Hardware
========
CPU Qualcomm Atheros QCA9558
RAM 256MB DDR2
FLASH 2x 16M SPI-NOR (Macronix MX25L12805D)
WIFI Qualcomm Atheros QCA9558
Atheros AR9590
Installation
============
1. Attach to the serial console of the AP-105.
Interrupt autoboot and change the U-Boot env.
$ setenv rb_openwrt "setenv ipaddr 192.168.1.1;
setenv serverip 192.168.1.66;
netget 0x80060000 ap115.bin; go 0x80060000"
$ setenv fb_openwrt "bank 1;
cp.b 0xbf100040 0x80060000 0x10000; go 0x80060000"
$ setenv bootcmd "run fb_openwrt"
$ saveenv
2. Load the OpenWrt initramfs image on the device using TFTP.
Place the initramfs image as "ap105.bin" in the TFTP server
root directory, connect it to the AP and make the server reachable
at 192.168.1.66/24.
$ run rb_openwrt
3. Once OpenWrt booted, transfer the sysupgrade image to the device
using scp and use sysupgrade to install the firmware.
Signed-off-by: David Bauer <mail@david-bauer.net>
For D-link DIR-859 and DIR-869
Replace the mtd-cal-data by an nvmem-cell.
Add the PCIe node for the ath10k radio to the devicetree.
Thanks to DragonBlue for this patch
Signed-off-by: Jan Forman <jforman@tuta.io>
Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration
data from the nvmem subsystem.
This allows us to move the userspace caldata extraction for the pci-e ath9k
supported wifi into the device-tree definition of the device.
Currently, only ethernet devices uses the mac address of
"mac-address-ascii" cells, while PCI ath9k devices uses the mac address
within calibration data.
Signed-off-by: Edward Chow <equu@openmail.cc>
(restored switch configuration in 02_network, integrated caldata into
partition)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Use nvmem kernel subsystem to pull radio calibration data
with the devicetree instead of userspace scripts.
Existing blocks for caldata_extract are reordered alphabetically.
MAC address is set using the hotplug script.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration
data from the nvmem subsystem.
This allows us to move the userspace caldata extraction for the pci-e ath9k
supported wifi into the device-tree definition of the device.
Currently, "mac-address-ascii" cells only works for ethernet and wmac devices,
so PCI ath9k device uses the old method to calibrate.
Signed-off-by: Edward Chow <equu@openmail.cc>
This change consolidates Netgear EX7300 series devices into two images
corresponding to devices that share the same manufacturer firmware
image. Similar to the manufacturer firmware, the actual device model is
detected at runtime. The logic is taken from the netgear GPL dumps in a
file called generate_board_conf.sh.
Hardware details for EX7300 v2 variants
---------------------------------------
SoC: QCN5502
Flash: 16 MiB
RAM: 128 MiB
Ethernet: 1 gigabit port
Wireless 2.4GHz (currently unsupported due to lack of ath9k support):
- EX6250 / EX6400 v2 / EX6410 / EX6420: QCN5502 3x3
- EX7300 v2 / EX7320: QCN5502 4x4
Wireless 5GHz:
- EX6250: QCA9986 3x3 (detected by ath10k as QCA9984 3x3)
- EX6400 v2 / EX6410 / EX6420 / EX7300 v2 / EX7320: QCA9984 4x4
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.
Merge art into partition node.
Signed-off-by: Stefan Kalscheuer <stefan@stklcode.de>
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.
Merge art into partition node.
Signed-off-by: Nick Hainke <vincent@systemli.org>
"0x1000" looks suspicious. By looking at data provided
by @DragonBluep I was able to identify the correct size for
AR9380, AR9287 WiFis. Furthermore, PowerCloud Systems CAP324
has a AR9344 WiFi.
Signed-off-by: Nick Hainke <vincent@systemli.org>
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.
While working on it remove stale uboot partition label and merge art
into partition node.
Signed-off-by: Nick Hainke <vincent@systemli.org>
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.
Merge art into partition node.
Signed-off-by: Nick Hainke <vincent@systemli.org>
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.
Merge art into partition node.
Signed-off-by: Nick Hainke <vincent@systemli.org>
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.
Merge art into partition node.
Signed-off-by: Nick Hainke <vincent@systemli.org>
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.
Merge art into partition node.
Signed-off-by: Nick Hainke <vincent@systemli.org>
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.
Signed-off-by: Nick Hainke <vincent@systemli.org>
(removed mtd-cal-data property, merged art + addr nodes back into
partition)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.
