Three fixes for D-Link DAP-1620 rev B and its twin D-Link DRA-1360:
1. `uboot-envtools` is removed from default package list.
2. Makefile variable is doubly escaped, i.e. `$$$$(DLINK_HWID)`.
3. Previously the size of `factory.bin` was always 10.5 MiB, same as
D-Link firmwares. This commit makes it possible to use smaller images
(with no lost space due to padding) as well as larger images. Tested
successfully flashing a 6.5 MiB image and a 14.5 MiB image.
Recall that factory images need to be installed via D-Link Web Recovery
(at http://192.168.0.50/, server ignores pings and DHCP requests).
P.S.
I implemented the OEM firmware encryption algorithm, so firmware can be
flashed via OEM firmware, but after successful flashing the device
reboots to web recovery, so further debugging is required.
Signed-off-by: Rani Hod <rani.hod@gmail.com>
This adds support for the TP-Link Archer C50 v6 (CA/EU/RU).
(The ES variant is a rebranded Archer C54 and NOT supported.)
CPU: MediaTek MT7628 (580MHz)
RAM: 64M DDR2
FLASH: 8M SPI
WiFi: 2.4GHz 2x2 MT7628 b/g/n integrated
WiFi: 5GHz 2x2 MT7613 a/n/ac
ETH: 1x WAN 4x LAN
LED: Power, WiFi2, WiFi5, LAN, WAN, WPS
BTN: WPS/WiFi, RESET
UART: Near ETH ports, 115200 8n1, TP-Link pinout
Create Factory image
--------------------
As all installation methods require a U-Boot to be integrated into the
image (and we do not ship one with the image). We are not able to create
an image in the OpenWRT build-process.
Download a TP-Link image for your device variant (CA/EU or RU) from their
website and a OpenWRT sysupgrade image for the device
and build yourself a factory image like following:
TP-Link image: tpl.bin
OpenWRT sysupgrade image: owrt.bin
> dd if=tpl.bin of=boot.bin bs=131584 count=1
> cat owrt.bin >> boot.bin
Installing via Web-UI
---------------------
Upload the boot.bin via TP-Links firmware upgrade tool in the
web-interface.
Installing via Recovery
-----------------------
Activate Web-Recovery by beginning the upgrade Process with a
Firmware-Image from TP-Link. After starting the Firmware Upgrade,
wait ~3 seconds (When update status is switching to 0%), then
disconnect the power supply from the device. Upgrade flag (which
activates Web-Recovery) is written before the OS-image is touched and
removed after write is succesfull, so this procedure should be safe.
Plug the power back in. It will come up in Recovery-Mode on 192.168.0.1.
When active, all LEDs but the WPS LED are off.
Remeber to assign yourself a static IP-address as DHCP is not active in
this mode.
The boot.bin can now be uploaded and flashed using the web-recovery.
Installing via TFTP
-------------------
Prepare an image like following (Filenames from factory image steps
apply here)
> dd if=/dev/zero of=tp_recovery.bin bs=196608 count=1
> dd if=tpl.bin of=tmp.bin bs=131584 count=1
> dd if=tmp.bin of=boot.bin bs=512 skip=1
> cat boot.bin >> tp_recovery.bin
> cat owrt.bin >> tp_recovery.bin
Place tp_recovery.bin in root directory of TFTP server and listen on
192.168.0.66/24.
Connect router LAN ports with your computer and power up the router
while pressing the reset button. The router will download the image via
tftp and after ~1 Minute reboot into OpenWRT.
U-Boot CLI
----------
U-Boot CLI can be activated by holding down '4' on bootup.
Dual U-Boot
-----------
This is the first TP-Link MediaTek device to feature a split-uboot
design. The first (factory-uboot) provides recovery via TFTP and HTTP,
jumping straight into the second (firmware-uboot) if no recovery needs
to be performed. The firmware-uboot unpacks and executed the kernel.
Web-Recovery
------------
TP-Link integrated a new Web-Recovery like the one on the Archer C7v4 /
TL-WR1043v5. Stock-firmware sets a flag in the "romfile" partition
before beginning to write and removes it afterwards. If the router boots
with this flag set, bootloader will automatically start Web-recovery and
listens on 192.168.0.1. This way, the vendor-firmware or an OpenWRT
factory image can be written.
