Implement a basic MQPrio support, inserting rules in RX that translate
the TC to prio mapping into vlan prio to queues.
Signed-off-by: Kabuli Chana <newtownBuild@gmail.com>
Deleted (upstreamed):
bcm27xx/patches-5.10/950-0145-xhci-add-quirk-for-host-controllers-that-don-t-updat.patch [1]
Manually rebased:
bcm27xx/patches-5.10/950-0355-xhci-quirks-add-link-TRB-quirk-for-VL805.patch
bcm53xx/patches-5.10/180-usb-xhci-add-support-for-performing-fake-doorbell.patch
Note: although automatically rebaseable, the last patch has been edited to avoid
conflicting bit definitions.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=linux-5.10.y&id=b6f32897af190d4716412e156ee0abcc16e4f1e5
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
LED labels got reversed by accident, so fix it to the usual color:led_name format.
Fixes: 78cf3e53b1 ("mvebu: add Globalscale MOCHAbin")
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
[add Fixes:]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Globalscale MOCHAbin is a Armada 7040 based development board.
Specifications:
* Armada 7040 Quad core ARMv8 Cortex A-72 @ 1.4GHz
* 2 / 4 / 8 GB of DDR4 DRAM
* 16 GB eMMC
* 4MB SPI-NOR (Bootloader)
* 1x M.2-2280 B-key socket (for SSD expansion, SATA3 only)
* 1x M.2-2250 B-key socket (for modems, USB2.0 and I2C only)
* 1x Mini-PCIe 3.0 (x1, USB2.0 and I2C)
* 1x SATA 7+15 socket (SATA3)
* 1x 16-pin (2×8) MikroBus Connector
* 1x SIM card slot (Connected to the mini-PCIe and both M.2 slots)
* 2x USB3.0 Type-A ports via SMSC USB5434B hub
* Cortex 2x5 JTAG
* microUSB port for UART (PL2303GL/PL2303SA onboard)
* 1x 10G SFP+
* 1x 1G SFP (Connected to 88E1512 PHY)
* 1x 1G RJ45 with PoE PD (Connected to 88E1512 PHY)
* 4x 1G RJ45 ports via Topaz 88E6141 switch
* RTC with battery holder (SoC provided, requires CR2032 battery)
* 1x 12V DC IN
* 1x Power switch
* 1x 12V fan header (3-pin, power only)
* 1x mini-PCIe LED header (2x0.1" pins)
* 1x M.2-2280 LED header (2x0.1" pins)
* 6x Bootstrap jumpers
* 1x Power LED (Green)
* 3x Tri-color RGB LEDs (Controllable)
* 1x Microchip ATECC608B secure element
Note that 1G SFP and 1G WAN cannot be used at the same time as they are in
parallel connected to the same PHY.
Installation:
Copy dtb from build_dir to bin/ and run tftpserver there:
$ cp ./build_dir/target-aarch64_cortex-a72_musl/linux-mvebu_cortexa72/image-armada-7040-mochabin.dtb bin/targets/mvebu/cortexa72/
$ in.tftpd -L -s bin/targets/mvebu/cortexa72/
Connect to the device UART via microUSB port and power on the device.
Power on the device and hit any key to stop the autoboot.
Set serverip (host IP) and ipaddr (any free IP address on the same subnet), e.g:
$ setenv serverip 192.168.1.10 # Host
$ setenv ipaddr 192.168.1.15 # Device
Set the ethernet device (Example for the 1G WAN):
$ setenv ethact mvpp2-2
Ping server to confirm network is working:
$ ping $serverip
Using mvpp2-2 device
host 192.168.1.15 is alive
Tftpboot the firmware:
$ tftpboot $kernel_addr_r openwrt-mvebu-cortexa72-globalscale_mochabin-initramfs-kernel.bin
$ tftpboot $fdt_addr_r image-armada-7040-mochabin.dtb
Boot the image:
$ booti $kernel_addr_r - $fdt_addr_r
Once the initramfs is booted, transfer openwrt-mvebu-cortexa72-globalscale_mochabin-squashfs-sdcard.img.gz
to /tmp dir on the device.
