Specifications:
- MT7628NN @ 580 MHz
- 32 MB RAM
- 8 MB Flash
- 5x 10/100 Mbps Ethernet (built-in switch)
- 2.4 GHz WLAN
- 2x external, non-detachable antennas (1x for RT-N10P V3)
Flash instructions:
1. Set PC network interface to 192.168.1.75/24.
2. Connect PC to the router via LAN.
3. Turn router off, press and hold reset button, then turn it on.
4. Keep the button pressed till power led starts to blink.
5. Upload the firmware file via TFTP. (Any filename is accepted.)
6. Wait until the router reboots.
Signed-off-by: Ernst Spielmann <endspiel@disroot.org>
[fix node/property name for state_default]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specification:
- CPU: MediaTek MT7621A
- RAM: 128 MB DDR3
- FLASH: 128 MB ESMT NAND
- WIFI: 2x2 802.11bgn (MT7603)
- WIFI: 4x4 802.11ac (MT7615)
- ETH: 3xLAN+1xWAN 1000base-T
- LED: Power, WAN, in Amber and White
- UART: On board near ethernet, opposite side from power
- Modified u-boot
Installation:
1. Run linked exploit to get shell, startup telnet and wget the files over
2. mtd write openwrt-ramips-mt7621-xiaomi_rm2100-squashfs-kernel1.bin kernel1
3. nvram set uart_en=1
4. nvram set bootdelay=5
5. nvram set flag_try_sys1_failed=1
6. nvram commit
7. mtd -r write openwrt-ramips-mt7621-xiaomi_rm2100-squashfs-rootfs0.bin rootfs0
Restore to stock:
1. Setup PXE and TFTP server serving stock firmware image
(See dhcp-boot option of dnsmasq)
2. Hold reset button down before powering on and wait for flashing amber led
3. Release reset button
4. Wait until status led changes from flashing amber to white
Notes:
This device has dual kernel and rootfs slots like other Xiaomi devices currently
supported (mir3g, etc.) thus, we use the second slot and overwrite the first
rootfs onwards in order to get more space.
Exploit and detailed instructions:
https://openwrt.org/toh/xiaomi/xiaomi_redmi_router_ac2100
An implementation of CVE-2020-8597 against stock firmware version 1.0.14
This requires a computer with ethernet plugged into the wan port and an active
PPPoE session, and if successful will open a reverse shell to 192.168.31.177
on port 31337.
As this shell is somewhat unreliable and likely to be killed in a random amount
of time, it is recommended to wget a static compiled busybox binary onto the
device and start telnetd with it.
The stock telnetd and dropbear unfortunately appear inoperable.
(Disabled on release versions of stock firmware likely)
Ie. wget https://yourip/busybox-mipsel -O /tmp/busybox
chmod a+x /tmp/busybox
/tmp/busybox telnetd -l /bin/sh
Tested-by: David Martinez <bonkilla@gmail.com>
Signed-off-by: Richard Huynh <voxlympha@gmail.com>
The location 0x28 in factory partition is the common one used for
ethernet address on this architecture. Despite, it contains the label
MAC address for the devices at hand.
Consequently, this patch moves 0x28 to the ðernet node in DTS files
(setting the WAN MAC address there) and sets up the lan_mac from 0x22
in 02_network. As a benefit, this allows to use label-mac-device in
DTS instead of ucidef_set_label_macaddr.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Like for the RT-AC54U, this uses a DT trigger for WiFi also at the
RT-AC51U. While at it, rename node and label to wifi2g.
Note that the 5g WiFi LED still isn't supported (see PR #3017 for
further details: https://github.com/openwrt/openwrt/pull/3017 )
Tested-by: Davide Fioravanti <pantanastyle@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The current MAC address assignment for the ASUS RT-AC51U is "wrong",
it actually should be the same as for the RT-AC54U. Fix it.
MAC assignment based on vendor firmware:
2g 0x4 label
5g 0x8004 label +4
lan 0x22 label +4
wan 0x28 label
Thanks to Davide Fioravanti for checking this on his device.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This increases the SPI frequency for both ASUS RT-AC51U and RT-AC54U.