Signed-off-by: Nick Hainke <vincent@systemli.org>
(merged art node back into partition-node)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.
Signed-off-by: Nick Hainke <vincent@systemli.org>
(merged art into partition node, removed stale uboot label)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Remove the caldata extraction in userspace. The board already uses
nvmem-cells since
commit e354b01baf ("ath79: calibrate all ar9344 tl-WDRxxxx with nvmem")
Signed-off-by: Nick Hainke <vincent@systemli.org>
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.
Signed-off-by: Nick Hainke <vincent@systemli.org>
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.
Signed-off-by: Nick Hainke <vincent@systemli.org>
(merged art-node back into partition-node)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.
Signed-off-by: Nick Hainke <vincent@systemli.org>
Driver for and pci wlan card now pull the calibration data from the nvmem
subsystem.
This allows us to move the userspace caldata extraction for the pci-e ath9k
supported wifi into the device-tree definition of the device.
The wifi mac address remains correct after these changes, because When both
"mac-address" and "calibration" are defined, the effective mac address
comes from the cell corresponding to "mac-address" and
mac-address-increment.
Test passed on my tplink tl-wr2543nd.
Signed-off-by: Edward Chow <equu@openmail.cc>
Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration
data from the nvmem subsystem.
This allows us to move the userspace caldata extraction for the pci-e ath9k
supported wifi into the device-tree definition of the device.
wmac's nodes are also changed over to use nvmem-cells over OpenWrt's
custom mtd-cal-data property.
The wifi mac address remains correct after these changes, because When both
"mac-address" and "calibration" are defined, the effective mac address
comes from the cell corresponding to "mac-address" and
mac-address-increment.
Test passed on my tplink tl-wdr4310.
Signed-off-by: Edward Chow <equu@openmail.cc>
Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration
data from the nvmem subsystem.
This allows us to move the userspace caldata extraction for the pci-e ath9k
supported wifi into the device-tree definition of the device.
wmac's nodes are also changed over to use nvmem-cells over OpenWrt's
custom mtd-cal-data property.
Signed-off-by: Edward Chow <equu@openmail.cc>
Add support for the TrendNet TEW-673GRU to ath79.
This device was supported in 19.07.9 but was deprecated with ar71xx.
This is mostly a copy of D-Link DIR-825 B1.
Updates have been completed to enable factory.bin and sysupgrade.bin both.
Code improvements to DTS file and makefile.
Architecture | MIPS
Vendor | Qualcomm Atheros
bootloader | U-Boot
System-On-Chip | AR7161 rev 2 (MIPS 24Kc V7.4)
CPU/Speed | 24Kc V7.4 680 MHz
Flash-Chip | Macronix MX25L6405D
Flash size | 8192 KiB
RAM Chip: | ProMOS V58C2256164SCI5 × 2
RAM size | 64 MiB
Wireless | 2 x Atheros AR922X 2.4GHz/5.0GHz 802.11abgn
Ethernet | RealTek RTL8366S Gigabit w/ port based vlan support
USB | Yes 2 x 2.0
Initial Flashing Process:
1) Download 22.03 tew-673gru factory bin
2) Flash 22.03 using TrendNet GUI
OpenWRT Upgrade Process
3) Download 22.03 tew-673gru sysupgrade.bin
4) Flash 22.03 using OpenWRT GUI
Signed-off-by: Korey Caro <korey.caro@gmail.com>
Use NVMEM "calibration" implementation for ath9k/ath10k(-ct) on ELECOM
WRC-300GHBK2-I and WRC-1750GHBK2-I/C instead of mtd-cal-data property
or user-space script.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Add support for TP-Link Deco S4 wifi router
The label refers to the device as S4R and the TP-Link firmware
site calls it the Deco S4 v2. (There does not appear to be a v1)
Hardware (and FCC id) are identical to the Deco M4R v2 but the
flash layout is ordered differently and the OEM firmware encrypts
some config parameters (including the label mac address) in flash
In order to set the encrypted mac address, the wlan's caldata
node is removed from the DTS so the mac can be decrypted with
the help of the uencrypt tool and patched into the wlan fw
via hotplug
Specifications:
SoC: QCA9563-AL3A
RAM: Zentel A3R1GE40JBF
Wireless 2.4GHz: QCA9563-AL3A (main SoC)
Wireless 5GHz: QCA9886
Ethernet Switch: QCA8337N-AL3C