Gunzip and dd the image:
$ gunzip /tmp/openwrt-mvebu-cortexa72-globalscale_mochabin-squashfs-sdcard.img.gz
$ dd if=/tmp/openwrt-mvebu-cortexa72-globalscale_mochabin-squashfs-sdcard.img of=/dev/mmcblk0 && sync
Reboot the device.
Hit any key to stop the autoboot.
Reset U-boot env and set the bootcmd:
$ env default -a
$ setenv bootcmd 'load mmc 0 ${loadaddr} boot.scr && source ${loadaddr}'
Optionally I would advise to edit the console env variable to remove earlycon as that
causes the kernel to never use the driver for the serial console.
Earlycon should be used only for debugging before the kernel can configure the console
and will otherwise cause various issues with the console.
$ setenv console 'console=ttyS0,115200'
Save and reset
$ saveenv
$ reset
OpenWrt should boot from eMMC now.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
1. Add support for Marvell CN9130 SoC
2. Add support for CP115,and create an armada-cp11x.dtsi file which will be used to instantiate both CP110 and CP115
3. Add support for AP807/AP807-quad,AP807 is a major component of CN9130 SoC series
4. Drop PCIe I/O ranges from CP11x file and externalize PCIe macros from CP11x file
Signed-off-by: Ian Chang <ianchang@ieiworld.com>
It's been brewing on my cortexa9 subtarget (Turris Omnia) for months.
Perfectly stable.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
Acked-by: Hauke Mehrtens <hauke@hauke-m.de>
[modify subject to match previous updates]
Signed-off-by: Paul Spooren <mail@aparcar.org>
CONFIG_RCU_{NEED_SEGCBLIST,STALL_COMMON} are set basically everywhere. Move them
to the generic kconfigs. And resort the generic kconfigs while at it.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
While an image layout based on MBR and 'bootfs' partition may be easy
to understand for users who are very used to the IBM PC and always have
the option to access the SD card outside of the device (and hence don't
really depend on other recovery methods or dual-boot), in my opinion
it's a dead end for many desirable features on embedded systems,
especially when managed remotely (and hence without an easy option to
access the SD card using another device in case things go wrong, for
example).
Let me explain:
* using a MSDOS/VFAT filesystem to store kernel(s) is problematic, as a
single corruption of the bootfs can render the system into a state
that it no longer boots at all. This makes dual-boot useless, or at
least very tedious to setup with then 2 independent boot partitions
to avoid the single point of failure on a "hot" block (the FAT index
of the boot partition, written every time a file is changed in
bootfs). And well: most targets even store the bootloader environment
in a file in that very same FAT filesystem, hence it cannot be used
to script a reliable dual-boot method (as loading the environment
itself will already fail if the filesystem is corrupted).
* loading the kernel uImage from bootfs and using rootfs inside an
additional partition means the bootloader can only validate the
kernel -- if rootfs is broken or corrupted, this can lead to a reboot
loop, which is often a quite costly thing to happen in terms of
hardware lifetime.
* imitating MBR-boot behavior with a FAT-formatted bootfs partition
(like IBM PC in the 80s and 90s) is just one of many choices on
embedded targets. There are much better options with modern U-Boot
(which is what we use and build from source for all targets booting
off SD cards), see examples in mediatek/mt7622 and mediatek/mt7623.
Hence rename the 'sdcard' feature to 'legacy-sdcard', and prefix
functions with 'legacy_sdcard_' instead of 'sdcard_'.
Tested-by: Stijn Tintel <stijn@linux-ipv6.be>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This patch is backported from linux-arm-kernel [1] to improve situation, when
it was reported that 1.2 GHz variant is unstable with DFS.
It waits to be accepted upstream, however, it waits for Marvell people to respond.
[1] https://patchwork.kernel.org/project/linux-arm-kernel/patch/20210630225601.6372-1-kabel@kernel.org/
Fixes: 7b868fe04a ("Revert "mvebu: 5.4 fix DVFS caused random boot crashes"")
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
Based on the discussion on the mailing list [1], the patch which was
reverted, it reverts only one patch without the subsequent ones.
This leads to the SoC scaling issue not using a CPU parent clock, but
it uses DDR clock. This is done for all variants, and it's wrong because
commits (hacks) that were using the DDR clock are no longer in the mainline kernel.