By doing the same while performing sysupgrade, we can take advantage of
the Web-recovery in OpenWRT.
It is important to note that Web-Recovery is only based on this flag. It
can't detect e.g. a crashing kernel or other means. Once activated it
won't boot the OS before a recovery action (either via TFTP or HTTP) is
performed. This recovery-mode is indicated by an illuminated WPS-LED on
boot.
Co-authored-by: Julius Schwartzenberg <julius.schwartzenberg@gmail.com>
Signed-off-by: Renaud Gaspard <gaspardrenaud@hotmail.com>
Signed-off-by: Julius Schwartzenberg <julius.schwartzenberg@gmail.com>
Tested-by: Julius Schwartzenberg <julius.schwartzenberg@gmail.com>
Tested-by: Jaroslav Mikulík <byczech@gmail.com>
Tested-by: Ashipa Eko <ashipa.eko@gmail.com>
The COVR-X1860 are MT7621-based AX1800 devices (similar to DAP-X1860, but
with two Ethernet ports and external power supply) that are sold in sets
of two (COVR-X1862) and three (COVR-X1863).
Specification:
- MT7621
- MT7915 + MT7975 2x2 802.11ax (DBDC)
- 256MB RAM
- 128 MB flash
- 3 LEDs (red, orange, white), routed to one indicator in the top of the device
- 2 buttons (WPS in the back and Reset at the bottom of the device)
MAC addresses:
- LAN MAC (printed on the device) is stored in config2 partition as ASCII (entry factory_mac=xx:xx:xx:xx:xx:xx)
- WAN MAC: LAN MAC + 3
- 2.4G MAC: LAN MAC + 1
- 5G MAC: LAN MAC + 2
The pins for the serial console are already labeled on the board (VCC, TX, RX, GND). Serial settings: 3.3V, 115200,8n1
Flashing via OEM Web Interface:
- Download openwrt-ramips-mt7621-dlink_covr-x1860-a1-squashfs-factory.bin via the OEM web interface firmware update
- The configuration wizard can be skipped by directly going to http://192.168.0.1/UpdateFirmware_Simple.html
Flashing via Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.0
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the status LED blinks red
- Open a Chromium based browser and goto http://192.168.0.1
- Download openwrt-ramips-mt7621-dlink_covr-x1860-a1-squashfs-recovery.bin
Revert back to stock using the Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.25
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the status LED blinks red
- Open a Chromium based browser and goto http://192.168.0.1
- Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.
Decrypting a D-Link firmware image:
- Download https://github.com/openwrt/firmware-utils/blob/master/src/dlink-sge-image.c and https://raw.githubusercontent.com/openwrt/firmware-utils/master/src/dlink-sge-image.h
- Compile a binary from the downloaded file, e.g. gcc dlink-sge-image.c -lcrypto -o dlink-sge-image
- Run ./dlink-sge-image COVR-X1860 <OriginalFirmware> <OutputFile> -d
- Example for firmware 102b01: ./dlink-sge-image COVR-X1860 COVR-X1860_RevA_Firmware_102b01.bin COVR-X1860_RevA_Firmware_102b01_Decrypted.bin -d
The pull request is based on the discussion in https://forum.openwrt.org/t/add-support-for-d-link-covr-x1860
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
Some platforms have their console on other ports than ttyS0, so
allow the developer to tailor this on bespoke platform images.
Fixes issue #13401.
Signed-off-by: Philip Prindeville <philipp@redfish-solutions.com>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: Winbond 128MB
RAM: DDR3 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset
Power: DC 12V 1A
Flash instructions:
1. Connect to your PC via the Gigabit port of the router,
set a static ip on the ethernet interface of your PC.
(ip 192.168.1.254, gateway 192.168.1.1)
2. Attach UART, pause at u-boot menu.
3. Select "Upgrade ATF BL2", then use preloader.bin
4. Select "Upgrade ATF FIP", then use bl31-uboot.fip
5. Download the initramfs image, and type "reset",
waiting for tftp recovery to complete.
6. After openwrt boots up, perform sysupgrade.
Note:
1. Since NMBM is disabled, we must back up all partitions.
2. Although we can upgrade new firmware in the stock firmware,
we need the special fit image signature of MediaTek and
dual boot (hack kernel) to make u-boot boot it. So just
abandon these hacks and flash it via the serial port.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
CONFIG_DEVTMPFS_SAFE is now part of the generic configuration. Remove it
from the target configurations.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
DP nodes live under the soc node, and since soc is a simple bus it requires
node adresses to be present.
So, simply add the node addreses to avoid the following dtc warning:
Warning (unit_address_vs_reg): /soc/dp1: node has a reg or ranges property, but no unit name
Warning (unit_address_vs_reg): /soc/dp2: node has a reg or ranges property, but no unit name
Warning (unit_address_vs_reg): /soc/dp3: node has a reg or ranges property, but no unit name
Warning (unit_address_vs_reg): /soc/dp4: node has a reg or ranges property, but no unit name
Warning (unit_address_vs_reg): /soc/dp5: node has a reg or ranges property, but no unit name
Warning (unit_address_vs_reg): /soc/dp6: node has a reg or ranges property, but no unit name
Warning (unit_address_vs_reg): /soc/dp5-syn: node has a reg or ranges property, but no unit name
Warning (unit_address_vs_reg): /soc/dp6-syn: node has a reg or ranges property, but no unit name
Signed-off-by: Robert Marko <robimarko@gmail.com>
It seems that ESS dt-bindings somehow ended up with Windows line endings,
this is obviously incorrect, so lets convert it to UNIX endings.
Signed-off-by: Robert Marko <robimarko@gmail.com>
In fixing ipq8074 WAX630 dts, there was a typo in the switch lan bmp.
Fix it to fix compilarion error.
Fixes: f3cd4bfb7f69 ("ipq807x: fix multiple error on ESS switch port define")
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Fix multiple error on ESS switch port define.
- Fix wrong switch CPU and WAN bmp define. (many times wan port are
actually set in lan mask and lan port in wan mask)
- Renumber phyinfo port, use port_id instead of phy_address as it
doesn't make sense using that for port enumeration
- Drop additional port for devices that have them not connected.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Those devices have Ethernet interfaces using base MAC address increased
by 0x40 in the 3rd indexed byte (00:00:00:FF:00:00). To describe that we
were using a custom (downstream) "mac-address-increment-byte" property.
The same result can be achieved by using "mac-base" with a properly
adjusted offset value (0x40 << 16). It may be not pretty but it should
work without custom property or downstream kernel patch to support it.
Cc: Ansuel Smith <ansuelsmth@gmail.com>
Cc: Catrinel Catrinescu <cc@80211.de>
Cc: Felix Fietkau <nbd@nbd.name>
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Reviewed-by: Rosen Penev <rosenp@gmail.com>
There was a typo in the LED definition for the mode of non-standard
qca8k LEDs. Mode for link speed was wrongly set to link-10 link-100
link-1000 while the real mode in sysfs is link_10 link_100 and
link_1000.
Fix the entry to the correct mode.
Fixes: c707cff6c94b ("ipq806x: add LEDs definition for non-standard qca8k LEDs")
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Every board in qualcommax is using the same BM and TM switch tick modes, so
instead of specifying them in each board lets just set them in the ESS DTSI
directly.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Now that we have the MAC modes defined in DT bindings, lets replace all of
the raw hex values with defines.
While we are here, we can drop the disabled UNIPHY-s as that is the default
value in the ESS DTSI.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Every board that has the switch enabled needs to have MAC modes defined for
all 3 UNIPHY instances.
So, instead of having to at least put the disabled MAC mode for UNIPHY-s
let disable them by default and then boards can override it.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Since every board needs to define the correct MAC modes, it makes sense
to document the allowed hex values with a humanly readable name.
So, lets document all of the allowed MAC modes from SSDK 12.4 as bindings,
so later we can replace all of the hex values in DTS-es with these.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Commit 947b44d ("ipq807x: fix wrong define for LAN and WAN ess mask")
started fixing wrong switch_lan_bmp that defined lan there weren't
actually present. This displayed a fragility in the malibu phy init code
in qca-ssdk.
Add patch to fix this. Also update each DTS with the new required
property if needed.
The new binding malibu_phy_start_addr is required with devices that
place the malibu first PHY referring port1 on a different PHY addres
than 0. The most common configuration is 0 but some device (for example
Qnap 301W) place the malibu PHY at an offset to address 16.
Refer to ipq8074-ess dtsi for extensive description on how to derive
this value.
Quoting the patch detailed description:
The usage of first_phy_addr is EXTREMELY FRAGILE and results
in dangerous results if the OEM (or anyone that by chance try to
implement things in a logical manner) deviates from the default values
from the "magical template".
To be in more details. With QSDK 12.4, some tweaks were done to improve
autoneg and now on every call of port status, the phydev is tried to
add. This resulted in the call and log spam of an error with ports that
are actually not present on the system with qsdk reporting phydev is
NULL. This itself is not an error and printing the error is correct.
What is actually an error from ages is setting generic bitmap reporting
presence of port that are actually not present. This is very common on
OEM where the switch_lan_bmp is always a variant of 0x1e (that on bitmap
results in PORT1 PORT2 PORT3 PORT4 present) or 0x3e (PORT1 PORT2 PORT3
PORT4 PORT5). Reality is that many device are used as AP with one LAN
port or one WAN port. (or even exotic configuration with PORT1 not
present and PORT2 PORT3 PORT4 present (Xiaomi 3600)
With this finding one can say... ok nice, then lets update the DT and
set the correct bitmap...
Again world is a bad place and reality is that this cause wonderful
regression in some case of by extreme luck the first ever connected
port working and the rest of the switch dead.
The problem has been bisected to all the device that doesn't have the
PORT1 declared in any of the bitmap.
With this prefaction in mind, on to the REAL problem.
malibu_phy_hw_init FOR SOME REASON, set a global variable first_phy_addr
to the first detected PHY addr that coincidentally is always PORT1.
PORT1 addr is 0x0. The entire code in malibu_phy use this variable to
derive the phy addrs in some function.
Declaring a bitmap where the PORT1 is missing (or worse PORT4 the only
one connected) result in first_phy_addr set to 1 or whatever phy addr is
detected first setting wrong value all over the init stage.
To fix this, introduce a new binding malibu_first_phy_addr to manually
declare the first phy that the malibu PHY driver should use and permit
to detach it from port bmp detection. The legacy detection is kept for
compatibility reason.
Fixes: #13945
Fixes: 947b44d9ae17 ("ipq807x: fix wrong define for LAN and WAN ess mask")
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Tested-by: Robert Marko <robimarko@gmail.com> # Qnap 301W
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Device specification:
- MT7629 with 16MB NOR flash W25Q128 and 128 MB DDR3 RAM.
- MT7761N and MT7762N wireless chips (currenlty no driver in OpenWrt available)
- WiFi is NOT working on this device
- Dual core but second CPU doesn't seem to work (Error message during boot: "CPU1: failed to come online")
There are two similar merge requests for similar devices with the same issues:
- https://github.com/openwrt/openwrt/pull/12286
- https://github.com/openwrt/openwrt/pull/5084
UART interface is next to the reset button, pinout:
- 1: TX (the pin with the arrow marker)
- 2: RX
- 3: GND
- 4: VCC
UART settings: 115200,8n1, 3.3V
U-Boot menu can be entered by pressing Ctrl+B during startup.
Booting initramfs:
- Set your computers IP adress to 192.168.1.110
- Run a TFTP server providing the initramfs image
- Power on the AP, press Ctrl+B to get to the U-Boot menu
- Select "1. System Load Linux to SDRAM via TFTP"
- Update kernel file name, input server IP and input device IP (if they deviate from the defaults)
- After booting, create a backup of all partitions, especially for kernel and root_fs. They are required for reverting back to stock firmware
- The sysupgrade image can be flashed now
MAC adresses:
- LAN and 2.4GHz use the same MAC (the one printed on the device)
- 5GHz WiFi MAC is LAN MAC + 1
GPIOs:
- GPIO 21 is the reset pin (low active)
- GPIO 55 is for the green LED (active high)
- GPIO 56 is for the yellow/amber LED (active high)
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
Specification:
- MT7622BV SoC with 2.4GHz wifi
- MT7975AN + MT7915AN for 5GHz
- MT7531BE Switch
- 512MB RAM
- 128 MB flash
- 3 LEDs (red, orange, white)
- 2 buttons (WPS and Reset)
MAC addresses:
- WAN MAC is stored in partition "Odm" at offset 0x83
- LAN (as printed on the device) is WAN MAC + 1
- WLAN MAC (2.4 GHz) is WAN MAC + 2
- WLAN MAC (5GHz) is WAN MAC + 3
Disassembly: Remove 4 screws in the bottom and 2 screws in the top (after removing the blue cover on the top), then the board can be pulled out.
The pins for the serial console are already labeled on the board (VCC, TX, RX, GND). Serial settings: 3.3V, 115200,8n1
Flashing via Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.25
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the status LED blinks fast
- Open a Chromium based and goto http://192.168.0.1
- Download openwrt-mediatek-mt7622-dlink_eagle-pro-ai-m32-a1-squashfs-recovery.bin
Flashing via uBoot:
- Open the case, connect to the UART console
- Set your IP address to 10.10.10.3, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
- Run a tftp server which provides openwrt-mediatek-mt7622-dlink_eagle-pro-ai-m32-initramfs-kernel.bin. You can rename the file to iverson_uImage (no extension), then you don't have to enter the whole file name in uboot later.
- Power on the device and select "1. System Load Linux to SDRAM via TFTP." in the boot menu
- Enter image file, tftp server IP and device IP (if they differ from the default).
- TFTP download to RAM will start. After a few seconds OpenWrt initramfs should start
- The initramfs is accessible via 192.168.1.1, change your IP address accordingly (or use multiple IP addresses on your interface)
- Create a backup of the Kernel1 partition, this file is required if a revert to stock should be done later
- Perform a sysupgrade using openwrt-mediatek-mt7622-dlink_eagle-pro-ai-m32-squashfs-sysupgrade.bin
- Reboot the device. OpenWrt should start from flash now
Revert back to stock using the Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.25
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the status LED blinks fast
- Open a Chromium based and goto http://192.168.0.1
- Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.
Decrypting a D-Link firmware image:
- Download https://github.com/RolandoMagico/firmware-utils/blob/M32/src/m32-firmware-util.c
- Compile a binary from the downloaded file, e.g. gcc m32-firmware-util.c -lcrypto -o m32-firmware-util
- Run ./m32-firmware-util M32 --DecryptFactoryImage <OriginalFirmware> <OutputFile>
- Example for firmware 1.03.01_HOTFIX: ./m32-firmware-util M32 --DecryptFactoryImage M32-REVA_1.03.01_HOTFIX.enc.bin M32-REVA_1.03.01_HOTFIX.decrypted.bin
Revert back to stock using uBoot:
- Open the case, connect to the UART console
- Set your IP address to 10.10.10.3, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
- Run a tftp server which provides the previously created backup of the Kernel1 partition. You can rename the file to iverson_uImage (no extension), then you don't have to enter the whole file name in uboot later.
- Power on the device and select "2. System Load Linux Kernel then write to Flash via TFTP." in the boot menu
- Enter image file, tftp server IP and device IP (if they differ from the default).
- TFTP download to FLASH will start. After a few seconds the stock firmware should start again
There is also an image openwrt-mediatek-mt7622-dlink_eagle-pro-ai-m32-a1-squashfs-tftp.bin which can directly be flashed via U-Boot and TFTP. It can be used if no backup of the Kernel1 partition is reuqired.
Flahsing via OEM web interface is currently not possible, the OEM images are encrypted and require a specific memory layout which is not compatible to the partition layout of OpenWrt.
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
This fixes a well known "LZMA ERROR 1" error on Sercomm NA502,
reported on the OpenWrt forum. [1]
[1]: https://forum.openwrt.org/t/176942
Signed-off-by: Szabolcs Hubai <szab.hu@gmail.com>
creates SGE encrypted factory images
to use via the D-Link web interface
rename the old factory unencrypted images to recovery
for use in the recovery console when recovery is needed
DIR-1935-A1 , DIR-853-A1 , DIR-853-A3 , DIR-867-A1 ,
DIR-878-A1 and DIR-882-A1
Signed-off-by: Alan Luck <luckyhome2008@gmail.com>
Since kernel 5.11, the PXA I2C driver has been converted to generic I2C
recovery, which makes the I2C bus completely lock up if recovery pinctrl
is present in the DT and I2C recovery is enabled.
This effectively completely broke I2C on Methode uDPU and eDPU boards
as both of them rely on I2C recovery.
After a discussion upstream, it was concluded that there is no simple fix
and that the blamed upstream commit:
0b01392c18b9993a584f36ace1d61118772ad0ca ("i2c: pxa: move to generic GPIO
recovery") should be reverted.
I have sent the revert upstream, it should be merged soon so lets "fix"
OpenWrt as well.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
switch_lan_bmp and switch_wan_bmp have wrong values and now cause
problems with the new version of the qca-ssdk.
Fix the wrong entry and drop the redundant switch_cpu_bmp.
Also introduce some convenient define to better understand values in
this map.
Fixes: eea264feadcf ("kernel: qca-ssdk: update to 12.4")
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Tested-by: Robert Marko <robimarko@gmail.com> # Dynalink AX3600 and Qnap 301W
Reviewed by: Robert Marko <robimarko@gmail.com>
Now that netifd and uci-defaults.sh supports a way to setup DSA port
conduit without using iproute2 tool, set DSA port conduit directly in
board.d, that will fill board.d and will instruct netifd to setup the
port.
Drop special init.d qca8k_set_port script and ip-tiny from target dep as
they are not required anymore.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
From the symbol help message:
> SLUB has extensive debug support features. Disabling these can result
> in significant savings in code size.
There seems to be no need to enable those debugging features for
standard use.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
SSDK has switched to using the upstream SMEM helper to get the SoC ID and
then look it up in the QCA SMEM ID header, so we need these in order for
SSDK to compile as they are currently undefined.
Signed-off-by: Robert Marko <robimarko@gmail.com>
The FOTG210 USB driver is currently being selected as a module directly via
the target kernel config which should not be done and via kmod as well.
So, lets drop the driver selection in the target kernel module as kmod is
sufficient.
Fixes: 585360f0c0ec ("gemini: refresh kernel config")
Signed-off-by: Robert Marko <robimarko@gmail.com>
The usb-fotg210 does not currently select CONFIG_USB_FOTG210_UDC which
enable OTG support, but it was previously selected directly in the target
kernel config so lets enable it to keep the functionality identical.
Signed-off-by: Robert Marko <robimarko@gmail.com>
CONFIG_USB_FOTG210_HCD is a boolean symbol, so it must be set to "y"
instead of the default which is to set it as "m".
Otherwise you will get prompted to set the symbol during kernel building.
Fixes: 585360f0c0ec ("gemini: refresh kernel config")
Signed-off-by: Robert Marko <robimarko@gmail.com>
Since MT7613 is handled by MT7615 driver, and other devices using MT7615
have reg = <0x8000 0x4da8>; this needs updating or eeprom data fails to load.
Signed-off-by: Filip Milivojevic <zekica@gmail.com>
It seems that I forgot one zero in the patch numbering while marking these
as backports, so lets fix it.
Signed-off-by: Robert Marko <robimarko@gmail.com>
This doubles the number of cooling-levels.
In addition the fan is turned on with a low speed at lower temperatures
and with a higher speed at higher temperatures.
This also attempts to reduce the likelihood of constant start-stop actions.
The change only affects the GL.iNet MT3000 and has been tested with it.
Signed-off-by: Łukasz M <lukasz1992m@gmail.com>
Fortinet FAP-220-B is a dual-radio, dual-band 802.11n enterprise managed
access point with PoE input and single gigabit Ethernet interface.
Hardware highlights:
Power: 802.3af PoE input on Ethernet port, +12V input on 5.5/2.1mm DC jack.
SoC: Atheros AR7161 (MIPS 24kc at 680MHz)
RAM: 64MB DDR400
Flash: 16MB SPI-NOR
Wi-Fi 1: Atheros AR9220 2T2R 802.11abgn (dual-band)
Wi-Fi 2: Atheros AR9223 2T2R 802.11bgn (single-band)
Ethernet: Atheros AR8021 single gigabit Phy (RGMII)
Console: External RS232 port using Cisco 8P8C connector (9600-8-N-1)
USB: Single USB 2.0 host port
LEDs: Power (single colour, green), Wi-Fi 1, Wi-Fi 2, Ethernet, Mode, Status
(dual-colour, green and yellow)
Buttons: reset button hidden in bottom grill,
in the top row, 2nd column from the right.
Label MAC address: eth0
FCC ID: TVE-220102
Serial port pinout:
3 - TxD
4 - GND
6 - RxD
Installation: The same methods apply as for already supported FAP-221-B.
For both methods, a backup of flash partitions is recommended, as stock firmware
is not freely available on the internet.
(a) Using factory image:
1. Connect console cable to the console port
2. Connect Ethernet interface to your PC
3. Start preferred terminal at 9600-8-N-1
4. Have a TFTP server running on the PC.
5. Put the "factory" image in TFTP root
6. Power on the device
7. Break boot sequence by pressing "Ctrl+C"
8. Press "G". The console will ask you for device IP, server IP, and filename.
Enter them appropriately.
The defaults are:
Server IP: 192.168.1.1 # Update accordingly
Device IP: 192.168.1.2 # Update accordingly
Image file: image.out # Use for example: openwrt-ath79-generic-fortinet_fap-220-b-squashfs-factory.bin
9. The device will load the firmware over TFTP, and verify it. When
verification passes, press "D" to continue installation. The device
will reboot on completion.
(b) Using initramfs + sysupgrade
1. Connect console cable to the console port
2. Connect Ethernet interface to your PC
3. Start preferred terminal at 9600-8-N-1
4. Have a TFTP server running on the PC.
5. Put the "initramfs" image in TFTP root
6. Power on the device.
7. Break boot sequence by pressing "Ctrl+C"
8. Enter hidden U-boot shell by pressing "K". The password is literal "1".
9. Load the initramfs over TFTP:
> setenv serverip 192.168.1.1 # Your PC IP
> setenv ipaddr 192.168.1.22 # Device IP, both have to share a subnet.
> tftpboot 81000000 openwrt-ath79-generic-fortinet_fap-220-b-initramfs-kernel.bin
> bootm 81000000
10. (Optional) Copy over contents of at least "fwconcat0", "loader", and "fwconcat1"
partitions, to allow restoring factory firmware in future:
# cat /dev/mtd1 > /tmp/mtd1_fwconcat0.bin
# cat /dev/mtd2 > /tmp/mtd2_loader.bin
# cat /dev/mtd3 > /tmp/mtd3_fwconcat1.bin
and then SCP them over to safety at your PC.
11. When the device boots, copy over the sysupgrade image, and execute
normal upgrade:
# sysupgrade openwrt-ath79-generic-fortinet_fap-220-b-squashfs-sysupgrade.bin
Return to stock firmware:
1. Boot initramfs image as per initial installation up to point 9
2. Copy over the previously backed up contents over network
3. Write the backed up contents back:
# mtd write /tmp/mtd1_fwconcat0.bin fwconcat0
# mtd write /tmp/mtd2_loader.bin loader
# mtd write /tmp/mtd3_fwconcat1.bin fwconcat1
4. Erase the reserved partition:
# mtd erase reserved
5. Reboot the device
Quirks and known issues:
- The power LED blinking pattern is disrupted during boot, probably due
to very slow serial console, which prints a lot during boot compared
to stock FW.
- "mac-address-ascii" device tree binding cannot yet be used for address
stored in U-boot partition, because it expects the colons as delimiters,
which this address lacks. Addresses found in ART partition are used
instead.
- Due to using kmod-owl-loader, the device will lack wireless interfaces
while in initramfs, unless you compile it in.
- The device heats up A LOT on the bottom, even when idle. It even
contains a warning sticker there.
- Stock firmware uses a fully read-write filesystem for its rootfs.
- Stock firmware loads a lot of USB-serial converter drivers for use
with built-in host, probably meant for hosting modem devices.
- U-boot build of the device is stripped of all branding, despite that
evidence of it (obviously) being U-boot can be found in the binary.
- The user can break into hidden U-boot shell using key "K" after
breaking boot sequence. The password is "1" (without quotes).
- Telnet is available by default, with login "admin", without password.
The same is true for serial console, both drop straight to the Busybox
shell.
- The web interface drops to the login page again, after successfull
login.
- Whole image authentication boils down to comparing a device ID against
one stored in U-boot.
- And this device is apparently made by a security company.
Big thanks for Michael Pratt for providing support for FAP-221-B, which
shares the entirety of image configuration with this device, this saved
me a ton of work.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
In preparation for FAP-220-B support, rename ar934x_fortinet_loader.dtsi
to arxxxx_fortinet_loader.dtsi, to avoid confusion, as FAP-220-B shares
flash layout with FAP-221-B exactly despite different SoC.
While at that, add a label to U-boot partition to allow for nvmem MAC
binding in future.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>