Flash: 16 MB SPI NOR
UART serial access (115200N1) on board via solder pads:
RX = TP1 pad
TX = TP2 pad
GND = C201 (pad nearest board edge)
The device's bootloader and web gui will only accept images that
were signed using TP-Link's RSA key, however a memory safety bug
in the bootloader can be leveraged to install openwrt without
accessing the serial console. See developer forum S4 support page
for link to a "firmware" file that starts a tftp client, or you
may generate one on your own like this:
```
python - > deco_s4_faux_fw_tftp.bin <<EOF
import sys
from struct import pack
b = pack('>I', 0x00008000) + b'X'*16 + b"fw-type:" \
+ b'x'*256 + b"S000S001S002" + pack('>I', 0x80060200) \
b += b"\x00"*(0x200-len(b)) \
+ pack(">33I", *[0x3c0887fc, 0x35083ddc, 0xad000000, 0x24050000,
0x3c048006, 0x348402a0, 0x3c1987f9, 0x373947f4,
0x0320f809, 0x00000000, 0x24050000, 0x3c048006,
0x348402d0, 0x3c1987f9, 0x373947f4, 0x0320f809,
0x00000000, 0x24050000, 0x3c048006, 0x34840300,
0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000,
0x24050000, 0x3c048006, 0x34840400, 0x3c1987f9,
0x373947f4, 0x0320f809, 0x00000000, 0x1000fff1,
0x00000000])
b += b"\xff"*(0x2A0-len(b)) + b"setenv serverip 192.168.0.2\x00"
b += b"\xff"*(0x2D0-len(b)) + b"setenv ipaddr 192.168.0.1\x00"
b += b"\xff"*(0x300-len(b)) + b"tftpboot 0x81000000 initramfs-kernel.bin\x00"
b += b"\xff"*(0x400-len(b)) + b"bootm 0x81000000\x00"
b += b"\xff"*(0x8000-len(b))
sys.stdout.buffer.write(b)
EOF
```
Installation:
1. Run tftp server on pc with static ip 192.168.0.2
2. Place openwrt "initramfs-kernel.bin" image in tftp root dir
3. Connect pc to router ethernet port1
4. While holding in reset button on bottom of router, power on router
5. From pc access router webgui at http://192.168.0.1
6. Upload deco_s4_faux_fw_tftp.bin
7. Router will load and execture in-memory openwrt
8. Switch pc back to dhcp or static 192.168.1.x
9. Flash openwrt sysupgrade image via luci/ssh at 192.168.1.1
Revert to stock:
Press and hold reset button while powering device to start the
bootloader's recovery mode, where stock firmware can be uploaded
via web gui at 192.168.0.1
Please note that one additional non-github commits is also needed:
firmware-utils: add tplink-safeloader support for Deco S4
Signed-off-by: Nick French <nickfrench@gmail.com>
FCC ID: U2M-CAP2100AG
WatchGuard AP100 is an indoor wireless access point with
1 Gb ethernet port, dual-band but single-radio wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP300 v2
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- AR9344 SOC MIPS 74kc, 2.4 GHz AND 5 GHz WMAC, 2x2
- AR8035-A EPHY RGMII GbE with PoE+ IN
- 25 MHz clock
- 16 MB FLASH mx25l12805d
- 2x 64 MB RAM
- UART console J11, populated
- GPIO watchdog GPIO 16, 20 sec toggle
- 2 antennas 5 dBi, internal omni-directional plates
- 5 LEDs power, eth0 link/data, 2G, 5G
- 1 button reset
**MAC addresses:**
Label has no MAC
Only one Vendor MAC address in flash at art 0x0
eth0 ---- *:e5 art 0x0 -2
phy0 ---- *:e5 art 0x0 -2
**Installation:**
Method 1: OEM webpage
use OEM webpage for firmware upgrade to upload factory.bin
Method 2: root shell
It may be necessary to use a Watchguard router to flash the image to the AP
and / or to downgrade the software on the AP to access SSH
For some Watchguard devices, serial console over UART is disabled.
NOTE: DHCP is not enabled by default after flashing
**TFTP recovery:**
reset button has no function at boot time
only possible with modified uboot environment,
(see commit message for Watchguard AP300)
**Return to OEM:**
user should make backup of MTD partitions
and write the backups back to mtd devices
in order to revert to OEM reliably
It may be possible to use sysupgrade
with an OEM image as well...
(not tested)
**OEM upgrade info:**
The OEM upgrade script is at /etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
**Note on eth0 PLL-data:**
The default Ethernet Configuration register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For AR934x series, the PLL registers for eth0
can be see in the DTSI as 0x2c.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
**Note on WatchGuard Magic string:**
The OEM upgrade script is a modified version of
the generic Senao sysupgrade script
which is used on EnGenius devices.
