=serial
stdout=serial
stderr=serial
These are the defaults, you can use most likely just this as input to
mkenvimage.
Now, create environment image and copy it over to TFTP root:
$ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
$ sudo cp u-boot-env.bin /srv/tftp
This is the same image, gzipped and base64-encoded:
H4sIAAAAAAAAA+3QTW7TQBQAYB+AQ2TZSGk6Tpv+SbNBrNhyADSJHWolsYPtlJaDcAWOCXaqQhdIXOD7
Fm/ee+MZ+/nHu58fV03Tr/dFHNf9JDzdbcJVGGRjI7Vfurhu6q7ZlbHvnz+FWZ4vFyFM2mF30/XPhzJ2
X4+pe9h0k6qu+njRrar6YkyzVToWberL+HImK/uHVBRtDE8h3IenlIawWg1hvR5CUQyhLE/vLcpdeo6L
bN8XVdHFumlDTO1NHsL5mI/9Q2r7Lv5J3uzeL5bX27Pj+XjRdJZfXuaL7Vm73nafv+1SPd+nqp7OFuHq
dntWpD5tuqH6e+K8rB+ns+V45n2T2mLyYXjmH9estsfD9DTSuo/DErJNtSu76vswbjg5NU4D3752qsOp
zu8W8/z6dh7mN1lXto9lWx3eNJd5Ng5V9VVTn2afnSYuysf6uI9/8rQv48s3Z93wn+o4XFWl3Vg0x/5N
Vbbta5X9AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAID/+Q2Z/B7cAAAEAA==
7. Perform actual installation. Copy over OpenWrt sysupgrade image to
TFTP root:
$ sudo cp openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin /srv/tftp
Now load both to the device over TFTP:
# tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
# tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin -g 10.42.0.1
Verify checksums of both images to ensure the transfer over TFTP
was completed:
# sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin
And compare it against source images:
$ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin
Locate MTD partition of the primary image:
# grep rcks_wlan.main /proc/mtd
Now, write the images in place. Write U-boot environment last, so
unit still can boot from backup image, should power failure occur during
this. Replace MTD placeholders with real MTD nodes:
# flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
# flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>
Finally, reboot the device. The device should directly boot into
OpenWrt. Look for the characteristic power LED blinking pattern.
# reboot -f
After unit boots, it should be available at the usual 192.168.1.1/24.
Return to factory firmware:
1. Boot into OpenWrt initramfs as for initial installation. To do that
without disassembly, you can write an initramfs image to the device
using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
before installation:
mtd write ruckus_zf7372_fw1_backup.bin /dev/mtd1
mtd write ruckus_zf7372_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.
Quirks and known issues:
- This is first device in ath79 target to support link state reporting
on FE port attached trough the built-in switch.
- Flash layout is changed from the factory, to use both firmware image
partitions for storage using mtd-concat, and uImage format is used to
actually boot the system, which rules out the dual-boot capability.
The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
OpenWrt by choice.
It is controlled by data in the top 64kB of RAM which is unmapped,
to avoid the interference in the boot process and accidental
switch to the inactive image, although boot script presence in
form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
execute the following command before booting:
mw.l 1804006c 40
And also you need to disable the reset button in device tree if you
intend to debug Linux, because reset button on GPIO0 shares the TCK
pin.
- On some versions of stock firmware, it is possible to obtain root shell,
however not much is available in terms of debugging facitilies.
1. Login to the rkscli
2. Execute hidden command "Ruckus"
3. Copy and paste ";/bin/sh;" including quotes. This is required only
once, the payload will be stored in writable filesystem.
4. Execute hidden command "!v54!". Press Enter leaving empty reply for
"What's your chow?" prompt.
5. Busybox shell shall open.
Source: https://alephsecurity.com/vulns/aleph-2019014
- Stock firmware has beamforming functionality, known as BeamFlex,
using active multi-segment antennas on both bands - controlled by
RF analog switches, driven by a pair of 74LV164 shift registers.
Shift registers used for each radio are connected to GPIO14 (clock)
and GPIO15 of the respective chip.
They are mapped as generic GPIOs in OpenWrt - in stock firmware,
they were most likely handled directly by radio firmware,
given the real-time nature of their control.
Lack of this support in OpenWrt causes the antennas to behave as
ordinary omnidirectional antennas, and does not affect throughput in
normal conditions, but GPIOs are available to tinker with nonetheless.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit 59cb4dc91d)
This fixes a well known "LZMA ERROR 1" error, reported previously on
numerous of similar devices.