Speed comparison tests have been performed on RT-AC54U:
- 10Mhz
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 4m 37.78s
user 0m 0.02s
sys 2m 43.92s
- 50Mhz
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 1m 28.34s
user 0m 0.03s
sys 0m 46.96s
- 50Mhz fast read
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 1m 11.94s
user 0m 0.01s
sys 0m 46.94s
- 80Mhz
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 1m 12.31s
user 0m 0.04s
sys 0m 46.96s
- 80Mhz fast read
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 1m 12.15s
user 0m 0.02s
sys 0m 46.97s
Based on that, we took 50 MHz with fast-read, as higher frequencies
didn't yield further improvements.
For the RT-AC51U, only the final configuration was tested.
Tested-by: Zhijun You <hujy652@gmail.com> [RT-AC54U]
Tested-by: Davide Fioravanti <pantanastyle@gmail.com> [RT-AC51U]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Linksys EA7500 v2 is advertised as AC1900, but its internal
hardware is AC2600 capable.
Hardware
--------
SoC: Mediatek MT7621AT (880 MHz, 2 cores 4 threads)
RAM: 256M (Nanya NT5CC128M16IP-DI)
FLASH: 128MB NAND (Macronix MX30LF1G18AC-TI)
ETH: 5x 10/100/1000 Mbps Ethernet (MT7530)
WIFI:
- 2.4GHz: 1x MT7615N (4x4:4)
- 5GHz: 1x MT7615N (4x4:4)
- 4 antennas: 3 external detachable antennas and 1 internal
USB:
- 1x USB 3.0
- 1x USB 2.0
BTN:
- 1x Reset button
- 1x WPS button
LEDS:
- 1x White led (Power)
- 6x Green leds (link lan1-lan4, link wan, wps)
- 5x Orange leds (act lan1-lan4, act wan) (working but unmodifiable)
Everything works correctly.
Installation
------------
The “factory” openwrt image can be flashed directly from OEM stock
firmware. After the flash the router will reboot automatically.
However, due to the dual boot system, the first installation could fail
(if you want to know why, read the footnotes).
If the flash succeed and you can reach OpenWrt through the web
interface or ssh, you are done.
Otherwise the router will try to boot 3 times and then will
automatically boot the OEM firmware (don’t turn off the router.
Simply wait and try to reach the router through the web interface
every now and then, it will take few minutes).
After this, you should be back in the OEM firmware.
Now you have to flash the OEM Firmware over itself using the OEM web
interface (I tested it using the FW_EA7500v2_2.0.8.194281_prod.img
downloaded from the Linksys website).
When the router reboots flash the “factory” OpenWrt image and this
time it should work.
After the OpenWrt installation you have to use the sysupgrade image
for future updates.
Restore OEM Firmware
--------------------
After the OpenWrt flash, the OEM firmware is still stored in the
second partition thanks to the dual boot system.
You can switch from OpenWrt to OEM firmware and vice-versa failing
the boot 3 times in a row:
1) power on the router
2) wait 15 seconds
3) power off the router
4) repeat steps 1-2-3 twice more.
5) power on the router and you should be in the “other” firmware
If you want to completely remove OpenWrt from your router, switch to
the OEM firmware and then flash OEM firmware from the web interface
as a normal update.
This procedure will overwrite the OpenWrt partition.
Footnotes
---------
The Linksys EA7500-v2 has a dual boot system to avoid bricks.
This system works using 2 pair of partitions:
1) "kernel" and "rootfs"
2) "alt_kernel" and "alt_rootfs".
After 3 failed boot attempts, the bootloader tries to boot the other
pair of partitions and so on.
This system is managed by the bootloader, which writes a bootcount in
the s_env partition, and if successfully booted, the system add a
"zero-bootcount" after the previous value.
A system update performed from OEM firmware, writes the firmware on the
other pair of partitions and sets the bootloader to boot the new pair
of partitions editing the “boot_part” variable in the bootloader vars.