On WatchGuard boards produced by Senao,
images are verified using a md5sum checksum of
the upgrade image concatenated with a magic string.
this checksum is then appended to the end of the final image.
This variable does not apply to all the senao devices
so set to null string as default
Tested-by: Steve Wheeler <stephenw10@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: U2M-CAP4200AG
WatchGuard AP200 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP600
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- AR9344 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2
- AR9382 WLAN PCI card 168c:0030, 5 GHz, 2x2, 26dBm
- AR8035-A EPHY RGMII GbE with PoE+ IN
- 25 MHz clock
- 16 MB FLASH mx25l12805d
- 2x 64 MB RAM
- UART console J11, populated
- GPIO watchdog GPIO 16, 20 sec toggle
- 4 antennas 5 dBi, internal omni-directional plates
- 5 LEDs power, eth0 link/data, 2G, 5G
- 1 button reset
**MAC addresses:**
Label has no MAC
Only one Vendor MAC address in flash at art 0x0
eth0 ---- *:be art 0x0 -2
phy1 ---- *:bf art 0x0 -1
phy0 ---- *:be art 0x0 -2
**Installation:**
Method 1: OEM webpage
use OEM webpage for firmware upgrade to upload factory.bin
Method 2: root shell
It may be necessary to use a Watchguard router to flash the image to the AP
and / or to downgrade the software on the AP to access SSH
For some Watchguard devices, serial console over UART is disabled.
NOTE: DHCP is not enabled by default after flashing
**TFTP recovery:**
reset button has no function at boot time
only possible with modified uboot environment,
(see commit message for Watchguard AP300)
**Return to OEM:**
user should make backup of MTD partitions
and write the backups back to mtd devices
in order to revert to OEM reliably
It may be possible to use sysupgrade
with an OEM image as well...
(not tested)
**OEM upgrade info:**
The OEM upgrade script is at /etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
**Note on eth0 PLL-data:**
The default Ethernet Configuration register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For AR934x series, the PLL registers for eth0
can be see in the DTSI as 0x2c.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
**Note on WatchGuard Magic string:**
The OEM upgrade script is a modified version of
the generic Senao sysupgrade script
which is used on EnGenius devices.
On WatchGuard boards produced by Senao,
images are verified using a md5sum checksum of
the upgrade image concatenated with a magic string.
this checksum is then appended to the end of the final image.
This variable does not apply to all the senao devices
so set to null string as default
Tested-by: Steve Wheeler <stephenw10@gmail.com>
Tested-by: John Delaney <johnd@ankco.net>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: Q6G-AP300
WatchGuard AP300 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- QCA9558 SOC MIPS 74kc, 2.4 GHz WMAC, 3x3
- QCA9880 WLAN PCI card 168c:003c, 5 GHz, 3x3, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 32 MB FLASH S25FL512S
- 2x 64 MB RAM NT5TU32M16
- UART console J10, populated
- GPIO watchdog GPIO 16, 20 sec toggle
- 6 antennas 5 dBi, internal omni-directional plates
- 5 LEDs power, eth0 link/data, 2G, 5G
- 1 button reset
**MAC addresses:**
MAC address labeled as ETH
Only one Vendor MAC address in flash at art 0x0
eth0 ETH *:3c art 0x0
phy1 ---- *:3d ---
phy0 ---- *:3e ---
**Serial console access:**
For this board, its not certain whether UART is possible
it is likely that software is blocking console access
the RX line on the board for UART is shorted to ground by resistor R176
the resistors R175 and R176 are next to the UART RX pin at J10
however console output is garbage even after this fix
**Installation:**
Method 1: OEM webpage
use OEM webpage for firmware upgrade to upload factory.bin
Method 2: root shell access
downgrade XTM firewall to v2.0.0.1
downgrade AP300 firmware: v1.0.1
remove / unpair AP from controller
perform factory reset with reset button
connect ethernet to a computer
login to OEM webpage with default address / pass: wgwap
enable SSHD in OEM webpage settings
access root shell with SSH as user 'root'
modify uboot environment to automatically try TFTP at boot time
(see command below)
rename initramfs-kernel.bin to test.bin
load test.bin over TFTP (see TFTP recovery)
(optionally backup all mtdblocks to have flash backup)
perform a sysupgrade with sysupgrade.bin
NOTE: DHCP is not enabled by default after flashing
**TFTP recovery:**
server ip: 192.168.1.101
reset button seems to do nothing at boot time...
