mirror of
https://github.com/openwrt/openwrt.git
synced 2024-12-25 00:11:13 +00:00
af56075a8f
95 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Roberto Valentini
|
af56075a8f |
ath79: add support for TP-Link RE455 v1
TP-Link RE455 v1 is a dual band router/range-extender based on Qualcomm/Atheros QCA9563 + QCA9880. This device is nearly identical to RE450 v3 Specification: - 775 MHz CPU - 64 MB of RAM (DDR2) - 8 MB of FLASH (SPI NOR) - 3T3R 2.4 GHz - 3T3R 5 GHz - 1x 10/100/1000 Mbps Ethernet (AR8033 PHY) - 7x LED, 4x button - UART header on PCB[1] Flash instruction: Apply factory image in OEM firmware web-gui. [1] Didn't work, probably need to short unpopulated resistor R64 and R69 as RE450v3 Signed-off-by: Roberto Valentini <valantin89@gmail.com> |
||
Evgeniy Isaev
|
6c148116f7 |
ath79: add support for Xiaomi AIoT Router AC2350
Device specifications * SoC: QCA9563 @ 775MHz (MIPS 74Kc) * RAM: 128MiB DDR2 * Flash: 16MiB SPI-NOR (EN25QH128) * Wireless 2.4GHz (SoC): b/g/n, 3x3 * Wireless 5Ghz (QCA9988): a/n/ac, 4x4 MU-MIMO * IoT Wireless 2.4GHz (QCA6006): currently unusable * Ethernet (AR8327): 3 LAN × 1GbE, 1 WAN × 1GbE * LEDs: Internet (blue/orange), System (blue/orange) * Buttons: Reset * UART: through-hole on PCB ([VCC 3.3v](RX)(GND)(TX) 115200, 8n1) * Power: 12VDC, 1,5A MAC addresses map (like in OEM firmware) art@0x0 88:C3:97:*:57 wan/label art@0x1002 88:C3:97:*:2D lan/wlan2g art@0x5006 88:C3:97:*:2C wlan5g Obtain SSH Access 1. Download and flash the firmware version 1.3.8 (China). 2. Login to the router web interface and get the value of `stok=` from the URL 3. Open a new tab and go to the following URL (replace <STOK> with the stok value gained above; line breaks are only for easier handling, please put together all four lines into a single URL without any spaces): http://192.168.31.1/cgi-bin/luci/;stok=<STOK>/api/misystem/set_config_iotdev ?bssid=any&user_id=any&ssid=-h%0Anvram%20set%20ssh_en%3D1%0Anvram%20commit %0Ased%20-i%20%27s%2Fchannel%3D.%2A%2Fchannel%3D%5C%5C%22debug%5C%5C%22%2F g%27%20%2Fetc%2Finit.d%2Fdropbear%0A%2Fetc%2Finit.d%2Fdropbear%20start%0A 4. Wait 30-60 seconds (this is the time required to generate keys for the SSH server on the router). Create Full Backup 1. Obtain SSH Access. 2. Create backup of all flash (on router): dd if=/dev/mtd0 of=/tmp/ALL.backup 3. Copy backup to PC (on PC): scp root@192.168.31.1:/tmp/ALL.backup ./ Tip: backup of the original firmware, taken three times, increases the chances of recovery :) Calculate The Password * Locally using shell (replace "12345/E0QM98765" with your router's serial number): On Linux printf "%s6d2df50a-250f-4a30-a5e6-d44fb0960aa0" "12345/E0QM98765" | \ md5sum - | head -c8 && echo On macOS printf "%s6d2df50a-250f-4a30-a5e6-d44fb0960aa0" "12345/E0QM98765" | \ md5 | head -c8 * Locally using python script (replace "12345/E0QM98765" with your router's serial number): wget https://raw.githubusercontent.com/eisaev/ax3600-files/master/scripts/calc_passwd.py python3.7 -c 'from calc_passwd import calc_passwd; print(calc_passwd("12345/E0QM98765"))' * Online https://www.oxygen7.cn/miwifi/ Debricking (lite) If you have a healthy bootloader, you can use recovery via TFTP using programs like TinyPXE on Windows or dnsmasq on Linux. To switch the router to TFTP recovery mode, hold down the reset button, connect the power supply, and release the button after about 10 seconds. The router must be connected directly to the PC via the LAN port. Debricking You will need a full dump of your flash, a CH341 programmer, and a clip for in-circuit programming. Install OpenWRT 1. Obtain SSH Access. 2. Create script (on router): echo '#!/bin/sh' > /tmp/flash_fw.sh echo >> /tmp/flash_fw.sh echo '. /bin/boardupgrade.sh' >> /tmp/flash_fw.sh echo >> /tmp/flash_fw.sh echo 'board_prepare_upgrade' >> /tmp/flash_fw.sh echo 'mtd erase rootfs_data' >> /tmp/flash_fw.sh echo 'mtd write /tmp/openwrt.bin firmware' >> /tmp/flash_fw.sh echo 'sleep 3' >> /tmp/flash_fw.sh echo 'reboot' >> /tmp/flash_fw.sh echo >> /tmp/flash_fw.sh chmod +x /tmp/flash_fw.sh 3. Copy `openwrt-ath79-generic-xiaomi_aiot-ac2350-squashfs-sysupgrade.bin` to the router (on PC): scp openwrt-ath79-generic-xiaomi_aiot-ac2350-squashfs-sysupgrade.bin \ root@192.168.31.1:/tmp/openwrt.bin 4. Flash OpenWRT (on router): /bin/ash /tmp/flash_fw.sh & 5. SSH connection will be interrupted - this is normal. 6. Wait for the indicator to turn blue. Signed-off-by: Evgeniy Isaev <isaev.evgeniy@gmail.com> [improve commit message formatting slightly] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Nick Hainke
|
3e0387b3db |
ath79: Support for Ubiquiti Rocket 5AC Lite
The Ubiquiti Rocket 5AC Lite (R5AC-Lite) is an outdoor router. Specifications: - SoC: Qualcomm Atheros QCA9558 - RAM: 128 MB - Flash: 16 MB SPI - Ethernet: 1x 10/100/1000 Mbps - WiFi 5 GHz: QCA988x - Buttons: 1x (reset) - LEDs: 1x power, 1x Ethernet, 4x RSSI Installation: - Instructions for XC-type Ubiquiti: https://openwrt.org/toh/ubiquiti/common Signed-off-by: Nick Hainke <vincent@systemli.org> |
||
INAGAKI Hiroshi
|
a4e2766a5b |
ath79: add support for NEC Aterm WF1200CR
NEC Aterm WF1200CR is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on QCA9561. Specification: - SoC : Qualcomm Atheros QCA9561 - RAM : DDR2 128 MiB (W971GG6SB-25) - Flash : SPI-NOR 8 MiB (MX25L6433FM2I-08G) - WLAN : 2.4/5 GHz 2T2R - 2.4 GHz : QCA9561 (SoC) - 5 GHz : QCA9888 - Ethernet : 2x 10/100 Mbps - Switch : QCA9561 (SoC) - LEDs/Keys : 8x/3x (2x buttons, 1x slide-switch) - UART : through-hole on PCB - JP1: Vcc, GND, NC, TX, RX from "JP1" marking - 115200n8 - Power : 12 VDC, 0.9 A Flash instruction using factory image (stock: < v1.3.2): 1. Boot WF1200CR normally with "Router" mode 2. Access to "http://192.168.10.1/" and open firmware update page ("ファームウェア更新") 3. Select the OpenWrt factory image and click update ("更新") button to perform firmware update 4. Wait ~150 seconds to complete flashing Alternate flash instruction using initramfs image (stock: >= v1.3.2): 1. Prepare the TFTP server with the IP address 192.168.1.10 and place the OpenWrt initramfs image to the TFTP directory with the name "0101A8C0.img" 2. Connect serial console to WF1200CR 3. Boot WF1200CR and interrupt with any key after the message "Hit any key to stop autoboot: 2", the U-Boot starts telnetd after the message "starting telnetd server from server 192.168.1.1" 4. login the telnet (address: 192.168.1.1) 5. Perform the following commands to modify "bootcmd" variable temporary and check the value (to ignore the limitation of available commands, "tp; " command at the first is required as dummy, and the output of "printenv" is printed on the serial console) tp; set bootcmd 'set autostart yes; tftpboot' tp; printenv 6. Save the modified variable with the following command and reset device tp; saveenv tp; reset 7. The U-Boot downloads initramfs image from TFTP server and boots it 8. On initramfs