If someone has stability issues on 1.2 GHz, it should not affect all
routers (1 GHz, 800 MHz) and it should be rather consulted with guys, who are trying to
improve the situation in the kernel and not making the situation worse.
There are two solutions in cases of instability:
a) disable cpufreq
b) underclock it up to 1 GHz
This reverts commit 080a0b74e3.
[1] https://lists.openwrt.org/pipermail/openwrt-devel/2021-June/035702.html
Fixes: d379476817 ("mvebu: armada-37xx: add patch to forbid cpufreq for 1.2 GHz")
CC: Pali Rohár <pali@kernel.org>
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
Based on the discussion on the mailing list [1], the patch which was
reverted, it reverts only one patch without the subsequent ones.
This leads to the SoC scaling issue not using a CPU parent clock, but
it uses DDR clock. This is done for all variants, and it's wrong because
commits (hacks) that were using the DDR clock are no longer in the mainline kernel.
If someone has stability issues on 1.2 GHz, it should not affect all
routers (1 GHz, 800 MHz) and it should be rather consulted with guys, who are trying to
improve the situation in the kernel and not making the situation worse.
There are two solutions in cases of instability:
a) disable cpufreq
b) underclock it up to 1 GHz
This reverts commit 080a0b74e3.
[1] https://lists.openwrt.org/pipermail/openwrt-devel/2021-June/035702.html
CC: Pali Rohár <pali@kernel.org>
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
Follow the recommendations stated in the Turris Omnia DTS for eth2:
"In case SFP module is present, U-Boot has to enable the sfp node above,
remove phy-handle property, and add managed = "in-band-status" property."
The boot script is written in a way, that it works for all U-Boot
versions deployed by the vendor so far (2015.10-rc2, 2019.07).
Signed-off-by: Klaus Kudielka <klaus.kudielka@gmail.com>
Kernel 5.4 receives a reduced set, just to make the SFP cage work.
While we are at it, move the patches accepted upstream to the 0xx series.
Signed-off-by: Klaus Kudielka <klaus.kudielka@gmail.com>
Kernel 5.10 receives the complete set of improvements from 5.11/5.12.
While we are at it, move the patches accepted upstream to the 0xx series.
Signed-off-by: Klaus Kudielka <klaus.kudielka@gmail.com>
Now that we have a generic sdcard upgrade method, which was copied from
the mvebu platform method, we can switch mvebu to the generic method.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
This patch has been carried since introduction throughout every kernel
major bump and no one has tested if the later kernels improved the
situation. The Armada 3720 SoC can only process GbE interrupts on Core 0
and this is already limited in all stable kernels, so ditch this
workaround for 64 bit SoCs.
Ref: https://git.kernel.org/torvalds/c/cf9bf871280d
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Define nvmem-cells and convert mtd-mac-address to nvmem implementation.
The conversion is done with an automated script.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
This patch has been added with initial support for ESPRESSObin board and
mistakenly it affects all boards with this SoC. Drop this patch since
the aliases are now in upstream dts for ESPRESSObin. If any boards are
relying on this, please add the respective alias to that board dts.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Many people appear to use an unneeded "+" prefix for the increment
when calculating a MAC address with macaddr_add. Since this is not
required and used inconsistently [*], just remove it.
[*] As a funny side-fact, copy-pasting has led to almost all
hotplug.d files using the "+", while nearly all of the
02_network files are not using it.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The CLK125 output pin at the ethernet PHY is connected via capacitor to
GND and nowhere else. Disable it. Also tune the LED masks.
The MPP56 and MPP60 pins at the SoC are conected to the μPD720202 USB3.0
chip:
- MPP56: wired to PCIe CLKREQ# (out)
- MPP60: wired to PCIe RESET# (in)
Configure the pcie pinmux for these pins.
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
Some targets select HZ=100, others HZ=250. There's no reason to select a higher
timer frequency (and 100 Hz are available in every architecture), so change all
targets to 100 Hz.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
For the targets which enable ubifs, these symbols are already part of the
generic kconfigs. Drop them from the target kconfigs.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
The GL.iNet GL-MV1000 is booting from eMMC and the images for it are in
theory sysupgrade compatible. But the platform upgrade scripts were not
adjusted to select the mmcblock device as upgrade target. This resulted in
a failed sysupgrade because the mtd device (NOR flash) was instead tried to
be modified by the sysupgrade script.