only possible with modified uboot environment,
running this command in the root shell:
fw_setenv bootcmd 'if ping 192.168.1.101; then tftp 0x82000000 test.bin && bootm 0x82000000; else bootm 0x9f0a0000; fi'
and verify that it is correct with
fw_printenv
then, before boot, the device will attempt TFTP from 192.168.1.101
looking for file 'test.bin'
to return uboot environment to normal:
fw_setenv bootcmd 'bootm 0x9f0a0000'
**Return to OEM:**
user should make backup of MTD partitions
and write the backups back to mtd devices
in order to revert to OEM
(see installation method 2)
It may be possible to use sysupgrade
with an OEM image as well...
(not tested)
**OEM upgrade info:**
The OEM upgrade script is at /etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
**Note on eth0 PLL-data:**
The default Ethernet Configuration register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
**Note on WatchGuard Magic string:**
The OEM upgrade script is a modified version of
the generic Senao sysupgrade script
which is used on EnGenius devices.
On WatchGuard boards produced by Senao,
images are verified using a md5sum checksum of
the upgrade image concatenated with a magic string.
this checksum is then appended to the end of the final image.
This variable does not apply to all the senao devices
so set to null string as default
Tested-by: Alessandro Kornowski <ak@wski.org>
Tested-by: John Wagner <john@wagner.us.org>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Specifications:
- SoC: Qualcomm Atheros QCA9557-AT4A
- RAM: 2x 128MB Nanya NT5TU64M16HG
- FLASH: 64MB - SPANSION FL512SAIFG1
- LAN: Atheros AR8035-A (RGMII GbE with PoE+ IN)
- WLAN2: Qualcomm Atheros QCA9557 2x2 2T2R
- WLAN5: Qualcomm Atheros QCA9882-BR4A 2x2 2T2R
- SERIAL: UART pins at J10 (115200 8n1)
Pinout is 3.3V - GND - TX - RX (Arrow Pad is 3.3V)
- LEDs: Power (Green/Amber)
WiFi 5 (Green)
WiFi 2 (Green)
- BTN: Reset
Installation:
1. Download the OpenWrt initramfs-image.
Place it into a TFTP server root directory and rename it to 1D01A8C0.img
Configure the TFTP server to listen at 192.168.1.66/24.
2. Connect the TFTP server to the access point.
3. Connect to the serial console of the access point.
Attach power and interrupt the boot procedure when prompted.
Credentials are admin / new2day
4. Configure U-Boot for booting OpenWrt from ram and flash:
$ setenv boot_openwrt 'setenv bootargs; bootm 0xa1280000'
$ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
tftpboot 0x89000000 1D01A8C0.img; bootm'
$ setenv bootcmd 'run boot_openwrt'
$ saveenv
5. Load OpenWrt into memory:
$ run ramboot_openwrt
6. Transfer the OpenWrt sysupgrade image to the device.
Write the image to flash using sysupgrade:
$ sysupgrade -n /path/to/openwrt-sysupgrade.bin
Signed-off-by: Albin Hellström <albin.hellstrom@gmail.com>
[rename vendor - minor style fixes - update commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
The Sophos AP15 seems to be very close to Sophos AP55/AP100.
Based on:
commit 6f1efb2898 ("ath79: add support for Sophos AP100/AP55 family")
author Andrew Powers-Holmes <andrew@omnom.net>
Fri, 3 Sep 2021 15:53:57 +0200 (23:53 +1000)
committer Hauke Mehrtens <hauke@hauke-m.de>
Sat, 16 Apr 2022 16:59:29 +0200 (16:59 +0200)
Unique to AP15:
- Green and yellow LED
- 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
- No buttons
- No piezo beeper
- No 5.8GHz
Flashing instructions:
- Derived from UART method described in referenced commit, methods
described there should work too.
- Set up a TFTP server; IP address has to be 192.168.99.8/24
- Copy the firmware (initramfs-kernel) to your TFTP server directory
renaming it to e.g. boot.bin
- Open AP's enclosure and locate UART header (there is a video online)
- Terminal connection parameters are 115200 8/N/1
- Connect TFTP server and AP via ethernet
- Power up AP and cancel autoboot when prompted
- Prompt shows 'ath> '
- Commands used to boot:
ath> tftpboot 0x81000000 boot.bin
ath> bootm 0x81000000
- Device should boot OpenWRT
- IP address after boot is 192.168.1.1/24
- Connect to device via browser
- Permanently flash using the web ui (flashing sysupgrade image)
- (BTW: the AP55 images seem to work too, only LEDs are not working)
Testing done:
- To be honest: Currently not so much testing done.