image, download the sysupgrade image to the device and perform the following commands to erase stock firmware and sysupgrade mtd erase firmware sysupgrade <sysupgrade image> 9. After the rebooting by completion of sysupgrade, start U-Boot telnetd and login with the same way above (3, 4) 10. Perform the following commands to reset "bootcmd" variable to the default and reset the device tp; run seattle tp; reset (the contents of "seattle": setenv bootcmd 'bootm 0x9f070040' && saveenv) 11. Wait booting-up the device Known issues: - the following 6x LEDs are connected to the gpio controller on QCA9888 chip and the implementation of control via the controller is missing in ath10k/ath10k-ct - "ACTIVE" (Red/Green) - "2.4GHz" (Red/Green) - "5GHz" (Red/Green) Note: - after the version v1.3.2 of stock firmware, "offline update" by uploading image by user is deleted and the factory image cannot be used - the U-Boot on WF1200CR doesn't configure the port-side LEDs on WAN/LAN and the configuration is required on OpenWrt - gpio-hog: set the direction of GPIO 14(WAN)/19(LAN) to output - pinmux: set GPIO 14/19 as switch-controlled LEDs Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com> |
||
Felix Matouschek
|
624b85e646 |
ath79: add support for Devolo dLAN pro 1200+ WiFi ac
This patch adds support for the Devolo dLAN pro 1200+ WiFi ac. This device is a plc wifi AC2400 router/extender with 2 Ethernet ports, has a QCA7500 PLC and uses the HomePlug AV2 standard. Other than the PLC the hardware is identical to the Devolo Magic 2 WIFI. Therefore it uses the same dts, which was moved to a dtsi to be included by both boards. This is a board that was previously included in the ar71xx tree. Hardware: SoC: AR9344 CPU: 560 MHz Flash: 16 MiB (W25Q128JVSIQ) RAM: 128 MiB DDR2 Ethernet: 2xLAN 10/100/1000 PLC: QCA75000 (Qualcomm HPAV2) PLC Uplink: 1Gbps MIMO PLC Link: RGMII 1Gbps (WAN) WiFi: Atheros AR9340 2.4GHz 802.11bgn Atheros AR9882-BR4A 5GHz 802.11ac Switch: QCA8337, Port0:CPU, Port2:PLC, Port3:LAN1, Port4:LAN2 Button: 3x Buttons (Reset, wifi and plc) LED: 3x Leds (wifi, plc white, plc red) GPIO Switch: 11-PLC Pairing (Active Low) 13-PLC Enable 21-WLAN power MACs Details verified with the stock firmware: Radio1: 2.4 GHz &wmac *:4c Art location: 0x1002 Radio0: 5.0 GHz &pcie *:4d Art location: 0x5006 Ethernet ðernet *:4e = 2.4 GHz + 2 PLC uplink --- *:4f = 2.4 GHz + 3 Label MAC address is from PLC uplink The Powerline (PLC) interface of the dLAN pro 1200+ WiFi ac requires 3rd party firmware which is not available from standard OpenWrt package feeds. There is a package feed on github which you must add to OpenWrt buildroot so you can build a firmware image which supports the plc interface. See: https://github.com/0xFelix/dlan-openwrt (forked from Devolo and added compatibility for OpenWrt 21.02) Flash instruction (TFTP): 1. Set PC to fixed ip address 192.168.0.100 2. Download the sysupgrade image and rename it to uploadfile 3. Start a tftp server with the image file in its root directory 4. Turn off the router 5. Press and hold Reset button 6. Turn on router with the reset button pressed and wait ~15 seconds 7. Release the reset button and after a short time the firmware should be transferred from the tftp server 8. Allow 1-2 minutes for the first boot. Signed-off-by: Felix Matouschek <felix@matouschek.org> [add "plus" to compatible and device name] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Adrian Schmutzler
|
6f648ed7e6 |
treewide: remove "+" sign for increment with macaddr_add
Many people appear to use an unneeded "+" prefix for the increment when calculating a MAC address with macaddr_add. Since this is not required and used inconsistently [*], just remove it. [*] As a funny side-fact, copy-pasting has led to almost all hotplug.d files using the "+", while nearly all of the 02_network files are not using it. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
9a172797e5 |
ath79: Add support for OpenMesh A40
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi (11n) * 2T2R 5 GHz Wi-Fi (11ac) * multi-color LED (controlled via red/green/blue GPIOs) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x ethernet - eth0 + Label: Ethernet 1 + AR8035 ethernet PHY (RGMII) + 10/100/1000 Mbps Ethernet + 802.3af POE + used as WAN interface - eth1 + Label: Ethernet 2 + AR8035 ethernet PHY (SGMII) + 10/100/1000 Mbps Ethernet + used as LAN interface * 1x USB * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
eaf2e32c12 |
ath79: Add support for OpenMesh A60
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * multi-color LED (controlled via red/green/blue GPIOs) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x ethernet - eth0 + Label: Ethernet 1 + AR8035 ethernet PHY (RGMII) + 10/100/1000 Mbps Ethernet + 802.3af POE + used as WAN interface - eth1 + Label: Ethernet 2 + AR8031 ethernet PHY (SGMII) + 10/100/1000 Mbps Ethernet + used as LAN interface * 1x USB * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Joao Henrique Albuquerque
|
4f07966696 |
ath79: add support for COMFAST CF-E375AC
COMFAST CF-E375AC is a ceiling mount AP with PoE support, based on Qualcomm/Atheros QCA9563 + QCA9886 + QCA8337. Short specification: 2x 10/100/1000 Mbps Ethernet, with PoE support 128MB of RAM (DDR2) 16 MB of FLASH 3T3R 2.4 GHz, 802.11b/g/n 2T2R 5 GHz, 802.11ac/n/a, wave 2 built-in 5x 3 dBi antennas output power (max): 500 mW (27 dBm) 1x RGB LED, 1x button built-in watchdog chipset Flash instruction: 1) Original firmware is based on OpenWrt. Use sysupgrade image directly in vendor GUI. 2) TFTP 2.1) Set a tftp server on your machine with a fixed IP address of 192.168.1.10. A place the sysupgrade as firmware_auto.bin. 2.2) boot the device with an ethernet connection on fixed ip route 2.3) wait a few seconds and try to login via ssh 3) TFTP trough Bootloader 3.1) open the device case and get a uart connection working 3.2) stop the autoboot process and test connection with serverip 3.3) name the sysupgrade image firmware.bin and run firmware_upg MAC addresses: Though the OEM firmware has four adresses in the usual locations, it appears that the assigned addresses are just incremented in a different way: interface address location LAN: *:DC 0x0 WAN *:DD 0x1002 WLAN 2.4g *:E6 n/a (0x0 + 10) WLAN 5g *:DE 0x6 unused *:DF 0x5006 The MAC address pointed at the label is the one assign to the LAN interface. Signed-off-by: Joao Henrique Albuquerque <joaohccalbu@gmail.com> [add label-mac-device, remove redundant uart status, fix whitespace issues, fix commit message wrapping, remove x bit on DTS file] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Martin Kennedy
|
e2db870398 |
ath79: fix chip used for Meraki MR12 caldata_extract
The original setup fails to trigger ART calibration data
extraction for the AR9287. Instead, it would only have extracted
calibration data for an internal WMAC chip which is not present on
this board.