Effectively it's a quick and safe system to switch the selected boot
partition.
Another way to switch the boot partition is:
1) power on the router
2) wait 15 seconds
3) power off the router
4) repeat steps 1-2-3 twice more.
5) power on the router and you should be in the “other” firmware
In this OpenWrt port, this dual boot system is partially working
because the bootloader sets the right rootfs partition in the cmdline
but unfortunately OpenWrt for ramips platform overwrites the cmdline
so is not possible to detect the right rootfs partition.
Because all of this, I preferred to simply use the first pair of
partitions and set read-only the other pair.
However this solution is not optimal because is not possible to know
without opening the case which is the current booted partition.
Let’s take for example a router booting the OEM firmware from the first
pair of partitions. If we flash the OpenWrt image, it will be written
on the second pair. In this situation the router will bootloop 3 times
and then will automatically come back to the first pair of partitions
containg the OEM firmware.
In this situation, to flash OpenWrt correctly is necessary to switch
the booting partition, flashing again the OEM firmware over itself.
At this point the OEM firmware is on both pair of partitions but the
current booted pair is the second one.
Now, flashing the OpenWrt factory image will write the firmware on
the first pair and then will boot correctly.
If this limitation in the ramips platform about the cmdline will be
fixed, the dual boot system can also be implemented in OpenWrt with
almost no effort.
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Co-Developed-by: Jackson Lim <jackcolentern@gmail.com>
Signed-off-by: Jackson Lim <jackcolentern@gmail.com>
netis WF2770 is a 2.4/5GHz band AC750 router, based on MediaTek MT7620A.
Specifications:
- SoC: MT7620A
- RAM: DDR2 64MB
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: SoC internal
- 5GHz: MT7610EN
- Ethernet: 5x 10/100/1000Mbps
- Switch: MT7530BU
- UART:
- J2: 3.3V, RX, TX, GND (3.3V is the square pad) / 57600 8N1
MAC addresses in factory partition:
0x0004: LAN, WiFi 2.4GHz (label_mac-6)
0x0028: not used (label_mac-1)
0x002e: WAN (label_mac)
0x8004: WiFi 5GHz (label_mac+2)
Installation via web interface:
1. Flash **initramfs** image through the stock web interface.
2. Boot into OpenWrt and perform sysupgrade with sysupgrade image.
Revert to stock firmware:
1. Perform sysupgrade with stock image.
Reviewed-by: Pawel Dembicki <paweldembicki@gmail.com>
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Specification:
- CPU: MTK MT7620A
- RAM: 64MB
- ROM: 16MB SPI Flash Macronix MX25L12835E
- WiFi1: MediaTek MT7620A
- WiFi2: MediaTek MT7612E
- Button: reset, wps
- LED: 9 LEDs:Power, WiFi 2.4G,WiFi 5G, USB, LAN1, LAN2, LAN3, LAN4, WAN
- Ethernet: 5 ports, 4 LAN + 1 WAN
- Other: 1x UART 1x USB2.0
Installation:
Update using ASUS Firmware Restoration Tool:
1. Download the ASUS Firmware Restoration Tool but don't open it yet
2. Unplug your computer from the router
3. Put the router into Rescue Mode by: turning the power off, using a pin
to press and hold the reset button, then turning the router back on while
keeping the reset button pressed for ~5 secs until the power LED starts
flashing slowly (which indicates the router has entered Rescue Mode)
4. Important (if you don't do this next step the Asus Firmware
Restoration Tool will wrongly assume that the router is not in Rescue Mode
and will refuse to flash it): go to the Windows Control Panel and
temporarily disable ALL other network adapters except the one you will use
to connect your computer to the router
5. For the single adapter you left enabled, temporarily give it the
static IP 192.168.1.10 and the subnet mask 255.255.255.0
6. Connect a LAN cable between your computer (make sure to use the
Ethernet port of the adapter you've just set up) and port 1 of the router
(not the router's WAN port)
7. Rename sysupgrade.bin to factory.trx
8. Open the Asus Firmware Restoration Tool, locate factory.trx and click
upload (if Windows shows a compatibility prompt, confirm that the tool worked fine)
9. Flashing and reboot is finished when the power LED stops blinking and
stays on
MAC assignment based on vendor firmware:
2g 0x4 label
5g 0x8004 label +4
lan 0x22 label +4
wan 0x28 label
Signed-off-by: Zhijun You <hujy652@gmail.com>
[rebased due to DTSI patch, minor commit message adjustments, fix
label MAC address (lan->wan), do spi frequency increase separately]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a DTSI for the ASUS RT-AC51U and the upcoming RT-AC54U,
as they are quite similar.