- Flashed onto two devices
- Devices are booting
- MAC addresses are correct
- LEDs are working
- Scanning for WLANs is working
Big thanks to all the people working on this great project!
(Sorry about my english, it is not my native language)
Signed-off-by: Manuel Niekamp <m.niekamp@richter-leiterplatten.de>
Asus RP-AC51 Repeater
Category:
AC750 300+433 (OEM w. unstable driver)
AC1200 300+866 (OpenWrt w. stable driver)
Hardware specifications:
Board: AP147
SoC: QCA9531 2.4G b/g/n
WiFi: QCA9886 5G n/ac
DRAM: 128MB DDR2
Flash: gd25q128 16MB SPI-NOR
LAN/WAN: AR8229 1x100M
Clocks: CPU:650MHz, DDR:600MHz, AHB:200MHz
MAC addresses as verified by OEM firmware:
use address source
Lan/W2G *:C8 art 0x1002 (label)
5G *:CC art 0x5006
Installation:
Asus windows recovery tool:
install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
Start the Asus firmware restoration utility, specify the factory image
and press upload
Do not power off the device after OpenWrt has booted until the LED flashing.
TFTP Recovery method:
set computer to a static ip, 192.168.1.10
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
Asus PL-AC56 Powerline Range Extender Rev.A1
(in kit with Asus PL-E56P Powerline-slave)
Hardware specifications:
Board: AP152
SoC: QCA9563 2.4G n 3x3
PLC: QCA7500
WiFi: QCA9882 5G ac 2x2
Switch: QCA8337 3x1000M
Flash: 16MB 25L12835F SPI-NOR
DRAM SoC: 64MB w9751g6kb-25
DRAM PLC: 128MB w631gg6kb-15
Clocks: CPU:775.000MHz, DDR:650.000MHz, AHB:258.333MHz, Ref:25.000MHz
MAC addresses as verified by OEM firmware:
use address source
Lan/Wan/PLC *:10 art 0x1002 (label)
2G *:10 art 0x1000
5G *:14 art 0x5000
Important notes:
the PLC firmware has to be provided and copied manually onto the
device! The PLC here has no dedicated flash, thus the firmware file
has to be uploaded to the PLC controller at every system start
the PLC functionality is managed by the script /etc/init.d/plc_basic,
a very basic script based on the the one from Netadair (netadair dot de)
Installation:
Asus windows recovery tool:
have to have the latest Asus firmware flashed before continuing!
install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
start the Asus firmware restoration utility, specify the factory image
and press upload
do NOT power off the device after OpenWrt has booted until the LED flashing
TFTP Recovery method:
have to have the latest Asus firmware flashed before continuing!
set computer to a static ip, 192.168.1.75
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit
do NOT power off the device after OpenWrt has booted until the LED flashing
Additional notes:
the pairing buttons have to have pressed for at least half a second,
it doesn't matter on which plc device (master or slave) first
it is possible to pair the devices without the button-pairing requirement
simply by pressing reset on the slave device. This will default to the
firmware settings, which is also how the plc_basic script is setting up
the master device, i.e. configuring it to firmware defaults
the PL-E56P slave PLC has its dedicated 4MByte SPI, thus it is capable
to store all firmware currently available. Note that some other
slave devices are not guarantied to have the capacity for the newer
~1MByte firmware blobs!
To have a good overlook about the slave device, here are its specs:
same QCA7500 PLC controller, same w631gg6kb-15 128MB RAM,
25L3233F 4MB SPI-NOR and an AR8035-A 1000M-Transceiver
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Tested-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the pre-calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Tested-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Replace the mtd-cal-data phandle by an nvmem-cell reference to the art
partition for the 2.4GHz ath9k radio.
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Replace the mtd-cal-data phandle by an nvmem-cell reference from the art
partition for the 2.4GHz ath9k radio.
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using an nvmem-cell.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
ath79 has was bumped to 5.10. With this, as with every kernel change,
the kernel has become larger. However, although the kernel gets bigger,
there are still enough flash resources. But the RAM reaches its capacity
limits. The tiny image comes with fewer kernel flags enabled and
fewer daemons.