Fixes:
|
||
Sebastian Schaper
|
dc4745da7a |
ath79: add support for D-Link DAP-3662 A1
Specifications: * QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R * QCA9882, 802.11ac 2T2R * 2x Gigabit LAN (1x 802.11af PoE) * IP68 pole-mountable outdoor case Installation: * Factory Web UI is at 192.168.0.50 login with 'admin' and blank password, flash factory.bin * Recovery Web UI is at 192.168.0.50 connect network cable, hold reset button during power-on and keep it pressed until uploading has started (only required when checksum is ok, e.g. for reverting back to oem firmware), flash factory.bin After flashing factory.bin, additional free space can be reclaimed by flashing sysupgrade.bin, since the factory image requires some padding to be accepted for upgrading via OEM Web UI. Both ethernet ports are set to LAN by default, matching the labelling on the case. However, since both GMAC Interfaces eth0 and eth1 are connected to the switch (QCA8337), the user may create an additional 'wan' interface as desired and override the vlan id settings to map br-lan / wan to either the PoE or non-PoE port, depending on the individual scenario of use. So, the LAN and WAN ports would then be connected to different GMACs, e.g. config interface 'lan' option ifname 'eth0.1' ... config interface 'wan' option ifname 'eth1.2' ... config switch_vlan option device 'switch0' option vlan '1' option ports '1 0t' config switch_vlan option device 'switch0' option vlan '2' option ports '2 6t' Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net> [add configuration example] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Martin Kennedy
|
55d2db0e8c |
ath79: add support for Meraki MR12
Port device support for Meraki MR12 from the ar71xx target to ath79. Specifications: - SoC: AR7242-AH1A CPU - RAM: 64MiB (NANYA NT5DS32M16DS-5T) - NOR Flash: 16MiB (MXIC MX25L12845EMI-10G) - Ethernet: 1 x PoE Gigabit Ethernet Port (SoC MAC + AR8021-BL1E PHY) - Ethernet: 1 x 100Mbit port (SoC MAC+PHY) - Wi-Fi: Atheros AR9283-AL1A (2T2R, 11n) Installation: 1. Requires TFTP server at 192.168.1.101, w/ initramfs & sysupgrade .bins 2. Open shell case 3. Connect a USB->TTL cable to headers furthest from the RF shield 4. Power on the router; connect to U-boot over 115200-baud connection 5. Interrupt U-boot process to boot Openwrt by running: setenv bootcmd bootm 0xbf0a0000; saveenv; tftpboot 0c00000 <filename-of-initramfs-kernel>.bin; bootm 0c00000; 6. Copy sysupgrade image to /tmp on MR12 7. sysupgrade /tmp/<filename-of-sysupgrade>.bin Notes: - kmod-owl-loader is still required to load the ART partition into the driver. - The manner of storing MAC addresses is updated from ar71xx; it is at 0x66 of the 'config' partition, where it was discovered that the OEM firmware stores it. This is set as read-only. If you are migrating from ar71xx and used the method mentioned above to upgrade, use kmod-mtd-rw or UCI to add the MAC back in. One more method for doing this is described below. - Migrating directly from ar71xx has not been thoroughly tested, but one method has been used a couple of times with good success, migrating 18.06.2 to a full image produced as of this commit. Please note that these instructions are only for experienced users, and/or those still able to open their device up to flash it via the serial headers should anything go wrong. 1) Install kmod-mtd-rw and uboot-envtools 2) Run `insmod mtd-rw.ko i_want_a_brick=1` 3) Modify /etc/fw_env.config to point to the u-boot-env partition. The file /etc/fw_env.config should contain: # MTD device env offset env size sector size /dev/mtd1 0x00000 0x10000 0x10000 See https://openwrt.org/docs/techref/bootloader/uboot.config for more details. 4) Run `fw_printenv` to verify everything is correct, as per the link above. 5) Run `fw_setenv bootcmd bootm 0xbf0a0000` to set a new boot address. 6) Manually modify /lib/upgrade/common.sh's get_image function: Change ... cat "$from" 2>/dev/null | $cmd ... into ... ( dd if=/dev/zero bs=1 count=$((0x66)) ; # Pad the first 102 bytes echo -ne '\x00\x18\x0a\x12\x34\x56' ; # Add in MAC address dd if=/dev/zero bs=1 count=$((0x20000-0x66-0x6)) ; # Pad the rest cat "$from" 2>/dev/null ) | $cmd ... which, during the upgrade process, will pad the image by 128K of zeroes-plus-MAC-address, in order for the ar71xx's firmware partition -- which starts at 0xbf080000 -- to be instead aligned with the ath79 firmware partition, which starts 128K later at 0xbf0a0000. 7) Copy the sysupgrade image into /tmp, as above 8) Run `sysupgrade -F /tmp/<sysupgrade>.bin`, then wait Again, this may BRICK YOUR DEVICE, so make *sure* to have your serial cable handy. Signed-off-by: Martin Kennedy <hurricos@gmail.com> [add LED migration and extend compat message] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
David Bauer
|
51f578efa5 |
ath79: add support for Ubiquiti UniFi AP Outdoor+
Hardware -------- Atheros AR7241 16M SPI-NOR 64M DDR2 Atheros AR9283 2T2R b/g/n 2x Fast Ethernet (built-in) Installation ------------ Transfer the Firmware update to the device using SCP. Install using fwupdate.real -m <openwrt.bin> -d Signed-off-by: David Bauer <mail@david-bauer.net> |
||
Michael Pratt
|
96017a6013 |
ath79: add support for Senao Engenius EAP1200H
FCC ID: A8J-EAP1200H Engenius EAP1200H is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ **Specification:** - QCA9557 SOC - QCA9882 WLAN PCI card, 5 GHz, 2x2, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16FG - UART at J10 populated - 4 internal antenna plates (5 dbi, omni-directional) - 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset) **MAC addresses:** MAC addresses are labeled as ETH, 2.4G, and 5GHz Only one Vendor MAC address in flash eth0 ETH *:a2 art 0x0 phy1 2.4G *:a3 --- phy0 5GHz *:a4 --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** 2 ways to flash factory.bin from OEM: Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Firmware Upgrade" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will brick the device DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs to 'vmlinux-art-ramdisk' make available on TFTP server at 192.168.1.101 power board, interrupt boot execute tftpboot and bootm 0x81000000 NOTE: TFTP is not reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software of EAP1200H is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-ar71xx-generic-eap1200h-uImage-lzma.bin openwrt-ar71xx-generic-eap1200h-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. Newer EnGenius software requires more checks but their script includes a way to skip them, otherwise the tar must include a text file with the version and md5sums in a deprecated format. The OEM upgrade script is at /etc/fwupgrade.sh. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode`. Therefore the PLL registers for GMAC0 do not need the bits for delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Sven Eckelmann
|
0988e03f0e |
ath79: Add support for OpenMesh MR1750 v2
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
ae7680dc4b |
ath79: Add support for OpenMesh MR1750 v1
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, apply shared DTSI/device node, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
d9a3af46d8 |
ath79: Add support for OpenMesh MR600 v2
Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi * 2T2R 5 GHz Wi-Fi * 8x GPIO-LEDs (6x wifi, 1x wps, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
4b35999588 |
ath79: Add support for OpenMesh MR600 v1
Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi * 2T2R 5 GHz Wi-Fi * 4x GPIO-LEDs (2x wifi, 1x wps, 1x power) * 1x GPIO-button (reset) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, make WLAN LEDs consistent, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Russell Senior
|
591a4c9ed3 |
ath79: Add support for Ubiquiti Bullet AC