Fixes: 050c24f05c ("mvebu: add support for GL.iNet GL-MV1000")
Signed-off-by: Sven Eckelmann <sven@narfation.org>
The crypto engine in Armada 370 SoCs is currently broken. It can be
checked installing the required packages for testing openssl with hw
acceleration:
opkg install openssl-util
opkg install kmod-cryptodev
opkg install libopenssl-devcrypto
After configuring /etc/ssl/openssl.cnf to let openssl use the crypto
engine for digest operations, and performing some checksums..
md5sum 10M-file.bin
openssl md5 10M-file.bin
...we can see they don't match.
There might be an alignment or size constraint issue caused by the
idle-sram area.
Use the whole crypto sram and disable the idle-sram area to fix it. Also
disable the idle support by adding the broken-idle property to prevent
accessing the disabled idle-sram.
We don't care about disabling the idle support since it is already broken
in Armada 370 causing a huge performance loss because it disables
permanently the L2 cache. This was reported in the Openwrt forum and
elsewhere by Debian users with different board models.
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
Ran update_kernel.sh in a fresh clone without any existing toolchains.
Removed upstreamed:
mvebu/patches-5.4/319-ARM-dts-turris-omnia-configure-LED-2--INTn-pin-as-interrupt-pin.patch
Build system : x86_64
Build-tested : ipq806x/R7800
Run-tested : ipq806x/R7800
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
1. Use upstream accepted NVMEM patches
2. Minor fix for BCM4908 partitioning
3. Support for Linksys firmware partitions on Northstar
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
The original GL.iNet firmware has two different mac addresses in the
factory/art partition. The first one is for the WAN interface only and the
second one is for both lan0 and lan1.
But the original submission for OpenWrt didn't initialize the mac
addresses of the LAN ports for the DSA device at all. The ethernet mac
address was then used for all DSA ports.
Fixes: 050c24f05c ("mvebu: add support for GL.iNet GL-MV1000")
Signed-off-by: Sven Eckelmann <sven@narfation.org>
The original patch to support this device advertised support for the reset
button and the "switch" in the commit message. But neither were actually
integrated in the device tree or documented anywere.
The button itself is now used to trigger a reset (as described in the
official GL.iNet documentation). The switch itself is registered as BTN_0
like other devices from GL.iNet in ath79.
Fixes: 050c24f05c ("mvebu: add support for GL.iNet GL-MV1000")
Signed-off-by: Sven Eckelmann <sven@narfation.org>
venom has a 3MB kernel partition as specified by the DTS.
3MB is not sufficient for building with many kernel modules or newer
kernel versions.
venom uboot however as set from factory will load up to 6MB.
This can be observed by looking a uboot log:
NAND read: device 0 offset 0x900000, size 0x600000
6291456 bytes read: OK
and from uboot environment variables:
$ fw_printenv | grep "priKernSize";
priKernSize=0x0600000
Resize the root partitions from 120MB to 117MB to let kernel expand
into it another 3MB.
And set kernel target size to 6MB.
Lastly set the kernel-size-migration compatibility version on venom to
prevent sysupgrading without first reinstalling from a factory image.
Signed-off-by: Tad Davanzo <tad@spotco.us>
mamba has a 3MB kernel partition as specified by the DTS.
3MB is not sufficient for building with many kernel modules or newer
kernel versions.
mamba uboot however as set from factory will load up to 4MB.
This can be observed by looking a uboot log:
NAND read: device 0 offset 0xa00000, size 0x400000
4194304 bytes read: OK
and from uboot environment variables:
$ fw_printenv | grep "pri_kern_size";
pri_kern_size=0x400000
Resize the root partitions from 37MB to 36MB to let kernel expand
into it another 1MB.
And set kernel target size to 4MB.
Lastly add a compatibility version message: kernel-size-migration.
And set it on mamba to prevent sysupgrading without first reinstalling from
a factory image.
Signed-off-by: Tad Davanzo <tad@spotco.us>