Improves: 15aa53d7ee ("ath79: switch to Kernel 5.10")
Tested-by: Robert Foss <me@robertfoss.se>
Signed-off-by: Nick Hainke <vincent@systemli.org>
SoC: Atheros AR7161
RAM: DDR 128 MiB (hynix h5dU5162ETR-E3C)
Flash: SPI-NOR 8 MiB (mx25l6406em2i-12g)
WLAN: 2.4/5 GHz
2.4 GHz: Atheros AR9220
5 GHz: Atheros AR9223
Ethernet: 4x 10/100/1000 Mbps (Atheros AR8021)
LEDs/Keys: 2/2 (Internet + System LED, Mesh button + Reset pin)
UART: RJ45 9600,8N1
Power: 12 VDC, 1.0 A
Installation instruction:
0. Make sure you have latest original firmware (3.7.11.4)
1. Connect to the Serial Port with a Serial Cable RJ45 to DB9/RS232
(9600,8N1)
screen /dev/ttyUSB0 9600,cs8,-parenb,-cstopb,-hupcl,-crtscts,clocal
2. Configure your IP-Address to 192.168.1.42
3. When device boots hit spacebar
3. Configure the device for tftpboot
setenv ipaddr 192.168.1.1
setenv serverip 192.168.1.42
saveenv
4. Reset the device
reset
5. Hit again the spacebar
6. Now load the image via tftp:
tftpboot 0x81000000 INITRAMFS.bin
7. Boot the image:
bootm 0x81000000
8. Copy the squashfs-image to the device.
9. Do a sysupgrade.
https://openwrt.org/toh/netgear/wndap360
The device should be converted from kmod-owl-loader to nvmem-cells in the
future. Nvmem cells were not working. Maybe ATH9K_PCI_NO_EEPROM is missing.
That is why this commit is still using kmod-owl-loader. In the future
the device tree may look like this:
&ath9k0 {
nvmem-cells = <&macaddr_art_120c>, <&cal_art_1000>;
nvmem-cell-names = "mac-address", "calibration";
};
&ath9k1 {
nvmem-cells = <&macaddr_art_520c>, <&cal_art_5000>;
nvmem-cell-names = "mac-address", "calibration";
};
&art {
...
cal_art_1000: cal@1000 {
reg = <0x1000 0xeb8>;
};
cal_art_5000: cal@5000 {
reg = <0x5000 0xeb8>;
};
};
Signed-off-by: Nick Hainke <vincent@systemli.org>
This commit adds support for the TP-Link Deco M4R (it can also be M4,
TP-Link uses both names) v1 and v2. It is similar hardware-wise to the
Archer C6 v2. Software-wise it is very different. V2 has a bit different
layout from V1 but the chips are the same and the OEM firmware is the same
for both versions.
Specifications:
SoC: QCA9563-AL3A
RAM: Zentel A3R1GE40JBF
Wireless 2.4GHz: QCA9563-AL3A (main SoC)
Wireless 5GHz: QCA9886
Ethernet Switch: QCA8337N-AL3C
Flash: 16 MB SPI NOR
Flashing:
The device's bootloader only accepts images that are signed using
TP-Link's RSA key, therefore this way of flashing is not possible. The
device has a web GUI that should be accessible after setting up the device
using the app (it requires the app to set it up first because the web GUI
asks for the TP-Link account password) but for unknown reasons, the web
GUI also refuses custom images.
There is a debug firmware image that has been shared on the device's
OpenWrt forum thread that has telnet unlocked, which the bootloader will
accept because it is signed. It can be used to transfer an OpenWrt image
file over to the device and then be used with mtd to flash the device.
Pre-requisites:
- Debug firmware.
- A way of transferring the file to the router, you can use an FTP server
as an example.
- Set a static IP of 192.168.0.2/255.255.255.0 on your computer.
- OpenWrt image.
Installation:
- Unplug your router and turn it upside down. Using a long and thin object
like a SIM unlock tool, press and hold the reset button on the router and
replug it. Keep holding it until the LED flashes yellow.
- Open 192.168.0.1. You should see the bootloader recovery's webpage.
Choose the debug firmware that you downloaded and flash it. Wait until the
router reboots (at this stage you can remove the static IP).
- Open a terminal window and connect to the router via telnet (the primary
router should have a 192.168.0.1 IP address, secondary routers are
different).
- Transfer the file over to the router, you can use curl to download it
from the internet (use the insecure flag and make sure your source accepts
insecure downloads) or from an FTP server.