CPU: Atheros AR9342 rev 3 SoC RAM: 64 MB DDR2 Flash: 16 MB NOR SPI WLAN 2.4GHz: Atheros AR9342 v3 (ath9k) WLAN 5.0GHz: QCA988X Ports: 1x GbE Flashing procedure is identical to other ubnt devices. https://openwrt.org/toh/ubiquiti/common Flashing through factory firmware 1. Ensure firmware version v8.7.0 is installed. Up/downgrade to this exact version. 2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe 27/00 00 00 00/g' | \ hexdump -R > /tmp/fwupdate.real` 3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real` 4. Copy the squashfs factory image to /tmp on the device 5. Flash OpenWrt using `/tmp/fwupdate.real -m <squashfs-factory image>` 6. Wait for the device to reboot (copied from Ubiquiti NanoBeam AC and modified) Flashing from serial console 1. Connect serial console (115200 baud) 2. Connect ethernet to a network with a TFTP server, through a passive PoE injector. 3. Press a key to obtain a u-boot prompt 4. Set your TFTP server's ip address, with: setenv serverip <tftp-server-address> 5. Set the Bullet AC's ip address, with: setenv ipaddr <bullet-ac-address> 6. Set the boot file, with: setenv bootfile <name-of-initramfs-binary-on-tftp-server> 7. Fetch the binary with tftp: tftpboot 8. Boot the initramfs binary: bootm 9. From the initramfs, fetch the sysupgrade binary, and flash it with sysupgrade. The Bullet AC is identified as a 2WA board by Ubiquiti. As such, the UBNT_TYPE must match from the "Flashing through factory firmware" install instructions to work. Phy0 is QCA988X which can tune either band (2.4 or 5GHz). Phy1 is AR9342, on which 5GHz is disabled. It isn't currently known whether phy1 is routed to the N connector at all. Signed-off-by: Russell Senior <russell@personaltelco.net> |
||
Michael Pratt
|
0070650df4 |
ath79: move small-flash Engenius boards to tiny
This moves some of the Engenius boards from generic to tiny: - EAP350 v1 - ECB350 v1 - ENH202 v1 For these, factory.bin builds are already failing on master branch because of the unique situation for these boards: - 8 MB flash - an extra "failsafe" image for recovery - TFTP does not work (barely possible with 600 MTU) - bootloader loads image from a longer flash offset - 1 eraseblock each needed for OKLI kernel loader and fake rootfs - using mtd-concat to make use of remaining space... The manual alternative would be removing the failsafe partition. However this comes with the risk of extremely difficult recovery if a flash ever fails because TFTP on the bootloader is bugged. Signed-off-by: Michael Pratt <mcpratt@pm.me> [improve commit message] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sebastian Schaper
|
5b58710fad |
ath79: add support for D-Link DAP-2680 A1
Specifications: * QCA9558, 16 MiB Flash, 256 MiB RAM, 802.11n 3T3R * QCA9984, 802.11ac Wave 2 3T3R * Gigabit LAN Port (AR8035), 802.11at PoE Installation: * Factory Web UI is at 192.168.0.50 login with 'admin' and blank password, flash factory.bin * Recovery Web UI is at 192.168.0.50 connect network cable, hold reset button during power-on and keep it pressed until uploading has started (only required when checksum is ok, e.g. for reverting back to oem firmware), flash factory.bin After flashing factory.bin, additional free space can be reclaimed by flashing sysupgrade.bin, since the factory image requires some padding to be accepted for upgrading via OEM Web UI. Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net> |
||
Michael Pratt
|
33d26a9a40 |
ath79: add support for Senao Engenius EAP350 v1
FCC ID: U2M-EAP350 Engenius EAP350 is a wireless access point with 1 gigabit PoE ethernet port, 2.4 GHz wireless, external ethernet switch, and 2 internal antennas. Specification: - AR7242 SOC - AR9283 WLAN (2.4 GHz, 2x2, PCIe on-board) - AR8035-A switch (GbE with 802.3af PoE) - 40 MHz reference clock - 8 MB FLASH MX25L6406E - 32 MB RAM EM6AA160TSA-5G - UART at J2 (populated) - 3 LEDs, 1 button (power, eth, 2.4 GHz) (reset) - 2 internal antennas MAC addresses: MAC address is labeled as "MAC" Only 1 address on label and in flash The OEM software reports these MACs for the ifconfig eth0 MAC *:0c art 0x0 phy0 --- *:0d --- Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.10.1 username and password "admin" Navigate to "Upgrade Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9f670000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of EAP350 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-eap350-uImage-lzma.bin openwrt-senao-eap350-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh Later models in the EAP series likely have a different platform and the upgrade and image verification process differs. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1024k and the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035-A switch between the SOC and the ethernet PHY chips. For AR724x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. uboot did not have a good value for 1 GBps so it was taken from other similar DTS file. Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
6c98edaae2 |
ath79: add support for Senao Engenius EAP600
FCC ID: A8J-EAP600 Engenius EAP600 is a wireless access point with 1 gigabit ethernet port, dual-band wireless, external ethernet switch, 4 internal antennas and 802.3af PoE. Specification: - AR9344 SOC (5 GHz, 2x2, WMAC) - AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board) - AR8035-A switch (GbE with 802.3af PoE) - 40 MHz reference clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16DG - UART at H1 (populated) - 5 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz, wps) (reset) - 4 internal antennas MAC addresses: MAC addresses are labeled MAC1 and MAC2 The MAC address in flash is not on the label The OEM software reports these MACs for the ifconfig eth0 MAC 1 *:5e --- phy1 MAC 2 *:5f --- (2.4 GHz) phy0 ----- *:60 art 0x0 (5 GHz) Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Upgrade Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fdf0000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of EAP600 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-eap600-uImage-lzma.bin openwrt-senao-eap600-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh Later models in the EAP series likely have a different platform and the upgrade and image verification process differs. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035-A switch between the SOC and the ethernet PHY chips. For AR934x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. Unfortunately uboot did not have the best values so they were taken from other similar DTS files. Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
4a55ef639d |
ath79: add support for Senao Engenius ECB600
FCC ID: A8J-ECB600 Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port, dual-band wireless, external ethernet switch, and 4 external antennas. Specification: - AR9344 SOC (5 GHz, 2x2, WMAC) - AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board) - AR8035-A switch (GbE with 802.3af PoE) - 40 MHz reference clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16DG - UART at H1 (populated) - 4 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz) (reset) - 4 external antennas MAC addresses: MAC addresses are labeled MAC1 and MAC2 The MAC address in flash is not on the label The OEM software reports these MACs for the ifconfig phy1 MAC 1 *:52 --- (2.4 GHz) phy0 MAC 2 *:53 --- (5 GHz) eth0 ----- *:54 art 0x0 Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Upgrade Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fdf0000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of ECB600 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-ecb600-uImage-lzma.bin openwrt-senao-ecb600-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh Later models in the ECB series likely have a different platform and the upgrade and image verification process differs. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035-A switch between the SOC and the ethernet PHY chips. For AR934x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. Unfortunately uboot did not have the best values so they were taken from other similar DTS files. Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
fe2f53f21c |
ath79: add support for Senao Engenius EnStationAC v1