Fixes: #10645
Signed-off-by: Petr Štetiar <ynezz@true.cz>
(cherry picked from commit 7dd1cab1c1)
Add the spi-loader as a pre-kernel stage, so we can lift the kernel size
limit.
Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
(cherry picked from commit 2fa53c9214)
Similar to the lzma-loader on our MIPS targets, the spi-loader acts as
a second-stage loader that will then load and start the actual kernel.
As the TL-WDR4900 uses SPI-NOR and the P1010 family does not have support
for memory mapping of this type of flash, this loader needs to contain a
basic driver for the FSL ESPI controller.
Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
(cherry picked from commit a296055b82)
Hardware
--------
CPU: Mediatek MT7621
RAM: 256M DDR3
FLASH: 128M NAND
ETH: 1x Gigabit Ethernet
WiFi: Mediatek MT7915 (2.4/5GHz 802.11ax 2x2 DBDC)
BTN: 1x Reset (NWA50AX only)
LED: 1x Multi-Color (NWA50AX only)
UART Console
------------
NWA50AX:
Available below the rubber cover next to the ethernet port.
NWA55AXE:
Available on the board when disassembling the device.
Settings: 115200 8N1
Layout:
<12V> <LAN> GND-RX-TX-VCC
Logic-Level is 3V3. Don't connect VCC to your UART adapter!
Installation Web-UI
-------------------
Upload the Factory image using the devices Web-Interface.
As the device uses a dual-image partition layout, OpenWrt can only
installed on Slot A. This requires the current active image prior
flashing the device to be on Slot B.
If the currently installed image is started from Slot A, the device will
flash OpenWrt to Slot B. OpenWrt will panic upon first boot in this case
and the device will return to the ZyXEL firmware upon next boot.
If this happens, first install a ZyXEL firmware upgrade of any version
and install OpenWrt after that.
Installation TFTP
-----------------
This installation routine is especially useful in case
* unknown device password (NWA55AXE lacks reset button)
* bricked device
Attach to the UART console header of the device. Interrupt the boot
procedure by pressing Enter.
The bootloader has a reduced command-set available from CLI, but more
commands can be executed by abusing the atns command.
Boot a OpenWrt initramfs image available on a TFTP server at
192.168.1.66. Rename the image to owrt.bin
$ atnf owrt.bin
$ atna 192.168.1.88
$ atns "192.168.1.66; tftpboot; bootm"
Upon booting, set the booted image to the correct slot:
$ zyxel-bootconfig /dev/mtd10 get-status
$ zyxel-bootconfig /dev/mtd10 set-image-status 0 valid
$ zyxel-bootconfig /dev/mtd10 set-active-image 0
Copy the OpenWrt ramboot-factory image to the device using scp.
Write the factory image to NAND and reboot the device.
$ mtd write ramboot-factory.bin firmware
$ reboot
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit a0b7fef0ff)
Avoid flooding the log with the message below by increasing the log
level to debug:
mt7621-nand 1e003000.nand: Using programmed access timing: 31c07388
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
(cherry-picked from commit 89c1959251)
The patch was rejected by upstream. The mtk_nand driver should be
modified to support the mt7621 flash controller instead. As there is no
newer version to backport, or no upstream version to fix bugs, let's
move the driver to the files dir under the ramips target. This makes it
easier to make changes to the driver while waiting for mt7621 support to
land in mtk_nand.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
(cherry-picked from commit 2f2e81a4ea)
Change the partition name accordingly. Same behavior as mtdsplit_uimage
Signed-off-by: Felix Fietkau <nbd@nbd.name>
(cherry-picked from commit 62fd9f9709)
kernel spi-nand driver leaves this field empty and let mtd set it later.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
(cherry-picked from commit 6fa50e26e7)
This NAND flash remapping method is used on newer MediaTek devices with NAND
flash.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
(cherry-picked from commit 06382d1af7)
Copy from the previously mapped block (in case it was remapped already)
Signed-off-by: Felix Fietkau <nbd@nbd.name>
(cherry-picked from commit 7d1e2be160)
Used by the mapping implementation to indicate that no backing block is
available
Signed-off-by: Felix Fietkau <nbd@nbd.name>
(cherry-picked from commit b4c7f8c5f7)
Everywhere else the device is referred to as WS-AP3805i,
only the model name wrongly only said AP3805i.
Signed-off-by: Tom Herbers <mail@tomherbers.de>
(cherry picked from commit 7d6032f310)
Devices with SMALL_FLASH enabled have "SQUASHFS_BLOCK_SIZE=1024" in
their config. This significantly increases the cache memory required by
squashfs [0]. This commit enables low_mem leading to a much better
performance because the SQUASHFS_BLOCK_SIZE is reduced to 256.
Example Nanostation M5 (XM):
The image size increases by 128 KiB. However, the memory statisitcs look
much better:
Default tiny build:
------
MemTotal: 26020 kB
MemFree: 5648 kB
MemAvailable: 6112 kB
Buffers: 0 kB
Cached: 3044 kB
low_mem enabled:
-----
MemTotal: 26976 kB
MemFree: 6748 kB
MemAvailable: 11504 kB
Buffers: 0 kB
Cached: 7204 kB
[0] - 7e8af99cf5
Signed-off-by: Nick Hainke <vincent@systemli.org>
(cherry picked from commit f54ac98f8c)
ath79 has was bumped to 5.10. With this, as with every kernel change,
the kernel has become larger. However, although the kernel gets bigger,
there are still enough flash resources. But the RAM reaches its capacity
limits. The tiny image comes with fewer kernel flags enabled and
fewer daemons.
Improves: 15aa53d7ee ("ath79: switch to Kernel 5.10")
Tested-by: Robert Foss <me@robertfoss.se>
Signed-off-by: Nick Hainke <vincent@systemli.org>
(cherry picked from commit f4415f7635)
The device has only 1 WAN + 3 LAN ports. Remove "lan4" interface
corresponding to the non-existing port.
Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
(cherry picked from commit 149fc3a269)
At some point after 21.02.3 and before 22.03.0, the size limits of the
Linksys RE6500 were reached and prevent booting from the 22.03.0 release
or builds of current SNAPSHOT. This patch allows builds of master to boot
again and has been tested on my device.
Fixes: #8577
Signed-off-by: Mark King <mark@vemek.co>
(cherry picked from commit bf5b1a53d4)
When we use the internal toolchain USE_SSTRIP will be selected by
default for musl libc and USE_STRIP when glibc is used. Do the same when
an external toolchain is used. USE_GLIBC will also be set for external
toolchain builds based on the EXTERNAL_TOOLCHAIN_LIBC_USE_GLIBC setting.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
(cherry picked from commit 9403810c02)
Watchdog and poe_passthrough gpios require the jtag disabled.
Signed-off-by: Santiago Piccinini <spiccinini@altermundi.net>
(cherry picked from commit 2ad949b11d)
Fixes build warnings when using newer versions of grep.
Signed-off-by: Chris Osgood <chris_github@functionalfuture.com>
Tested-by: Georgi Valkov <gvalkov@gmail.com>
(cherry picked from commit c5e167e0d6)
[ fix conflict error ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
- fix including modules.mk when a target is being replaced
- fix calling make targets from target/linux
Signed-off-by: Felix Fietkau <nbd@nbd.name>
(cherry-picked from commit 3a8825ad6a)
Backports Linux kernel patch [1] for kernel 5.10 where it applies cleanly.
This was tested on CZ.NIC Turris 1.1 router running OpenWrt 22.03
release.
Before:
- In /var/log/messages:
```
[ 16.392988] lm90 0-004c: cannot request IRQ 48
[ 16.398280] lm90: probe of 0-004c failed with error -22
```
- Sensors does not work:
```
root@turris:~# sensors
No sensors found!
Make sure you loaded all the kernel drivers you need.
Try sensors-detect to find out which these are.
```
After:
```
root@turris:/# sensors
sa56004-i2c-0-4c
Adapter: MPC adapter (i2c@3000)
temp1: +44.0°C (low = +0.0°C, high = +70.0°C)
(crit = +85.0°C, hyst = +75.0°C)
temp2: +73.8°C (low = +0.0°C, high = +70.0°C) ALARM (HIGH)
(crit = +85.0°C, hyst = +75.0°C)
```
[1] https://lore.kernel.org/linux-gpio/20220906105431.30911-1-pali@kernel.org/
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
(cherry picked from commit 2f496c34b6)
(c&p commit ID from openwrt's master)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Broadcom's U-Boot contains environment data blocks. They need to be
found (offsets aren't predefined) to access env variables.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
(cherry picked from commit 137149847d)
When the v1 and v2 variants of the U6LR were introduced, the board
network config was not adapted to the new device names. Due to this, the
wrong network config is applied during initial boot. The resulting
config has lan, wan and a switch, while this device only has a single
ethernet interface without a switch.
Fix this by using a wildcard that matches all the variants.
Fixes: 15a02471bb ("mediatek: new target mt7622-ubnt-unifi-6-lr-v1")
Fixes: 5c8d3893a7 ("mediatek: new target ubnt_unifi-6-lr-v1-ubootmod")
Fixes: 31d86a1a11 ("mediatek: add Ubiquiti UniFi 6 LR v2 targets")
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Acked-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 117f41ee95)
Serge Vasilugin reports:
To improve mt7620 built-in wifi performance some changes:
1. Correct BW20/BW40 switching (see comments with mark (1))
2. Correct TX_SW_CFG1 MAC reg from v3 of vendor driver see
https://gitlab.com/dm38/padavan-ng/-/blob/master/trunk/proprietary/rt_wifi/rtpci/3.0.X.X/mt76x2/chips/rt6352.c#L531
3. Set bbp66 for all chains.
4. US_CYC_CNT init based on Programming guide, default value was 33 (pci),
set chipset bus clock with fallback to cpu clock/3.
5. Don't overwrite default values for mt7620.
6. Correct some typos.
7. Add support for external LNA:
a) RF and BBP regs never be corrected for this mode
b) eLNA is driven the same way as ePA with mt7620's pin PA
but vendor driver explicitly pin PA to gpio mode (for forrect calibration?)
so I'm not sure that request for pa_pin in dts-file will be enough
First 5 changes (really 2) improve performance for boards w/o eLNA/ePA.
Changes 7 add support for eLNA
Configuration w/o eLAN/ePA and with eLNA show results
tx/rx (from router point of view) for each stream:
35-40/30-35 Mbps for HT20
65-70/60-65 Mbps for HT40
Yes. Max results for 2T2R client is 140-145/135-140
with peaks 160/150, It correspond to mediatek driver results.
Boards with ePA untested.
Reported-by: Serge Vasilugin <vasilugin@yandex.ru>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
[directly include v3 of the patchset submitted upstream]
(cherry picked from commit 31a6605de0)
(cherry picked from commit e785ca05e9)
(cherry picked from commit 412fcf3d44)
The RGB LED of the UniFi 6 LR v1 doesn't work when using the Openwrt-
built U-Boot. This is because the vendor loader resets the ledbar
controller while our U-Boot doesn't care.
Add reset-gpio so the ledbar driver in Linux will always reset the
ledbar controller.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 0b5cf952cf)
Hardware
--------
- SoC: MediaTek MT7621AT with 128 MiB RAM and 32 MiB Flash
- Wi-Fi: MediaTek MT7603 (b/g/n, 2x2) and MediaTek MT7615 (ac, 4x4)
- Bluetooth: CSR8811 (internal USB, install kmod-bluetooth)
Installation
------------
1. Connect to the booted device at 192.168.1.20 using username/password
"ubnt".
2. Update the bootloader environment.
$ fw_setenv devmode TRUE
$ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr);
fdt rm /signature; bootubnt"
$ fw_setenv bootcmd "run boot_openwrt"
3. Transfer the OpenWrt sysupgrade image to the device using SCP.
4. Check the mtd partition number for bs / kernel0 / kernel1
$ cat /proc/mtd
5. Set the bootselect flag to boot from kernel0
$ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4
6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1
$ dd if=openwrt.bin of=/dev/mtdblock6
$ dd if=openwrt.bin of=/dev/mtdblock7
7. Reboot the device. It should boot into OpenWrt.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
(cherry picked from commit 820f0c07c5)
The patch adding support for LEDs connected to a reset controller did
not apply any more, refresh it on top of current master.
Fixes: 53fc987b25 ("generic: move ledbar driver from mediatek target")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 76fc277917)
This moves the ledbar driver to generic, to be also used by the ramips target.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
(cherry picked from commit 53fc987b25)
The LEDs connected to the MCU are so-called smart LEDs and their signal is
daisy-chained. Because of this, the MCU needs to be told how many LEDs are
connected. It also means the LEDs could be individually controlled, if the MCU
has a command for this.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
(cherry picked from commit 76198e8f09)
During GPIO initialization the pin state flips and triggers a reset of
the ledbar MCU. It needs to be moved through an initialization sequence
before working correctly.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
(cherry picked from commit 013a956f08)
Some versions of the ledbar MCU have a reset pin. It needs to be
correctly initialized or we might keep the MCU in reset state.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
(cherry picked from commit 84e4bbf5f0)
There are commands that return more than one byte of response.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
(cherry picked from commit 7c852e7df5)
Or the comparison against a signed char is always true, because the
literal 0xaa is treated as an unsigned int, to which the signed char is
casted during comparison. 0xaa is above the positive values of a signed
char and negative signed char values result in values larger than 0xaa
when casted to unsigned int.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
(cherry picked from commit e9a22ce253)
The read response is in the i2c_response variable. Also use %hhx format,
because we're dealing with a single char.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
(cherry picked from commit c4f9f9b44c)
Janusz Dziedzic reported a typo introduced by a recent commit. Fix it.
Fixes: 50c892d67b ("mediatek: bpi-r64: make initramfs/recovery optional")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 007c8809c1)
Only include recovery image in SD card image generated for the
BananaPi BPi-R64 if building with CONFIG_TARGET_ROOTFS_INITRAMFS
This allows to build images larger than 32 MB (the limit for
initramfs/recovery image) by deselecting initramfs.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 50c892d67b)
Add the missing LEDs for GB-PC2. Some of these LEDs don't exist on the
device schematics. Tests on a GB-PC2 by me and Petr proved otherwise.
Remove ethblack-green and ethblue-green LEDs for GB-PC1. They are not wired
to GPIO 3 or 4 and the wiring is currently unknown.
Set ethyellow-orange to display link state and activity of the ethyellow
interface for GB-PC2.
Link: https://github.com/ngiger/GnuBee_Docs/blob/master/GB-PCx/Documents/GB-PC2_V1.1_schematic.pdf
Tested-by: Petr Louda <petr.louda@outlook.cz>
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
(cherry picked from commit 2a6ef7f53d)
Backport upstream solution that permits to declare nvmem cells with
dynamic partition defined by special parser.
This provide an OF node for NVMEM and connect it to the defined dynamic
partition.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
(cherry picked from commit 1a9ee36734)
Add the aliases sections required to detect LEDs specific to OpenWrt
boot / update indication for the NanoPi R4S.
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 1588069612)
Ensure the MAC address for all NanoPi R4S boards is assigned unique for
each board.
FriendlyElec ship two versions of the R4S: The standard as well as the
enterprise edition with only the enterprise edition including the EEPROM
chip that stores the unique MAC address.
In order to assign both board types unique MAC addresses, fall back on
the same method used for the NanoPi R2S in case the EEPROM chip is not
present by generating the board MAC from the SD card CID.
[0] https://wiki.friendlyelec.com/wiki/index.php/NanoPi_R4S#Differences_Between_R4S_Standard_Version_.26_R4S_Enterprise_Version
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit b5675f500d)
The previous fixup was incomplete, and the offsets for the
queue and crc_error cpu_tag bitfields were still wrong on
RTL839x.
Fixes: 545c6113c9 ("realtek: fix RTL838x receive tag decoding")
Suggested-by: Jan Hoffmann <jan@3e8.eu>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Add LTE packages required for operating the LTE modem optionally shipped
with the GL-AP1300.
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit c7c3509226)
Add support for the ZTE MF281 battery-powered WiFi router.
Hardware
--------
SoC: Qualcomm Atheros QCA9563
RAM: 128M DDR2
FLASH: 2M SPI-NOR (GigaDevice GD25Q16)
128M SPI-NAND (GigaDevice)
WLAN: QCA9563 2T2R 802.11 abgn
QCA9886 2T2R 802.11 nac
WWAN: ASRMicro ASR1826
ETH: Qualcomm Atheros QCA8337
UART: 115200 8n1
Unpopulated connector next to SIM slot
(SIM) GND - RX - TX - 3V3
Don't connect 3V3
BUTTON: Reset - WPS
LED: 1x debug-LED (internal)
LEDs on front of the device are controlled
using the modem CPU and can not be controlled
by OpenWrt
Installation
------------
1. Connect to the serial console. Power up the device and interrupt
autoboot when prompted
2. Connect a TFTP server reachable at 192.168.1.66 to the ethernet port.
Serve the OpenWrt initramfs image as "speedbox-2.bin"
3. Boot the initramfs image using U-Boot
$ setenv serverip 192.168.1.66
$ setenv ipaddr 192.168.1.154
$ tftpboot 0x84000000 speedbox-2.bin
$ bootm
4. Copy the OpenWrt factory image to the device using scp and write to
the NAND flash
$ mtd write /path/to/openwrt/factory.bin firmware
WWAN
----
The WWAN card can be used with OpenWrt. Example configuration for
connection with a unauthenticated dual-stack APN:
network.lte=interface
network.lte.proto='ncm'
network.lte.device='/dev/ttyACM0'
network.lte.pdptype='IPV4V6'
network.lte.apn='internet.telekom'
network.lte.ipv6='auto'
network.lte.delay='10'
The WWAN card is running a modified version of OpenWrt and handles
power-management as well as the LED controller (AW9523). A root shell
can be acquired by installing adb using opkg and executing "adb shell".
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 1e1695f959)
Commit dc9cc0d3e2 ("realtek: add QoS and rate control") replaced a
16 bit reserved field in the RTL83xx packet header with the initial
cpu_tag word, shifting the real cpu_tag fields by one. Adjusting for
this new shift was partially forgotten in the new RX tag decoders.
This caused the switch to block IGMP, effectively blocking IPv4
multicast.
The bug was partially fixed by commit 9d847244d9 ("realtek: fix
RTL839X receive tag decoding")
Fix on RTL838x too, including correct NIC_RX_REASON_SPECIAL_TRAP value.
Suggested-by: Jan Hoffmann <jan@3e8.eu>
Fixes: dc9cc0d3e2 ("realtek: add QoS and rate control")
Signed-off-by: Bjørn Mork <bjorn@mork.no>
(cherry picked from commit 545c6113c9)
Make sure the compatible string in DTS matches the now v1/v2
differentiated board name in target/linux/mediatek/image/mt7622.mk.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit be555b9dd8)
Make use of minor sector size (4k) on supported SPI-NOR flash chips.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 51f4c84178)
As of upstream Linux commit 0fe1e96fef0a ("powerpc/pci: Prefer PCI
domain assignment via DT 'linux,pci-domain' and alias"), the PCIe
domain address is no longer numbered by the lowest 16 bits of the PCI
register address after a fallthrough. Instead of the fallthrough, the
enumeration process accepts the alias ID (as determined by
`of_alias_scan()`). This causes e.g.:
9000:00:00.0 PCI bridge: Freescale Semiconductor Inc P1020E (rev 11)
9000:01:00.0 Network controller: Qualcomm Atheros AR958x 802.11abgn ...
to become
0000:00:00.0 PCI bridge: Freescale Semiconductor Inc P1020E (rev 11)
0000:01:00.0 Network controller: Qualcomm Atheros AR958x 802.11abgn ...
... which then causes the sysfs path of the netdev to change,
invalidating the `wifi_device.path`s enumerated in
`/etc/config/wireless`.
One other solution might be to migrate the uci configuration, as was
done for mvebu in commit 0bd5aa89fc ("mvebu: Migrate uci config to
new PCIe path"). However, there are concerns that the sysfs path will
change once again once some upstream patches[^2][^3] are merged and
backported (and `CONFIG_PPC_PCI_BUS_NUM_DOMAIN_DEPENDENT` is enabled).
Instead, remove the aliases and allow the fallthrough to continue for
now. We will provide a migration in a later release.
This was first reported as a Github issue[^1].
[^1]: https://github.com/openwrt/openwrt/issues/10530
[^2]: https://lore.kernel.org/linuxppc-dev/20220706104308.5390-1-pali@kernel.org/t/#u
[^3]: https://lore.kernel.org/linuxppc-dev/20220706101043.4867-1-pali@kernel.org/Fixes: #10530
Tested-by: Martin Kennedy <hurricos@gmail.com>
[Tested on the Aerohive HiveAP 330 and Extreme Networks WS-AP3825i]
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
(cherry picked from commit 7f4b4c29f3)
Commit 0b7c66c ("at91bootstrap: add sama5d27_som1_eksd1_uboot as
default defconfig") changed default booting media for sama5d27_som1_ek
board w/o any reason. Changed it back to sdmmc0 as it is for all the
other Microchip supported distributions for this board (Buildroot,
Yocto Project). The initial commit cannot be cleanly reverted.
Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
(cherry picked from commit e9f12931e6)