- The router's default mtd partition scheme has kernel and rootfs
separated. We can use dd to split the OpenWrt image file and flash it with
mtd:
dd if=openwrt.bin of=kernel.bin skip=0 count=8192 bs=256
dd if=openwrt.bin of=rootfs.bin skip=8192 bs=256
- Once the images are ready, you have to flash the device using mtd
(make sure to flash the correct partitions or you may be left with a
hard bricked router):
mtd write kernel.bin kernel
mtd write rootfs.bin rootfs
- Flashing is done, reboot the device now.
Signed-off-by: Foica David <superh552@gmail.com>
The Sophos AP100, AP100C, AP55, and AP55C are dual-band 802.11ac access
points based on the Qualcomm QCA9558 SoC. They share PCB designs with
several devices that already have partial or full support, most notably the
Devolo DVL1750i/e.
The AP100 and AP100C are hardware-identical to the AP55 and AP55C, however
the 55 models' ART does not contain calibration data for their third chain
despite it being present on the PCB.
Specifications common to all models:
- Qualcomm QCA9558 SoC @ 720 MHz (MIPS 74Kc Big-endian processor)
- 128 MB RAM
- 16 MB SPI flash
- 1x 10/100/1000 Mbps Ethernet port, 802.3af PoE-in
- Green and Red status LEDs sharing a single external light-pipe
- Reset button on PCB[1]
- Piezo beeper on PCB[2]
- Serial UART header on PCB
- Alternate power supply via 5.5x2.1mm DC jack @ 12 VDC
Unique to AP100 and AP100C:
- 3T3R 2.4GHz 802.11b/g/n via SoC WMAC
- 3T3R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)
AP55 and AP55C:
- 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
- 2T2R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)
AP100 and AP55:
- External RJ45 serial console port[3]
- USB 2.0 Type A port, power controlled via GPIO 11
Flashing instructions:
This firmware can be flashed either via a compatible Sophos SG or XG
firewall appliance, which does not require disassembling the device, or via
the U-Boot console available on the internal UART header.
To flash via XG appliance:
- Register on Sophos' website for a no-cost Home Use XG firewall license
- Download and install the XG software on a compatible PC or virtual
machine, complete initial appliance setup, and enable SSH console access
- Connect the target AP device to the XG appliance's LAN interface
- Approve the AP from the XG Web UI and wait until it shows as Active
(this can take 3-5 minutes)
- Connect to the XG appliance over SSH and access the Advanced Console
(Menu option 5, then menu option 3)
- Run `sudo awetool` and select the menu option to connect to an AP via
SSH. When prompted to enable SSH on the target AP, select Yes.
- Wait 2-3 minutes, then select the AP from the awetool menu again. This
will connect you to a root shell on the target AP.
- Copy the firmware to /tmp/openwrt.bin on the target AP via SCP/TFTP/etc
- Run `mtd -r write /tmp/openwrt.bin astaro_image`
- When complete, the access point will reboot to OpenWRT.
To flash via U-Boot serial console:
- Configure a TFTP server on your PC, and set IP address 192.168.99.8 with
netmask 255.255.255.0
- Copy the firmware .bin to the TFTP server and rename to 'uImage_AP100C'
- Open the target AP's enclosure and locate the 4-pin 3.3V UART header [4]
- Connect the AP ethernet to your PC's ethernet port
- Connect a terminal to the UART at 115200 8/N/1 as usual
- Power on the AP and press a key to cancel autoboot when prompted
- Run the following commands at the U-Boot console:
- `tftpboot`
- `cp.b $fileaddr 0x9f070000 $filesize`
- `boot`
- The access point will boot to OpenWRT.
MAC addresses as verified by OEM firmware:
use address source
LAN label config 0x201a (label)
2g label + 1 art 0x1002 (also found at config 0x2004)
5g label + 9 art 0x5006
Increments confirmed across three AP55C, two AP55, and one AP100C.
These changes have been tested to function on both current master and
21.02.0 without any obvious issues.
[1] Button is present but does not alter state of any GPIO on SoC
[2] Buzzer and driver circuitry is present on PCB but is not connected to
any GPIO. Shorting an unpopulated resistor next to the driver circuitry
should connect the buzzer to GPIO 4, but this is unconfirmed.
[3] This external RJ45 serial port is disabled in the OEM firmware, but
works in OpenWRT without additional configuration, at least on my
three test units.
[4] On AP100/AP55 models the UART header is accessible after removing
the device's top cover. On AP100C/AP55C models, the PCB must be removed
for access; three screws secure it to the case.
Pin 1 is marked on the silkscreen. Pins from 1-4 are 3.3V, GND, TX, RX
Signed-off-by: Andrew Powers-Holmes <andrew@omnom.net>