FCC ID: A8J-ENSTAC Engenius EnStationAC v1 is an outdoor wireless access point/bridge with 2 gigabit ethernet ports on 2 external ethernet switches, 5 GHz only wireless, internal antenna plates, and proprietery PoE. Specification: - QCA9557 SOC - QCA9882 WLAN (PCI card, 5 GHz, 2x2, 26dBm) - AR8035-A switch (RGMII GbE with PoE+ IN) - AR8031 switch (SGMII GbE with PoE OUT) - 40 MHz reference clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16FG - UART at J10 (unpopulated) - internal antenna plates (19 dbi, directional) - 7 LEDs, 1 button (power, eth, wlan, RSSI) (reset) MAC addresses: MAC addresses are labeled as ETH and 5GHz Vendor MAC addresses in flash are duplicate eth0 ETH *:d3 art 0x0/0x6 eth1 ---- *:d4 --- phy0 5GHz *:d5 --- Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade TFTP recovery: rename initramfs to 'vmlinux-art-ramdisk' make available on TFTP server at 192.168.1.101 power board hold or press reset button repeatedly NOTE: for some Engenius boards TFTP is not reliable try setting MTU to 600 and try many times Format of OEM firmware image: The OEM software of EnStationAC is a heavily modified version of Openwrt Altitude Adjustment 12.09. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-ar71xx-enstationac-uImage-lzma.bin openwrt-ar71xx-enstationac-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. Newer EnGenius software requires more checks but their script includes a way to skip them, otherwise the tar must include a text file with the version and md5sums in a deprecated format. The OEM upgrade script is at /etc/fwupgrade.sh. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8033 switch between the SOC and the ethernet PHY chips. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. For eth0 at 1000 speed, the value returned was ae000000 but that didn't work, so following the logical pattern from the rest of the values, the guessed value of a3000000 works better. later discovered that delay can be placed on the PHY end only with phy-mode as 'rgmii-id' and set register to 0x82... Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me> [fixed SoB to match From:] Signed-off-by: Petr Štetiar <ynezz@true.cz> |
||
Sebastian Schaper
|
8ec997d006 |
ath79: add support for D-Link DAP-2660 A1
Specifications: * QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R * QCA9882, 802.11ac 2T2R * Gigabit LAN Port (AR8035), 802.11af PoE Installation: * Factory Web UI is at 192.168.0.50 login with 'admin' and blank password, flash factory.bin * Recovery Web UI is at 192.168.0.50 connect network cable, hold reset button during power-on and keep it pressed until uploading has started (only required when checksum is ok, e.g. for reverting back to oem firmware), flash factory.bin After flashing factory.bin, additional free space can be reclaimed by flashing sysupgrade.bin, since the factory image requires some padding to be accepted for upgrading via OEM Web UI. Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net> |
||
Roman Kuzmitskii
|
491ae3357e |
ath79: add support for Ubiquiti airCube AC
The Ubiquiti Network airCube AC is a cube shaped device supporting 2.4 GHz and 5 GHz with internal 2x2 MIMO antennas. It can be powered with either one of: - 24v power supply with 3.0mm x 1.0mm barrel plug - 24v passive PoE on first LAN port There are four 10/100/1000 Mbps ports (1 * WAN + 3 * LAN). First LAN port have optional PoE passthrough to the WAN port. SoC: Qualcomm / Atheros AR9342 RAM: 64 MB DDR2 Flash: 16 MB SPI NOR Ethernet: 4x 10/100/1000 Mbps (1 WAN + 3 LAN) LEDS: 1x via a SPI controller (not yet supported) Buttons: 1x Reset Serial: 1x (only RX and TX); 115200 baud, 8N1 Missing features: - LED control is not supported Physical to internal switch port mapping: - physical port #1 (poe in) = switchport 2 - physical port #2 = switchport 3 - physical port #3 = switchport 5 - physical port #4 (wan/poe out) = switchport 4 Factory update is tested and is the same as for Ubiquiti AirCube ISP hence the shared configuration between that devices. Signed-off-by: Roman Kuzmitskii <damex.pp@icloud.com> |
||
Michael Pratt
|
7073ebf0f9 |
ath79: add support for Senao Engenius ECB350 v1
FCC ID: A8J-ECB350 Engenius ECB350 v1 is an indoor wireless access point with a gigabit ethernet port, 2.4 GHz wireless, external antennas, and PoE. **Specification:** - AR7242 SOC - AR9283 WLAN 2.4 GHz (2x2), PCIe on-board - AR8035-A switch RGMII, GbE with 802.3af PoE - 40 MHz reference clock - 8 MB FLASH 25L6406EM2I-12G - 32 MB RAM - UART at J2 (populated) - 2 external antennas - 3 LEDs, 1 button (power, lan, wlan) (reset) **MAC addresses:** MACs are labeled as WLAN and WAN vendor MAC addresses in flash are duplicate phy0 WLAN *:b8 --- eth0 WAN *:b9 art 0x0/0x6 **Installation:** - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9f670000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade **TFTP recovery** (unstable / not reliable): rename initramfs to 'vmlinux-art-ramdisk' make available on TFTP server at 192.168.1.101 power board while holding or pressing reset button repeatedly NOTE: for some Engenius boards TFTP is not reliable try setting MTU to 600 and try many times **Format of OEM firmware image:** The OEM software of ECB350 v1 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh. OKLI kernel loader is required because the OEM software expects the kernel size to be no greater than 1536k and otherwise the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. The factory upgrade script follows the original mtd partitions. **Note on PLL-data cells:** The default PLL register values will not work because of the AR8035 switch between the SOC and the ethernet port. For AR724x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from u-boot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1` However the registers that u-boot sets are not ideal and sometimes wrong... the at803x driver supports setting the RGMII clock/data delay on the PHY side. This way the pll-data register only needs to handle invert and phase. for this board no extra adjustements are needed on the MAC side all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
73bdbb3d20 |
ath79: enable factory.bin and adjust profile of ECB1750
factory.bin was not tested for ECB1750... but it was tested on it's sister board ECB1200 The product ID for the header can be verified by inspecting the header of OEM images, or in the u-boot environment. Also: - the LAN LED is controlled directly by the AR8035 switch - the labelled (first increment) MAC for both is ethaddr (eth0) - list packages in alphabetical order - use default sysupgrade.bin recipe Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
f244143609 |
ath79: add support for Senao Engenius ECB1200
FCC ID: A8J-ECB1200 Engenius ECB1200 is an indoor wireless access point with a GbE port, 2.4 GHz and 5 GHz wireless, external antennas, and 802.3af PoE. **Specification:** - QCA9557 SOC MIPS, 2.4 GHz (2x2) - QCA9882 WLAN PCIe card, 5 GHz (2x2) - AR8035-A switch RGMII, GbE with 802.3af PoE, 25 MHz clock - 40 MHz reference clock - 16 MB FLASH 25L12845EMI-10G - 2x 64 MB RAM 1538ZFZ V59C1512164QEJ25 - UART at JP1 (unpopulated, RX shorted to ground) - 4 external antennas - 4 LEDs, 1 button (power, eth, wifi2g, wifi5g) (reset) **MAC addresses:** MAC Addresses are labeled as ETH and 5GHZ U-boot environment has the vendor MAC addresses MAC addresses in ART do not match vendor eth0 ETH *:5c u-boot-env ethaddr phy0 5GHZ *:5d u-boot-env athaddr ---- ---- ???? art 0x0/0x6 **Installation:** Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly (see TFTP recovery) perform a sysupgrade **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART pinout at JP1 **Return to OEM:** If you have a serial cable, see Serial Failsafe instructions Unlike most Engenius boards, this does not have a 'failsafe' image the only way to return to OEM is TFTP or serial access to u-boot **TFTP recovery:** Unlike most Engenius boards, TFTP is reliable here rename initramfs-kernel.bin to 'ap.bin' make the file available on a TFTP server at 192.168.1.10 power board while holding or pressing reset button repeatedly or with serial access: run `tftpboot` or `run factory_boot` with initramfs-kernel.bin then `bootm` with the load address **Format of OEM firmware image:** The OEM software of ECB1200 is a heavily modified version of Openwrt Altitude Adjustment 12.09. This Engenius board, like ECB1750, uses a proprietary header with a unique Product ID. The header for factory.bin is generated by the mksenaofw program included in openwrt. **Note on PLL-data cells:** The default PLL register values will not work because of the AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. However the registers that u-boot sets are not ideal and sometimes wrong... the at803x driver supports setting the RGMII clock/data delay on the PHY side. This way the pll-data register only needs to handle invert and phase. for this board clock invert is needed on the MAC side all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Adrian Schmutzler