White at it, drop the unneeded "status = okay" for ethernet.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The property "ralink,port-map" has been obsolete long before
this device was added, and the device is a one-port anyway.
Just remove it.
Fixes: 5ef79af4f8 ("ramips: add support for Ravpower WD03")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This tidies up the ethernet node in mt7620 DTS files by:
- removing unnecessary status as it is not disabled
- reordering properties consistently
- adding empty lines to enhance readability
This should make comparison and reviewing new PRs based on C/P easier.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The BL-W1200 Wireless Router is based on the MT7620A SoC.
Specification:
- MediaTek MT7620A (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 1x 802.11bgn radio
- 1x 802.11ac radio (MT7612E)
- 5x 10/100/1000 Mbps Ethernet (MT7530)
- 2x external, non-detachable antennas (Wifi 2.4G/5G)
- 1x USB 2.0
- UART (R2) on PCB (57600 8n1)
- 9x LED (1 GPIO controlled), 1x button
- u-Boot bootloader
Known issues:
- No status LED. Used WPS LED during boot/failsafe/sysupgrade.
Installation:
1. Apply initramfs image via factory web-gui.
2. Install sysupgrade image.
How to revert to OEM firmware:
- sysupgrade -n -F stock_firmware.bin
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Most work was done in commit 021c893658 ("ramips: fix size-cells on spi
nodes"), but a few more DTS files using the old reg style have been added
since then. This commit fixes them.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
As the node is already defined and labeled in SoC DTSI file, we can refer to it
outside of root node and reduce redundancy.
While at it, remove unused pcf8563 label.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Change "0" to "0x0" for consistency. This is an extension of commit 34abfb6e91
("ramips: convert mediatek,mtd-eeprom from decimal to hex notation").
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
As evidenced here[1] the device MAC address can be stored at a random
offset in the hard_config partition. Rely on sysfs to update the MAC
address correctly.
Adjust config so that WAN is base MAC and LAN is base MAC +1 to better
match label and vendor OS.
[1] https://github.com/openwrt/openwrt/pull/2850#issuecomment-610809021
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
According to a user in OpenWrt forum, on RouterOS the MAC addresses are
ether1(WAN) = MAC
ether2(LAN2) = MAC+1
ether3(LAN3) = MAC+2
etc.
Fix the MAC addresses in OpenWrt.
Ref: https://forum.openwrt.org/t/few-dumb-question-about-mt7530-rb750gr3-dsa/61608
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
[remove label_mac in 02_network]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
SFP cage of this device is connected via a AT8031 phy to port 5 of the switch.
This phy act as a RGMII-to-SerDes converter.
Also a I2C clock gate needs to be enabled in order to access the SFP module via I2C bus.
SFP cage also has module detect pin which is connected to I2C gpio expander.
With this patch the kernel/PHYLINK now can detect, readout and use the SFP module/port.
NOTE: SFP cage / AT8033 PHY only support 1000base-X encoding!
This means that some SGMII modules can work and only at forced 1GBit/full-duplex!
Signed-off-by: René van Dorst <opensource@vdorst.com>
The pinctrl driver had been replaced with the upstream one in b756ea2a90
("ramips: replace pinctrl property names"), but the initial A1004ns support
patch did not reflect the changes. This commit updates its pinctrl property
names.
Fixes: 9169482f64 ("ramips: add support for ipTIME A1004ns")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This commit increases the hardware SPI frequency from 24.2MHz to 48.3MHz.
[ 5.314163] m25p80 spi0.0: speed: 24166666/40000000, rate: 8, prescal: 2, loops: 226
[ 5.076323] m25p80 spi0.0: speed: 48333333/50000000, rate: 4, prescal: 1, loops: 162
`time cat /dev/mtd2 >/dev/null` is reduced from 5.64s to 4.36s on A104ns,
and from 11.39s to 8.81s on A1004ns.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
These stock partitons: "backup", "hw_panic", "overly", firmware_backup", "opt"
do not contain any device-specific data and can be used for /overlay, resulting in
121M space
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
Increase kernel partition because 2M is insufficient for 5.4
Because the partition changes, previous version of OpenWrt cannot upgrade
to this version, and requires a new installation
Recovery to stock instruction:
1. Download stock firmware at
http://ur.ikcd.net/HC5962-sysupgrade-20171221-b00a04d1.bin
2. Power off the router
3. Press and hold the reset button for 4~6 sec while power it back on
4. Connect a PC to router's LAN
5. Visit http://192.168.2.1 and upload the firmware
Then repeat the instruction in edae3479e6 to install OpenWrt
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
Upstream pinctrl driver in drivers/staging uses
groups/function/ralink,num-gpios instead of
ralink,group/ralink,function/ralink,nr-gpio
Replace these properties in dts as well as the pinctrl driver in
patches-4.14.
This commit is created using:
sed -i 's/ralink,group/groups/g'
sed -i 's/ralink,function/function/g'
sed -i 's/ralink,nr-gpio/ralink,num-gpios/g'
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
upstream driver merged 3 separated gpio banks into one gpio node.
and gpioX Y in our local driver should be replaced with gpio X*32+Y.
This patch is created using the following sed command:
sed -i -r 's/(.*)gpio([0-9]) ([0-9]+)(.*)/echo "\1gpio $((\2*32+\3))\4"/ge'
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
increase spi frequency for both devices to 45MHz.
while at it, also remove m25p,fast-read for newifi d1 as it's only
needed when spi clock is higher than 50MHz.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
These are boards known to start on 3-byte address mode, which requires
broken-flash-reset if 4B_OPCODES isn't supported by the flash.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
The "proper" vendor prefix for Ubiquiti is "ubnt", this is used in
all targets except ramips and also recommended by the kernel.
This patch adjusts the various board/image/device name variables
accordingly. Since we touch it anyway, this also adds the space
in "EdgeRouter X" as a hyphen to those variables to really make
them consistent with the model name.
While at it, create a real shared definition for the devices in
image/mt7621.mk instead of deriving one device from another.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
I-O DATA WN-AX2033GR is roughly the same as I-O DATA
WN-AX1167GR2. The difference is Wi-Fi feature.
Specification
=============
- SoC: MediaTek MT7621A
- RAM: DDR3 128 MiB
- Flash Memory: NAND 128 MiB (Spansion S34ML01G200TF100)
- Wi-Fi: MediaTek MT7603E
- Wi-Fi: MediaTek MT7615
- Ethernet: 5x 10 Mbps / 100 Mbps / 1000 Mbps (1x WAN, 4x LAN)
- LED: 2x green LED
- Input: 2x tactile switch, 1x slide switch
- Serial console: 57600bps, PCB through hole J5 (Vcc, TX, RX, NC, GND)
- Power: DC 12V
This device only supports channel 1-13 and 36-140.
Thus, narrower frequency limits compared to other devices are required
for limiting wi-fi frequency correctly.
Without this, non-supported frequencies are activated.
Flash instructions
==================
1. Open the router management page (192.168.0.1).
2. Update router firmware using "initramfs-kernel.bin".
3. After updating, run sysupgrade with "sysupgrade.bin".
Recovery instructions
=====================
WN-AX2033GR contains Zyxel Z-LOADER
1. Setup TFTP server (IP address: 10.10.10.3).
2. Put official firmware into TFTP server directory (distribution site:
https://www.iodata.jp/lib/software/w/2068.htm)
3. Connect WX-AX2033GR Ethernet port and computer that runs TFTP server.
4. Connect to serial console.
5. Interrupt booting by Esc key.
6. Flash firmware using "ATNR 1,[firmware filename]" command.
Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
[adjust for kernel 5.4, add recovery instructions/frequency comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ZyXEL Keenetic has 8MB flash, but OpenWrt uses only 4MB.
This commit fixes the problem.
WikiDevi page [1] says that ZyXEL Keenetic has FLA1: 8 MiB, there is
an article with specs [2] (in Russian).
[1] https://wikidevi.wi-cat.ru/ZyXEL_Keenetic
[2] https://3dnews.ru/608774/page-2.html
Fixes: FS#2487
Fixes: a7cbf59e0e ("ramips: add new device ZyXEL Keenetic as kn")
Signed-off-by: Alexey Dobrovolsky <dobrovolskiy.alexey@gmail.com>
So far, image/device/board names for Mikrotik devices in mt7621 have
been used quite inconsistently.
This patch harmonizes the naming scheme by applying the same style
as used lately in ath79, i.e. using "RouterBOARD" as separate word
in the model name (instead of RB prefix for the number) and deriving
the board/device name from that (= make lower case and replace spaces
by hyphens).
This style has already been used for most the model/DEVICE_MODEL
variables in mt7621, so this is essentially just adjusting the remaining
variables to that.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Buffalo WSR-2533DHPL is a 2.4/5 GHz band 11ac router, based on MediaTek
MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 128 MiB
- Flash : SPI-NOR 16 MiB
- WLAN : 2.4/5 GHz 4T4R (2x MediaTek MT7615N)
- Ethernet : 10/100/1000 Mbps
- Switch : MediaTek MT7530 (SoC)
- LED/keys : 8x/6x (3x buttons, 2x slide-switches)
- UART : through-hole on PCB
- J4: 3.3V, GND, TX, RX from triangle-mark
- 57600n8
- Power : 12VDC 1.5A
Flash instruction using initramfs image:
1. prepare the TFTP server with the initramfs image renamed to
"linux.trx-recovery" and IP address "192.168.11.2"
2. press the "AOSS" button while powering on the WSR-2533DHPL
3. after 10 seconds, release the "AOSS" button, WSR-2533DHPL downloads
the initramfs image and boot with it automatically
4. on the initramfs image, download the sysupgrade image to the device
and perform sysupgrade with it
5. wait ~120 seconds to complete flashing
Switch position overview:
- slide-switch1 (2x positions)
- "AUTO"
- "MANUAL" (not connected to gpio)
- slide-switch2 (3x positions)
- "ROUTER"
- "AP" (not connected to gpio)
- "WB"
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[add note on switches, fix group->groups for state_default]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This changes the node names for the LEDs in the Netgear R6120
device-tree file to provide consistency with other devices.
Signed-off-by: Alex Lewontin <alex.c.lewontin@gmail.com>
[improve commit title/message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
LAN ports of MTC WR1201 are reversed, so correct their names
Signed-off-by: René van Dorst <opensource@vdorst.com>
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
The original idea of bitbanged I2C is to use i2c-gpio-custom
Since i2c-gpio-custom is no longer available on 5.4, use SoC I2C instead
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
The name of each user port should be eth0..4, instead of lan1..4
and there is no WAN port. Rename them to match the official firmware.
To avoid conflict with the master port (gmac0), rename it to "dsa".
The official firmware assigns MAC address in this way:
eth0 = label mac
eth1 = label mac + 1
...
eth4 = label mac + 4
Since we have switched to DSA, it's possible to use different MAC for each port.
Acked-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
update dts and network/LED configuration for DSA driver.
sysupgrade from images prior to this commit with config preserved
will cause broken ethernet setup.
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
Acked-by: Jo-Philipp Wich <jo@mein.io>
[split commit]
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>