|
33c27ccf4a |
ath79: add support for TP-Link TL-WDR7500 v3
This ports support for the TP-Link TL-WDR7500 v3 from ar71xx to ath79. The basic features appear to be identical to the Archer C7 v1, however it has the (supported) QCA9880-BR4A chip of the C7 v2. Specifications: SoC: QCA9558 CPU: 720 MHz Flash: 8 MiB RAM: 128 MiB WLAN: 2.4 GHz b/g/n, 5 GHz a/n/ac Qualcomm Atheros QCA9880-BR4A Ethernet: 5x Gbit ports USB: 2x 2.0 ports Flashing instructions: Upload the factory image via the OEM firmware GUI. TFTP recovery appears to be available as well. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sander Vanheule
|
b0ecae504b |
ath79: support for TP-Link EAP225 v3
TP-Link EAP225 v3 is an AC1350 (802.11ac Wave-2) ceiling mount access point. Serial port access for debricking requires fine soldering. Device specifications: * SoC: QCA9563 @ 775MHz * RAM: 128MiB DDR2 * Flash: 16MiB SPI-NOR * Wireless 2.4GHz (SoC): b/g/n, 3x3 * Wireless 5Ghz (QCA9886): a/n/ac, 2x2 MU-MINO * Ethernet (AR8033): 1× 1GbE, 802.3at PoE Flashing instructions: * ssh into target device and run `cliclientd stopcs` * Upgrade with factory image via web interface Debricking: * Serial port can be soldered on PCB J3 (1: TXD, 2: RXD, 3: GND, 4: VCC) * Bridge unpopulated resistors R225 (TXD) and R237 (RXD). Do NOT bridge R230. * Use 3.3V, 115200 baud, 8n1 * Interrupt bootloader by holding CTRL+B during boot * tftp initramfs to flash via LuCI web interface setenv ipaddr 192.168.1.1 # default, change as required setenv serverip 192.168.1.10 # default, change as required tftp 0x80800000 initramfs.bin bootelf $fileaddr MAC addresses: MAC address (as on device label) is stored in device info partition at an offset of 8 bytes. ath9k device has same address as ethernet, ath10k uses address incremented by 1. From OEM boot log: Using interface ath0 with hwaddr b0:...:3e and ssid "..." Using interface ath10 with hwaddr b0:...:3f and ssid "..." Tested by forum user blinkstar88 Signed-off-by: Sander Vanheule <sander@svanheule.net> |
||
Sander Vanheule
|
4f86edf477 |
ath79: support for TP-Link EAP225-Outdoor v1
TP-Link EAP225-Outdoor v1 is an AC1200 (802.11ac Wave-2) pole or wall mount access point. Debricking requires access to the serial port, which is non-trivial. Device specifications: * SoC: QCA9563 @ 775MHz * Memory: 128MiB DDR2 * Flash: 16MiB SPI-NOR * Wireless 2.4GHz (SoC): b/g/n 2x2 * Wireless 5GHz (QCA9886): a/n/ac 2x2 MU-MIMO * Ethernet (AR8033): 1× 1GbE, PoE Flashing instructions: * ssh into target device with recent (>= v1.6.0) firmware * run `cliclientd stopcs` on target device * upload factory image via web interface Debricking: To recover the device, you need access to the serial port. This requires fine soldering to test points, or the use of probe pins. * Open the case and solder wires to the test points: RXD, TXD and TPGND4 * Use a 3.3V UART, 115200 baud, 8n1 * Interrupt bootloader by holding ctrl+B during boot * upload initramfs via built-in tftp client and perform sysupgrade setenv ipaddr 192.168.1.1 # default, change as required setenv serverip 192.168.1.10 # default, change as required tftp 0x80800000 initramfs.bin bootelf $fileaddr MAC addresses: MAC address (as on device label) is stored in device info partition at an offset of 8 bytes. ath9k device has same address as ethernet, ath10k uses address incremented by 1. From stock ifconfig: ath0 Link encap:Ethernet HWaddr D8:...:2E ath10 Link encap:Ethernet HWaddr D8:...:2F br0 Link encap:Ethernet HWaddr D8:...:2E eth0 Link encap:Ethernet HWaddr D8:...:2E Tested by forum user PolynomialDivision on firmware v1.7.0. UART access tested by forum user arinc9. Signed-off-by: Sander Vanheule <sander@svanheule.net> |
||
Sander Vanheule
|
b11ad48764 |
ath79: support for TP-Link EAP245 v1
TP-Link EAP245 v1 is an AC1750 (802.11ac Wave-1) ceiling mount access point. Device specifications: * SoC: QCA9563 @ 775MHz * RAM: 128MiB DDR2 * Flash: 16MiB SPI-NOR * Wireless 2.4GHz (SoC): b/g/n, 3x3 * Wireless 5Ghz (QCA9880): a/n/ac, 3x3 * Ethernet (AR8033): 1× 1GbE, 802.3at PoE Flashing instructions: * Upgrade the device to firmware v1.4.0 if necessary * Exploit the user management page in the web interface to start telnetd by changing the username to `;/usr/sbin/telnetd -l/bin/sh&`. * Immediately change the malformed username back to something valid (e.g. 'admin') to make ssh work again. * Use the root shell via telnet to make /tmp world writeable (chmod 777) * Extract /usr/bin/uclited from the device via ssh and apply the binary patch listed below. The patch is required to prevent `uclited -u` in the last step from crashing. * Copy the patched uclited programme back to the device at /tmp/uclited (via ssh) * Upload the factory image to /tmp/upgrade.bin (via ssh) * Run `chmod +x /tmp/uclited && /tmp/uclited -u` to install OpenWrt. --- xxd uclited +++ xxd uclited-patched @@ -53796,7 +53796,7 @@ 000d2240: 8c44 0000 0320 f809 0000 0000 8fbc 0010 .D... .......... 000d2250: 8fa6 0a4c 02c0 2821 8f82 87b8 0000 0000 ...L..(!........ -000d2260: 8c44 0000 0c13 45e0 27a7 0018 8fbc 0010 .D....E.'....... +000d2260: 8c44 0000 2402 0000 0000 0000 8fbc 0010 .D..$........... 000d2270: 1040 001d 0000 1821 8f99 8374 3c04 0058 .@.....!...t<..X 000d2280: 3c05 0056 2484 a898 24a5 9a30 0320 f809 <..V$...$..0. .. Debricking: * Serial port can be soldered on PCB J3 (1: TXD, 2: RXD, 3: GND, 4: VCC) * Bridge unpopulated resistors R225 (TXD) and R237 (RXD). Do NOT bridge R230. * Use 3.3V, 115200 baud, 8n1 * Interrupt bootloader by holding CTRL+B during boot * tftp initramfs to flash via the LuCI web interface setenv ipaddr 192.168.1.1 # default, change as required setenv serverip 192.168.1.10 # default, change as required tftp 0x80800000 initramfs.bin bootelf $fileaddr Tested on the EAP245 v1 running the latest firmware (v1.4.0). The binary patch might not apply to uclited from other firmware versions. EAP245 v1 device support was originally developed and maintained by Julien Dusser out-of-tree. This patch and "ath79: prepare for 1-port TP-Link EAP2x5 devices" are based on that work. Signed-off-by: Sander Vanheule <sander@svanheule.net> |
||
Nick Hainke
|
79f3f1358b |
ath79: Add support for Ubiquiti NanoBeam AC Gen2
CPU: Atheros AR9342 rev 3 SoC RAM: 64 MB DDR2 Flash: 16 MB NOR SPI WLAN 2.4GHz: Atheros AR9342 v3 (ath9k) WLAN 5.0GHz: QCA988X Ports: 2x GbE Flashing procedure is identical to other ubnt devices. https://openwrt.org/toh/ubiquiti/common Flashing through factory firmware 1. Ensure firmware version v8.7.0 is installed. Up/downgrade to this exact version. 2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe 27/00 00 00 00/g' | \ hexdump -R > /tmp/fwupdate.real` 3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real` 4. Copy the squashfs factory image to /tmp on the device 5. Flash OpenWrt using `/tmp/fwupdate.real -m <squashfs-factory image>` 6. Wait for the device to reboot (copied from Ubiquiti NanoBeam AC and modified) To keep it consistent, we will add the gen1 variant to the nanobeam ac gen1. Signed-off-by: Nick Hainke <vincent@systemli.org> |
||
Adrian Schmutzler
|
aafbfc6ac3 |
ath79: fix missing ";;" in 11-ath10k-caldata
This adds a missing ";;" in the switch-case in 11-ath10k-caldata.
Fixes:
|
||
Paul Fertser
|
4d36569b9c |
ath79: fix ath10k caldata extraction on some D-Link DIR-842 C3 devices
According to forum threads [0][1] and a report on IRC by Doc-Saintly some of those boards have calibration data in a different place. Only one alternative location is known. Without proper board calibration data (board.bin having all 0xff bytes) ath10k firmware still tries to load but crashes on startup with a confusing error message. If you're applying this patch manually on your device do not forget to remove /lib/firmware/ath10k/pre-cal-pci-0000:00:00.0.bin and reboot to force caldata re-extraction. [0] https://forum.openwrt.org/t/support-for-d-link-dir842-rev-c3/41654 [1] https://forum.openwrt.org/t/d-link-dir-842-cant-access-firmware-upload-form/65454 Signed-off-by: Paul Fertser <fercerpav@gmail.com> |
||
张鹏
|
448de2e2e5 |
ath79: add support for Qxwlan E600G v2 / E600GAC v2
E600G v2 based on Qualcomm/Atheros QCA9531 Specification: - 650/600/200 MHz (CPU/DDR/AHB) - 128/64 MB of RAM (DDR2) - 8/16 MB of FLASH (SPI NOR) - 2T2R 2.4 GHz - 2 x 10/100 Mbps Ethernet(RJ45) - 1 x MiniPCI-e - 1 x SIM (3G/4G) - 5 x LED , 1 x Button(SW2-Reset Buttun), 1 x power input - UART(J100) header on PCB(115200 8N1) E600GAC v2 based on Qualcomm/Atheros QCA9531 + QCA9887 Specification: - 650/600/200 MHz (CPU/DDR/AHB) - 128/64 MB of RAM (DDR2) - 8/16 MB of FLASH (SPI NOR) - 2T2R 2.4 GHz - 1T1R 5 GHz - 2 x 10/100 Mbps Ethernet(RJ45) - 6 x LED (one three-color led), 2 x Button(SW2-Reset Buttun),1 x power input - UART (J100)header on PCB(115200 8N1) Flash instruction: 1.Using tftp mode with UART connection and original OpenWrt image - Configure PC with static IP 192.168.1.10 and tftp server. - Rename "openwrt-ath79-generic-xxx-squashfs-sysupgrade.bin" to "firmware.bin" and place it in tftp server directory. - Connect PC with one of LAN ports, power up the router and press key "Enter" to access U-Boot CLI. - Use the following commands to update the device to OpenWrt: run lfw - After that the device will reboot and boot to OpenWrt. - Wait until all LEDs stops flashing and use the router. 2.Using httpd mode with Web UI connection and original OpenWrt image - Configure PC with static IP 192.168.1.xxx(2-255) and tftp server. - Connect PC with one of LAN ports,press the reset button, power up the router and keep button pressed for around 6-7 seconds, until leds flashing. - Open your browser and enter 192.168.1.1,You will see the upgrade interface, select "openwrt-ath79-generic-xxx-squashfs- sysupgrade.bin" and click the upgrade button. - After that the device will reboot and boot to OpenWrt. - Wait until all LEDs stops flashing and use the router. Signed-off-by: 张鹏 <sd20@qxwlan.com> [rearrange in generic.mk, fix one case in 04_led_migration, update commit message] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
David Bauer
|
4c5eb1040f |
ath79: use correct firmware name for UniFi AP
The Ubiquiti UniFi AP does not have a AHB connected radio but a PCI one. Also the EEPROM ist only 0x440 bytes of length. Reported-by: Martin Weinelt <martin@darmstadt.freifunk.net> Tested-by: Martin Weinelt <martin@darmstadt.freifunk.net> Signed-off-by: David Bauer <mail@david-bauer.net> |
||
张鹏
|
4ff7bdfeeb |
ath79: add support for Qxwlan E1700AC v2
E1700AC v2 based on Qualcomm/Atheros QCA9563 + QCA9880. Specification: - 750/400/250 MHz (CPU/DDR/AHB) - 128 MB of RAM (DDR2) - 8/16 MB of FLASH (SPI NOR) - 3T3R 2.4 GHz - 3T3R 5 GHz - 2 x 10/1000M Mbps Ethernet (RJ45) - 1 x MiniPCI-e - 1 x SIM (3G/4G) - 1 x USB 2.0 Port - 5 x LED , 2 x Button(S8-Reset Buttun), 1 x power input - UART (J5) header on PCB (115200 8N1) Flash instruction: 1.Using tftp mode with UART connection and original LEDE image - Configure PC with static IP 192.168.1.10 and tftp server. - Rename "openwrt-ar71xx-generic-xxx-squashfs-sysupgrade.bin" to "firmware.bin" and place it in tftp server directory. - Connect PC with one of LAN ports, power up the router and press key "Enter" to access U-Boot CLI. - Use the following commands to update the device to LEDE: run lfw - After that the device will reboot and boot to LEDE. - Wait until all LEDs stops flashing and use the router. 2.Using httpd mode with Web UI connection and original LEDE image - Configure PC with static IP 192.168.1.xxx(2-255) and tftp server. - Connect PC with one of LAN ports,press the reset button, power up the router and keep button pressed for around 6-7 seconds, until leds flashing. - Open your browser and enter 192.168.1.1,You will see the upgrade interface, select "openwrt-ar71xx-generic-xxx-squashfs- sysupgrade.bin" and click the upgrade button. - After that the device will reboot and boot to LEDE. - Wait until all LEDs stops flashing and use the router. Signed-off-by: 张鹏 <sd20@qxwlan.com> [cut out of bigger patch, keep swconfig, whitespace fixes] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Adrian Schmutzler
|
e3af1666f4 |
ath79: rename TP-Link TL-WPA8630P v2 (EU) to v2.0 (EU)
Since we have a v2.1 (EU) with different partitioning now, rename the v2.0 to make the difference visible to the user more directly. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Joe Mullally
|
7422c7a6fa |
ath79: add support for TP-Link TL-WPA8630P (EU) v2.1
This adds support for the TP-Link TL-WPA8630P (EU) in its v2.1 version. The only unique aspect for the firmware compared to v2 layout is the partition layout. Note that while the EU version has different partitioning for v2.0 and v2.1, the v2.1 (AU) is supported by the v2-int image. If you plan to use this device, make sure you have a look at the Wiki page to check whether the device is supported and which image needs to be taken. Specifications -------------- - QCA9563 750MHz, 2.4GHz WiFi - QCA9888 5GHz WiFi - 8MiB SPI Flash - 128MiB RAM - 3 GBit Ports (QCA8337) - PLC (QCA7550) Installation ------------ Installation is possible from the OEM web interface. Make sure to install the latest OEM firmware first, so that the PLC firmware is at the latest version. However, please also check the Wiki page for hints according to altered partitioning between OEM firmware revisions. Notes ----- The OEM firmware has 0x620000 to 0x680000 unassigned, so we leave this empty as well. It is complicated enough already ... Signed-off-by: Joe Mullally <jwmullally@gmail.com> [improve partitions, use v2 DTSI, add entry in 02_network, rewrite and extend commit message] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
David Bauer
|
b7da0d2944 |
ath79: add support for Ubiquiti UniFi AP Pro
This adds support for the Ubiquiti UniFi AP Pro to the ath79 target. The device was previously supported on the now removed ar71xx target. SoC Atheros AR9344 WiFi Atheros AR9344 & Atheros AR9280 ETH Atheros AR8327 RAM 128M DDR2 FLASH 16M SPI-NOR Installation ------------ Follow the Ubiquiti TFTP recovery procedure for this device. 1. Hold down the reset button while connecting power for 10 seconds. 2. Transfer the factory image via TFTP to the AP (192.168.1.20) 3. Wait 2 minutes for the AP to write the firmware to flash. The device will automatically reboot to OpenWrt. Signed-off-by: David Bauer <mail@david-bauer.net> |
||
Adrian Schmutzler
|
25f2f66eea |
ath79: add support for Buffalo WZR-600DHP
The hardware of this device seems to be identical to WZR-HP-AG300H. It was already implemented as a clone in ar71xx. Specification: - 680 MHz CPU (Qualcomm Atheros AR7161) - 128 MiB RAM - 32 MiB Flash - WiFi 5 GHz a/n - WiFi 2.4 GHz b/g/n - 5x 1000Base-T Ethernet - 1x USB 2.0 Installation of OpenWRT from vendor firmware: - Connect to the Web-interface at http://192.168.11.1 - Go to “Administration” → “Firmware Upgrade” - Upload the OpenWrt factory image Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Adrian Schmutzler
|
a99614a44f |
ath79: consistently use "info" label for default-mac partition
The tp-link safeloader devices typically contain a partition "default-mac" which stores the MAC addresses. It is followed by other partitions containing device info, like {"default-mac", 0x610000, 0x00020}, {"pin", 0x610100, 0x00020}, {"product-info", 0x611100, 0x01000}, In DTS, we typically assign a 0x10000 sized partition for these, which is mostly labelled "mac" or "info". In rarer cases, the partitions have been enclosed in a larger "tplink" or "config" partition. However, when comparing different devices, the implementation appears relatively arbitrary at the moment. Thus, this PR aims at harmonizing these partitions by always using the name "info" for the DTS partition containing "default-mac". "info" is preferred over "mac" as we never just have "default-mac" alone, but always some other device-info partitions as well. While at it, this also establishes a similar partitioning for the few devices where the "info" partitions are part of a bigger unspecific "config" partition or similar. Besides the harmonization itself, this also allows to merge a few cases in 11-ath10k-caldata. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sander Vanheule
|
c9f51a9ad6 |
ath79: support for TP-Link EAP225-Wall v2
TP-Link EAP225-Wall v2 is an AC1200 (802.11ac Wave-2) wall plate access point. UART access and debricking require fine soldering. The device was kindly provided for porting by Stijn Segers. Device specifications: * SoC: QCA9561 @ 775MHz * RAM: 128MiB DDR2 * Flash: 16MiB SPI-NOR (GD25Q127CSIG) * Wireless 2.4GHz (SoC): b/g/n, 2x2 * Wireless 5Ghz (QCA9886): a/n/ac, 2x2 MU-MIMO * Ethernet (SoC): 4× 100Mbps * Eth0 (back): 802.3af/at PoE in * Eth1, Eth2 (bottom) * Eth3 (bottom): PoE out (can be toggled by GPIO) * One status LED * Two buttons (both work as failsafe) * LED button, implemented as KEY_BRIGHTNESS_TOGGLE * Reset button Flashing instructions, requires recent firmware (tested on 1.20.0): * ssh into target device and run `cliclientd stopcs` * Upgrade with factory image via web interface Debricking: * Serial port can be soldered on PCB J4 (1: TXD, 2: RXD, 3: GND, 4: VCC) * Bridge unpopulated resistors R162 (TXD) and R165 (RXD) Do NOT bridge R164 * Use 3.3V, 115200 baud, 8n1 * Interrupt bootloader by holding CTRL+B during boot * tftp initramfs to flash via sysupgrade or LuCI web interface MAC addresses: MAC address (as on device label) is stored in device info partition at an offset of 8 bytes. ath9k device has same address as ethernet, ath10k uses address incremented by 1. From OEM ifconfig: br0 Link encap:Ethernet HWaddr 50:...:04 eth0 Link encap:Ethernet HWaddr 50:...:04 wifi0 Link encap:UNSPEC HWaddr 50-...-04-... wifi1 Link encap:UNSPEC HWaddr 50-...-05-... Signed-off-by: Sander Vanheule <sander@svanheule.net> [fix IMAGE_SIZE] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Zhong Jianxin
|
53df30f02b |
ath79: add support for Mercury MW4530R v1
Mercury MW4530R is a TP-Link TL-WDR4310 clone. Specification: * SOC: Atheros AR9344 (560 MHz) * RAM: 128 MiB * Flash: 8192 KiB * Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327) * Wireless: - 2.4 GHz b/g/n (internal) - 5 GHz a/n (AR9580) * USB: yes, 1 x USB 2.0 Installation: Flash factory image via OEM web interface. Signed-off-by: Zhong Jianxin <azuwis@gmail.com> |
||
Sander Vanheule
|
9dd4ba3d7e |
ath79: add support for TP-Link EAP245-v3
TP-Link EAP245 v3 is an AC1750 (802.11ac Wave-2) ceiling mount access point. UART access (for debricking) requires non-trivial soldering. Specifications: * SoC: QCA9563 (CPU/DDR/AHB @ 775/650/258 MHz) * RAM: 128MiB * Flash: 16MiB SPI-NOR * Wireless 2.4GHz (SoC): b/g/n 3x3 * Wireless 5GHz (QCA9982): a/n/ac 3x3 with MU-MIMO * Ethernet (QCA8337N switch): 2× 1GbE, ETH1 (802.3at PoE) and ETH2 * Green and amber status LEDs * Reset switch (GPIO, available for failsafe) Flashing instructions: All recent firmware versions (latest is 2.20.0), can disable firmware signature verification and use a padded firmware file to flash OpenWrt: * ssh into target device and run `cliclientd stopcs` * upload factory image via web interface The stopcs-method is supported from firmware version 2.3.0. Earlier versions need to be upgraded to a newer stock version before flashing OpenWrt. Factory images for these devices are RSA signed by TP-Link. While the signature verification can be disabled, the factory image still needs to have a (fake) 1024 bit signature added to pass file checks. Debricking instructions: You can recover using u-boot via the serial port: * Serial port is available from J3 (1:TX, 2:RX, 3:GND, 4:3.3V) * Bridge R237 to connect RX, located next to J3 * Bridge R225 to connect TX, located inside can on back-side of board * Serial port is 115200 baud, 8n1, interrupt u-boot by holding ctrl+B * Upload initramfs with tftp and upgrade via OpenWrt Device mac addresses: Stock firmware has the same mac address for 2.4GHz wireless and ethernet, 5GHz is incremented by one. The base mac address is stored in the 'default-mac' partition (offset 0x90000) at an offset of 8 bytes. ART blobs contain no mac addresses. From OEM ifconfig: ath0 Link encap:Ethernet HWaddr 74:..:E2 ath10 Link encap:Ethernet HWaddr 74:..:E3 br0 Link encap:Ethernet HWaddr 74:..:E2 eth0 Link encap:Ethernet HWaddr 74:..:E2 Signed-off-by: Sander Vanheule <sander@svanheule.net> Tested-by: Stijn Tintel <stijn@linux-ipv6.be> |
||
Michael Pratt
|
22caf30a65 |
ath79: add support for Senao Engenius ENH202 v1
FCC ID: U2M-ENH200 Engenius ENH202 is an outdoor wireless access point with 2 10/100 ports, built-in ethernet switch, internal antenna plates and proprietery PoE. Specification: - Qualcomm/Atheros AR7240 rev 2 - 40 MHz reference clock - 8 MB FLASH ST25P64V6P (aka ST M25P64) - 32 MB RAM - UART at J3 (populated) - 2x 10/100 Mbps Ethernet (built-in switch at gmac1) - 2.4 GHz, 2x2, 29dBm (Atheros AR9280 rev 2) - internal antenna plates (10 dbi, semi-directional) - 5 LEDs, 1 button (LAN, WAN, RSSI) (Reset) Known Issues: - Sysupgrade from ar71xx no longer possible - Power LED not controllable, or unknown gpio MAC addresses: eth0/eth1 *:11 art 0x0/0x6 wlan *:10 art 0x120c The device label lists both addresses, WLAN MAC and ETH MAC, in that order. Since 0x0 and 0x6 have the same content, it cannot be determined which is eth0 and eth1, so we chose 0x0 for both. Installation: 2 ways to flash factory.bin from OEM: - Connect ethernet directly to board (the non POE port) this is LAN for all images - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" In upper right select Reset "Restore to factory default settings" Wait for reboot and login again Navigate to "Firmware Upgrade" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt boot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9f670000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, can cause kernel loop or halt The easiest way to return to the OEM software is the Failsafe image If you dont have a serial cable, you can ssh into openwrt and run `mtd -r erase fakeroot` Wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of ENH202 is a heavily modified version of Openwrt Kamikaze bleeding-edge. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-enh202-uImage-lzma.bin openwrt-senao-enh202-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring, and by swapping headers to see what the OEM upgrade utility accepts and rejects. OKLI kernel loader is required because the OEM firmware expects the kernel to be no greater than 1024k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on built-in switch: ENH202 is originally configured to be an access point, but with two ethernet ports, both WAN and LAN is possible. the POE port is gmac0 which is preferred to be the port for WAN because it gives link status where swconfig does not. Signed-off-by: Michael Pratt <mpratt51@gmail.com> [assign label_mac in 02_network, use ucidef_set_interface_wan, use common device definition, some reordering] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Wegener
|
0348a02c7c |
ath79: use correct MAC address for TP-Link TL-WPA8630 v2
The base address is used for the LAN and 2G WLAN interfaces. 5G WLAN interface is +1 and the PLC interface uses +2. Signed-off-by: Sven Wegener <sven.wegener@stealer.net> [improve commit title, fix assignment in 11-ath10k-caldata] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |