mirror of
https://github.com/openwrt/openwrt.git
synced 2025-01-07 14:28:50 +00:00
a691e7d8ad
59 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Marco von Rosenberg
|
f314debd4f |
ath79: add support for Huawei AP5030DN
Huawei AP5030DN is a dual-band, dual-radio 802.11ac Wave 1 3x3 MIMO
enterprise access point with two Gigabit Ethernet ports and PoE
support.
Hardware highlights:
- CPU: QCA9550 SoC at 720MHz
- RAM: 256MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: QCA9550-internal radio
- Wi-Fi 5GHz: QCA9880 PCIe WLAN SoC
- Ethernet 1: 10/100/1000 Mbps Ethernet through Broadcom B50612E PHY
- Ethernet 2: 10/100/1000 Mbps Ethernet through Marvell 88E1510 PHY
- PoE: input through Ethernet 1 port
- Standalone 12V/2A power input
- Serial console externally available through RJ45 port
- External watchdog: SGM706 (1.6s timeout)
Serial console:
9600n8 (9600 baud, no stop bits, no parity, 8 data bits)
MAC addresses:
Each device has 32 consecutive MAC addresses allocated by
the vendor, which don't overlap between devices.
This was confirmed with multiple devices with consecutive
serial numbers.
The MAC address range starts with the address on the label.
To be able to distinguish between the interfaces,
the following MAC address scheme is used:
- eth0 = label MAC
- eth1 = label MAC + 1
- radio0 (Wi-Fi 5GHz) = label MAC + 2
- radio1 (Wi-Fi 2.4GHz) = label MAC + 3
Installation:
0. Connect some sort of RJ45-to-USB adapter to "Console" port of the AP
1. Power up the AP
2. At prompt "Press f or F to stop Auto-Boot in 3 seconds",
do what they say.
Log in with default admin password "admin@huawei.com".
3. Boot the OpenWrt initramfs from TFTP using the hidden script
"run ramboot". Replace IP address as needed:
> setenv serverip 192.168.1.10
> setenv ipaddr 192.168.1.1
> setenv rambootfile
openwrt-ath79-generic-huawei_ap5030dn-initramfs-kernel.bin
> saveenv
> run ramboot
4. Optional but recommended as the factory firmware cannot
be downloaded publicly:
Back up contents of "firmware" partition using the web interface or ssh:
$ ssh root@192.168.1.1 cat /dev/mtd11 > huawei_ap5030dn_fw_backup.bin
5. Run sysupgrade using sysupgrade image. OpenWrt
shall boot from flash afterwards.
Return to factory firmware (using firmware upgrade package downloaded from
non-public Huawei website):
1. Start a TFTP server in the directory where
the firmware upgrade package is located
2. Boot to u-boot as described above
3. Install firmware upgrade package and format the config partitions:
> update system FatAP5X30XN_SOMEVERSION.bin
> format_fs
Return to factory firmware (from previously created backup):
1. Copy over the firmware partition backup to /tmp,
for example using scp
2. Use sysupgrade with force to restore the backup:
sysupgrade -F huawei_ap5030dn_fw_backup.bin
3. Boot AP to U-Boot as described above
Quirks and known issues
-----------------------
- On initial power-up, the Huawei-modified bootloader suspends both
ethernet PHYs (it sets the "Power Down" bit in the MII control
register). Unfortunately, at the time of the initial port, the kernel
driver for the B50612E/BCM54612E PHY behind eth0 doesn't have a resume
callback defined which would clear this bit. This makes the PHY unusable
since it remains suspended forever. This is why the backported kernel
patches in this commit are required which add this callback and for
completeness also a suspend callback.
- The stock firmware has a semi dual boot concept where the primary
kernel uses a squashfs as root partition and the secondary kernel uses
an initramfs. This dual boot concept is circumvented on purpose to gain
more flash space and since the stock firmware's flash layout isn't
compatible with mtdsplit.
- The external watchdog's timeout of 1.6s is very hard to satisfy
during bootup. This is why the GPIO15 pin connected to the watchdog input
is configured directly in the LZMA loader to output the CPU_CLK/4 signal
which keeps the watchdog happy until the wdt-gpio kernel driver takes
over. Because it would also take too long to read the whole kernel image
from flash, the uImage header only includes the loader which then reads
the kernel image from flash after GPIO15 is configured.
Signed-off-by: Marco von Rosenberg <marcovr@selfnet.de>
[fixed 6.6 backport patch naming]
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit
|
||
Michael Pratt
|
5e973dd61f |
ath79: add eth0 mac and initvals for Engenius EPG5000
Although VLANs are used, the "eth0" device by itself does not have a valid MAC, so fix that with preinit script. More initvals added by editing the driver to print switch registers, after the bootloader sets them but before openwrt changes them. The register bits needed for the QCA8337 switch can be read from interrupted boot (tftpboot, bootm) by adding print lines in the switch driver ar8327.c before 'qca,ar8327-initvals' is parsed from DTS and written for example: pr_info("0x04 %08x\n", ar8xxx_read(priv, AR8327_REG_PAD0_MODE)); Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
f9c28222c8 |
ath79: add support for Senao Engenius ESR1200
FCC ID: A8J-ESR900 Engenius ESR1200 is an indoor wireless router with a gigabit ethernet switch, dual-band wireless, internal antenna plates, and a USB 2.0 port **Specification:** - QCA9557 SOC 2.4 GHz, 2x2 - QCA9882 WLAN PCIe mini card, 5 GHz, 2x2 - QCA8337N SW 4 ports LAN, 1 port WAN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM - UART at J1 populated, RX grounded - 6 internal antenna plates (omni-directional) - 5 LEDs, 1 button (power, 2G, 5G, WAN, WPS) (reset) **MAC addresses:** Base MAC address labeled as "MAC ADDRESS" MAC "wanaddr" is not similar to "ethaddr" eth0 *:c8 MAC u-boot-env ethaddr phy0 *:c8 MAC u-boot-env ethaddr phy1 *:c9 --- u-boot-env ethaddr +1 WAN *:66:44 u-boot-env wanaddr **Serial Access:** RX on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin **Installation:** Method 1: Firmware upgrade page OEM webpage at 192.168.0.1 username and password "admin" Navigate to Settings (gear icon) --> Tools --> Firmware select the factory.bin image confirm and wait 3 minutes Method 2: TFTP recovery Follow TFTP instructions using initramfs.bin use sysupgrade.bin to flash using openwrt web interface **Return to OEM:** MTD partitions should be backed up before flashing using TFTP to boot openwrt without overwriting flash Alternatively, it is possible to edit OEM firmware images to flash MTD partitions in openwrt to restore OEM firmware by removing the OEM header and writing the rest to "firmware" **TFTP recovery:** Requires serial console, reset button does nothing at boot rename initramfs.bin to 'uImageESR1200' make available on TFTP server at 192.168.99.8 power board, interrupt boot by pressing '4' rapidly execute tftpboot and bootm **Note on ETH switch registers** Registers must be written to the ethernet switch in order to set up the switch's MAC interface. U-boot can write the registers on it's own which is needed, for example, in a TFTP transfer. The register bits from OEM for the QCA8337 switch can be read from interrupted boot (tftpboot, bootm) by adding print lines in the switch driver ar8327.c before 'qca,ar8327-initvals' is parsed from DTS and written. for example: pr_info("0x04 %08x\n", ar8xxx_read(priv, AR8327_REG_PAD0_MODE)); Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
96c2119dba |
ath79: add support for Senao Engenius ESR1750
FCC ID: A8J-ESR1750 Engenius ESR1750 is an indoor wireless router with a gigabit ethernet switch, dual-band wireless, internal antenna plates, and a USB 2.0 port **Specification:** - QCA9558 SOC 2.4 GHz, 3x3 - QCA9880 WLAN PCIe mini card, 5 GHz, 3x3 - QCA8337N SW 4 ports LAN, 1 port WAN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM - UART at J1 populated, RX grounded - 6 internal antenna plates (omni-directional) - 5 LEDs, 1 button (power, 2G, 5G, WAN, WPS) (reset) **MAC addresses:** Base MAC address labeled as "MAC ADDRESS" MAC "wanaddr" is similar to "ethaddr" eth0 *:58 MAC u-boot-env ethaddr phy0 *:58 MAC u-boot-env ethaddr phy1 *:59 --- u-boot-env ethaddr +1 WAN *:10:58 u-boot-env wanaddr **Serial Access:** RX on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin **Installation:** Method 1: Firmware upgrade page NOTE: ESR1750 might require the factory.bin for ESR1200 instead, OEM provides 1 image for both. OEM webpage at 192.168.0.1 username and password "admin" Navigate to Settings (gear icon) --> Tools --> Firmware select the factory.bin image confirm and wait 3 minutes Method 2: TFTP recovery Follow TFTP instructions using initramfs.bin use sysupgrade.bin to flash using openwrt web interface **Return to OEM:** MTD partitions should be backed up before flashing using TFTP to boot openwrt without overwriting flash Alternatively, it is possible to edit OEM firmware images to flash MTD partitions in openwrt to restore OEM firmware by removing the OEM header and writing the rest to "firmware" **TFTP recovery:** Requires serial console, reset button does nothing at boot rename initramfs.bin to 'uImageESR1200' make available on TFTP server at 192.168.99.8 power board, interrupt boot by pressing '4' rapidly execute tftpboot and bootm **Note on ETH switch registers** Registers must be written to the ethernet switch in order to set up the switch's MAC interface. U-boot can write the registers on it's own which is needed, for example, in a TFTP transfer. The register bits from OEM for the QCA8337 switch can be read from interrupted boot (tftpboot, bootm) by adding print lines in the switch driver ar8327.c before 'qca,ar8327-initvals' is parsed from DTS and written. for example: pr_info("0x04 %08x\n", ar8xxx_read(priv, AR8327_REG_PAD0_MODE)); Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
2f99f7e2d0 |
ath79: add support for Senao Engenius ESR900
FCC ID: A8J-ESR900 Engenius ESR900 is an indoor wireless router with a gigabit ethernet switch, dual-band wireless, internal antenna plates, and a USB 2.0 port **Specification:** - QCA9558 SOC 2.4 GHz, 3x3 - AR9580 WLAN PCIe on board, 5 GHz, 3x3 - AR8327N SW 4 ports LAN, 1 port WAN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM - UART at J1 populated, RX grounded - 6 internal antenna plates (omni-directional) - 5 LEDs, 1 button (power, 2G, 5G, WAN, WPS) (reset) **MAC addresses:** Base MAC address labeled as "MAC ADDRESS" MAC "wanaddr" is not similar to "ethaddr" eth0 *:06 MAC u-boot-env ethaddr phy0 *:06 MAC u-boot-env ethaddr phy1 *:07 --- u-boot-env ethaddr +1 WAN *:6E:81 u-boot-env wanaddr **Serial Access:** RX on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin **Installation:** Method 1: Firmware upgrade page OEM webpage at 192.168.0.1 username and password "admin" Navigate to Settings (gear icon) --> Tools --> Firmware select the factory.bin image confirm and wait 3 minutes Method 2: TFTP recovery Follow TFTP instructions using initramfs.bin use sysupgrade.bin to flash using openwrt web interface **Return to OEM:** MTD partitions should be backed up before flashing using TFTP to boot openwrt without overwriting flash Alternatively, it is possible to edit OEM firmware images to flash MTD partitions in openwrt to restore OEM firmware by removing the OEM header and writing the rest to "firmware" **TFTP recovery:** Requires serial console, reset button does nothing at boot rename initramfs.bin to 'uImageESR900' make available on TFTP server at 192.168.99.8 power board, interrupt boot by pressing '4' rapidly execute tftpboot and bootm **Note on ETH switch registers** Registers must be written to the ethernet switch in order to set up the switch's MAC interface. U-boot can write the registers on it's own which is needed, for example, in a TFTP transfer. The register bits from OEM for the AR8327 switch can be read from interrupted boot (tftpboot, bootm) by adding print lines in the switch driver ar8327.c before 'qca,ar8327-initvals' is parsed from DTS and written. for example: pr_info("0x04 %08x\n", ar8xxx_read(priv, AR8327_REG_PAD0_MODE)); Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
52992efc34 |
ath79: add support for Senao Engenius EWS660AP
FCC ID: A8J-EWS660AP Engenius EWS660AP is an outdoor wireless access point with 2 gigabit ethernet ports, dual-band wireless, internal antenna plates, and 802.3at PoE+ **Specification:** - QCA9558 SOC 2.4 GHz, 3x3 - QCA9880 WLAN mini PCIe card, 5 GHz, 3x3, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - AR8033 PHY SGMII GbE with PoE+ OUT - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM - UART at J1 populated, RX grounded - 6 internal antenna plates (5 dbi, omni-directional) - 5 LEDs, 1 button (power, eth0, eth1, 2G, 5G) (reset) **MAC addresses:** Base MAC addressed labeled as "MAC" Only one Vendor MAC address in flash eth0 *:d4 MAC art 0x0 eth1 *:d5 --- art 0x0 +1 phy1 *:d6 --- art 0x0 +2 phy0 *:d7 --- art 0x0 +3 **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin **Installation:** 2 ways to flash factory.bin from OEM: Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Firmware Upgrade" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs.bin to '0101A8C0.img' make available on TFTP server at 192.168.1.101 power board, interrupt boot execute tftpboot and bootm 0x81000000 **Format of OEM firmware image:** The OEM software of EWS660AP is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-ar71xx-generic-ews660ap-uImage-lzma.bin openwrt-ar71xx-generic-ews660ap-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. Newer EnGenius software requires more checks but their script includes a way to skip them, otherwise the tar must include a text file with the version and md5sums in a deprecated format. The OEM upgrade script is at /etc/fwupgrade.sh. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode`. Therefore the PLL registers for GMAC0 do not need the bits for delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Tested-by: Niklas Arnitz <openwrt@arnitz.email> Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Wenli Looi
|
f0eb73a888 |
ath79: consolidate Netgear EX7300 series images
This change consolidates Netgear EX7300 series devices into two images corresponding to devices that share the same manufacturer firmware image. Similar to the manufacturer firmware, the actual device model is detected at runtime. The logic is taken from the netgear GPL dumps in a file called generate_board_conf.sh. Hardware details for EX7300 v2 variants --------------------------------------- SoC: QCN5502 Flash: 16 MiB RAM: 128 MiB Ethernet: 1 gigabit port Wireless 2.4GHz (currently unsupported due to lack of ath9k support): - EX6250 / EX6400 v2 / EX6410 / EX6420: QCN5502 3x3 - EX7300 v2 / EX7320: QCN5502 4x4 Wireless 5GHz: - EX6250: QCA9986 3x3 (detected by ath10k as QCA9984 3x3) - EX6400 v2 / EX6410 / EX6420 / EX7300 v2 / EX7320: QCA9984 4x4 Signed-off-by: Wenli Looi <wlooi@ucalgary.ca> |
||
Michael Pratt
|
e085812a7d |
ath79: add support for Fortinet FAP-221-B
FCC ID: U2M-CAP4100AG Fortinet FAP-221-B is an indoor access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ Hardware and board design from Senao **Specification:** - AR9344 SOC 2G 2x2, 5G 2x2, 25 MHz CLK - AR9382 WLAN 2G 2x2 PCIe, 40 MHz CLK - AR8035-A PHY RGMII, PoE+ IN, 25 MHz CLK - 16 MB FLASH MX25L12845EMI-10G - 2x 32 MB RAM W9725G6JB-25 - UART at J11 populated, 9600 baud - 6 LEDs, 1 button power, ethernet, wlan, reset Note: ethernet LEDs are not enabled because a new netifd hotplug is required in order to operate like OEM. Board has 1 amber and 1 green for each of the 3 case viewports. **MAC addresses:** 1 MAC Address in flash at end of uboot ASCII encoded, no delimiters Labeled as "MAC Address" on case OEM firmware sets offsets 1 and 8 for wlan eth0 *:1e uboot 0x3ff80 phy0 *:1f uboot 0x3ff80 +1 phy1 *:26 uboot 0x3ff80 +8 **Serial Access:** Pinout: (arrow) VCC GND RX TX Pins are populated with a header and traces not blocked. Bootloader is set to 9600 baud, 8 data, 1 stop. **Console Access:** Bootloader: Interrupt boot with Ctrl+C Press "k" and enter password "1" OR Hold reset button for 5 sec during power on Interrupt the TFTP transfer with Ctrl+C to print commands available, enter "help" OEM: default username is "admin", password blank telnet is available at default address 192.168.1.2 serial is available with baud 9600 to print commands available, enter "help" or tab-tab (busybox list of commands) **Installation:** Use factory.bin with OEM upgrade procedures OR Use initramfs.bin with uboot TFTP commands. Then perform a sysupgrade with sysupgrade.bin **TFTP Recovery:** Using serial console, load initramfs.bin using TFTP to boot openwrt without touching the flash. TFTP is not reliable due to bugged bootloader, set MTU to 600 and try many times. If your TFTP server supports setting block size, higher block size is better. Splitting the file into 1 MB parts may be necessary example: $ tftpboot 0x80100000 image1.bin $ tftpboot 0x80200000 image2.bin $ tftpboot 0x80300000 image3.bin $ tftpboot 0x80400000 image4.bin $ tftpboot 0x80500000 image5.bin $ tftpboot 0x80600000 image6.bin $ bootm 0x80100000 **Return to OEM:** The best way to return to OEM firmware is to have a copy of the MTD partitions before flashing Openwrt. Backup copies should be made of partitions "fwconcat0", "loader", and "fwconcat1" which together is the same flash range as OEM's "rootfs" and "uimage" by loading an initramfs.bin and using LuCI to download the mtdblocks. It is also possible to extract from the OEM firmware upgrade image by splitting it up in parts of lengths that correspond to the partitions in openwrt and write them to flash, after gzip decompression. After writing to the firmware partitions, erase the "reserved" partition and reboot. **OEM firmware image format:** Images from Fortinet for this device ending with the suffix .out are actually a .gz file The gzip metadata stores the original filename before compression, which is a special string used to verify the image during OEM upgrade. After gzip decompression, the resulting file is an exact copy of the MTD partitions "rootfs" and "uimage" combined in the same order and size that they appear in /proc/mtd and as they are on flash. OEM upgrade is performed by a customized busybox with the command "upgrade". Another binary, "restore" is a wrapper for busybox's "tftp" and "upgrade". Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
766de7013f |
ath79: allow skipping hash for Senao sysupgrade
Some vendors of Senao boards have a similar flash layout situation that causes the need to split the firmware partition and use the lzma-loader, but do not store checksums of the partitions or otherwise do not even have a uboot environment partition. This adds simple shell logic to skip that part. Also, simplify some lines and variable usage. Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
6de9287abd |
ath79: add support for Senao Engenius EAP1750H
FCC ID: A8J-EAP1750H Engenius EAP1750H is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ **Specification:** - QCA9558 SOC - QCA9880 WLAN PCI card, 5 GHz, 3x3, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16FG - UART at J10 populated - 4 internal antenna plates (5 dbi, omni-directional) - 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset) **MAC addresses:** MAC addresses are labeled as ETH, 2.4G, and 5GHz Only one Vendor MAC address in flash eth0 ETH *:fb art 0x0 phy1 2.4G *:fc --- phy0 5GHz *:fd --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** 2 ways to flash factory.bin from OEM: Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Firmware Upgrade" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs to 'vmlinux-art-ramdisk' make available on TFTP server at 192.168.1.101 power board, interrupt boot execute tftpboot and bootm 0x81000000 NOTE: TFTP is not reliable due to bugged bootloader set MTU to 600 and try many times if your TFTP server supports setting block size higher block size is better. **Format of OEM firmware image:** The OEM software of EAP1750H is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-ar71xx-generic-eap1750h-uImage-lzma.bin openwrt-ar71xx-generic-eap1750h-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. Newer EnGenius software requires more checks but their script includes a way to skip them, otherwise the tar must include a text file with the version and md5sums in a deprecated format. The OEM upgrade script is at /etc/fwupgrade.sh. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode`. Therefore the PLL registers for GMAC0 do not need the bits for delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Nick French
|
20581ee8b5 |
ath79: add support for TP-Link Deco S4
Add support for TP-Link Deco S4 wifi router The label refers to the device as S4R and the TP-Link firmware site calls it the Deco S4 v2. (There does not appear to be a v1) Hardware (and FCC id) are identical to the Deco M4R v2 but the flash layout is ordered differently and the OEM firmware encrypts some config parameters (including the label mac address) in flash In order to set the encrypted mac address, the wlan's caldata node is removed from the DTS so the mac can be decrypted with the help of the uencrypt tool and patched into the wlan fw via hotplug Specifications: SoC: QCA9563-AL3A RAM: Zentel A3R1GE40JBF Wireless 2.4GHz: QCA9563-AL3A (main SoC) Wireless 5GHz: QCA9886 Ethernet Switch: QCA8337N-AL3C Flash: 16 MB SPI NOR UART serial access (115200N1) on board via solder pads: RX = TP1 pad TX = TP2 pad GND = C201 (pad nearest board edge) The device's bootloader and web gui will only accept images that were signed using TP-Link's RSA key, however a memory safety bug in the bootloader can be leveraged to install openwrt without accessing the serial console. See developer forum S4 support page for link to a "firmware" file that starts a tftp client, or you may generate one on your own like this: ``` python - > deco_s4_faux_fw_tftp.bin <<EOF import sys from struct import pack b = pack('>I', 0x00008000) + b'X'*16 + b"fw-type:" \ + b'x'*256 + b"S000S001S002" + pack('>I', 0x80060200) \ b += b"\x00"*(0x200-len(b)) \ + pack(">33I", *[0x3c0887fc, 0x35083ddc, 0xad000000, 0x24050000, 0x3c048006, 0x348402a0, 0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000, 0x24050000, 0x3c048006, 0x348402d0, 0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000, 0x24050000, 0x3c048006, 0x34840300, 0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000, 0x24050000, 0x3c048006, 0x34840400, 0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000, 0x1000fff1, 0x00000000]) b += b"\xff"*(0x2A0-len(b)) + b"setenv serverip 192.168.0.2\x00" b += b"\xff"*(0x2D0-len(b)) + b"setenv ipaddr 192.168.0.1\x00" b += b"\xff"*(0x300-len(b)) + b"tftpboot 0x81000000 initramfs-kernel.bin\x00" b += b"\xff"*(0x400-len(b)) + b"bootm 0x81000000\x00" b += b"\xff"*(0x8000-len(b)) sys.stdout.buffer.write(b) EOF ``` Installation: 1. Run tftp server on pc with static ip 192.168.0.2 2. Place openwrt "initramfs-kernel.bin" image in tftp root dir 3. Connect pc to router ethernet port1 4. While holding in reset button on bottom of router, power on router 5. From pc access router webgui at http://192.168.0.1 6. Upload deco_s4_faux_fw_tftp.bin 7. Router will load and execture in-memory openwrt 8. Switch pc back to dhcp or static 192.168.1.x 9. Flash openwrt sysupgrade image via luci/ssh at 192.168.1.1 Revert to stock: Press and hold reset button while powering device to start the bootloader's recovery mode, where stock firmware can be uploaded via web gui at 192.168.0.1 Please note that one additional non-github commits is also needed: firmware-utils: add tplink-safeloader support for Deco S4 Signed-off-by: Nick French <nickfrench@gmail.com> |
||
Michael Pratt
|
5df1b33298 |
ath79: add support for Senao Watchguard AP100
FCC ID: U2M-CAP2100AG WatchGuard AP100 is an indoor wireless access point with 1 Gb ethernet port, dual-band but single-radio wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP300 v2 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - AR9344 SOC MIPS 74kc, 2.4 GHz AND 5 GHz WMAC, 2x2 - AR8035-A EPHY RGMII GbE with PoE+ IN - 25 MHz clock - 16 MB FLASH mx25l12805d - 2x 64 MB RAM - UART console J11, populated - GPIO watchdog GPIO 16, 20 sec toggle - 2 antennas 5 dBi, internal omni-directional plates - 5 LEDs power, eth0 link/data, 2G, 5G - 1 button reset **MAC addresses:** Label has no MAC Only one Vendor MAC address in flash at art 0x0 eth0 ---- *:e5 art 0x0 -2 phy0 ---- *:e5 art 0x0 -2 **Installation:** Method 1: OEM webpage use OEM webpage for firmware upgrade to upload factory.bin Method 2: root shell It may be necessary to use a Watchguard router to flash the image to the AP and / or to downgrade the software on the AP to access SSH For some Watchguard devices, serial console over UART is disabled. NOTE: DHCP is not enabled by default after flashing **TFTP recovery:** reset button has no function at boot time only possible with modified uboot environment, (see commit message for Watchguard AP300) **Return to OEM:** user should make backup of MTD partitions and write the backups back to mtd devices in order to revert to OEM reliably It may be possible to use sysupgrade with an OEM image as well... (not tested) **OEM upgrade info:** The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. **Note on eth0 PLL-data:** The default Ethernet Configuration register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For AR934x series, the PLL registers for eth0 can be see in the DTSI as 0x2c. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode`. Therefore the PLL registers for GMAC0 do not need the bits for delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 **Note on WatchGuard Magic string:** The OEM upgrade script is a modified version of the generic Senao sysupgrade script which is used on EnGenius devices. On WatchGuard boards produced by Senao, images are verified using a md5sum checksum of the upgrade image concatenated with a magic string. this checksum is then appended to the end of the final image. This variable does not apply to all the senao devices so set to null string as default Tested-by: Steve Wheeler <stephenw10@gmail.com> Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
9f6e247854 |
ath79: add support for Senao WatchGuard AP200
FCC ID: U2M-CAP4200AG WatchGuard AP200 is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP600 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - AR9344 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2 - AR9382 WLAN PCI card 168c:0030, 5 GHz, 2x2, 26dBm - AR8035-A EPHY RGMII GbE with PoE+ IN - 25 MHz clock - 16 MB FLASH mx25l12805d - 2x 64 MB RAM - UART console J11, populated - GPIO watchdog GPIO 16, 20 sec toggle - 4 antennas 5 dBi, internal omni-directional plates - 5 LEDs power, eth0 link/data, 2G, 5G - 1 button reset **MAC addresses:** Label has no MAC Only one Vendor MAC address in flash at art 0x0 eth0 ---- *:be art 0x0 -2 phy1 ---- *:bf art 0x0 -1 phy0 ---- *:be art 0x0 -2 **Installation:** Method 1: OEM webpage use OEM webpage for firmware upgrade to upload factory.bin Method 2: root shell It may be necessary to use a Watchguard router to flash the image to the AP and / or to downgrade the software on the AP to access SSH For some Watchguard devices, serial console over UART is disabled. NOTE: DHCP is not enabled by default after flashing **TFTP recovery:** reset button has no function at boot time only possible with modified uboot environment, (see commit message for Watchguard AP300) **Return to OEM:** user should make backup of MTD partitions and write the backups back to mtd devices in order to revert to OEM reliably It may be possible to use sysupgrade with an OEM image as well... (not tested) **OEM upgrade info:** The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. **Note on eth0 PLL-data:** The default Ethernet Configuration register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For AR934x series, the PLL registers for eth0 can be see in the DTSI as 0x2c. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode`. Therefore the PLL registers for GMAC0 do not need the bits for delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 **Note on WatchGuard Magic string:** The OEM upgrade script is a modified version of the generic Senao sysupgrade script which is used on EnGenius devices. On WatchGuard boards produced by Senao, images are verified using a md5sum checksum of the upgrade image concatenated with a magic string. this checksum is then appended to the end of the final image. This variable does not apply to all the senao devices so set to null string as default Tested-by: Steve Wheeler <stephenw10@gmail.com> Tested-by: John Delaney <johnd@ankco.net> Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
146aaeafb7 |
ath79: add support for Senao WatchGuard AP300
FCC ID: Q6G-AP300 WatchGuard AP300 is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP1750 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - QCA9558 SOC MIPS 74kc, 2.4 GHz WMAC, 3x3 - QCA9880 WLAN PCI card 168c:003c, 5 GHz, 3x3, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 32 MB FLASH S25FL512S - 2x 64 MB RAM NT5TU32M16 - UART console J10, populated - GPIO watchdog GPIO 16, 20 sec toggle - 6 antennas 5 dBi, internal omni-directional plates - 5 LEDs power, eth0 link/data, 2G, 5G - 1 button reset **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:3c art 0x0 phy1 ---- *:3d --- phy0 ---- *:3e --- **Serial console access:** For this board, its not certain whether UART is possible it is likely that software is blocking console access the RX line on the board for UART is shorted to ground by resistor R176 the resistors R175 and R176 are next to the UART RX pin at J10 however console output is garbage even after this fix **Installation:** Method 1: OEM webpage use OEM webpage for firmware upgrade to upload factory.bin Method 2: root shell access downgrade XTM firewall to v2.0.0.1 downgrade AP300 firmware: v1.0.1 remove / unpair AP from controller perform factory reset with reset button connect ethernet to a computer login to OEM webpage with default address / pass: wgwap enable SSHD in OEM webpage settings access root shell with SSH as user 'root' modify uboot environment to automatically try TFTP at boot time (see command below) rename initramfs-kernel.bin to test.bin load test.bin over TFTP (see TFTP recovery) (optionally backup all mtdblocks to have flash backup) perform a sysupgrade with sysupgrade.bin NOTE: DHCP is not enabled by default after flashing **TFTP recovery:** server ip: 192.168.1.101 reset button seems to do nothing at boot time... only possible with modified uboot environment, running this command in the root shell: fw_setenv bootcmd 'if ping 192.168.1.101; then tftp 0x82000000 test.bin && bootm 0x82000000; else bootm 0x9f0a0000; fi' and verify that it is correct with fw_printenv then, before boot, the device will attempt TFTP from 192.168.1.101 looking for file 'test.bin' to return uboot environment to normal: fw_setenv bootcmd 'bootm 0x9f0a0000' **Return to OEM:** user should make backup of MTD partitions and write the backups back to mtd devices in order to revert to OEM (see installation method 2) It may be possible to use sysupgrade with an OEM image as well... (not tested) **OEM upgrade info:** The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. **Note on eth0 PLL-data:** The default Ethernet Configuration register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode`. Therefore the PLL registers for GMAC0 do not need the bits for delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 **Note on WatchGuard Magic string:** The OEM upgrade script is a modified version of the generic Senao sysupgrade script which is used on EnGenius devices. On WatchGuard boards produced by Senao, images are verified using a md5sum checksum of the upgrade image concatenated with a magic string. this checksum is then appended to the end of the final image. This variable does not apply to all the senao devices so set to null string as default Tested-by: Alessandro Kornowski <ak@wski.org> Tested-by: John Wagner <john@wagner.us.org> Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Albin Hellström
|
f8c87aa2d2 |
ath79: add support for Extreme Networks WS-AP3805i
Specifications: - SoC: Qualcomm Atheros QCA9557-AT4A - RAM: 2x 128MB Nanya NT5TU64M16HG - FLASH: 64MB - SPANSION FL512SAIFG1 - LAN: Atheros AR8035-A (RGMII GbE with PoE+ IN) - WLAN2: Qualcomm Atheros QCA9557 2x2 2T2R - WLAN5: Qualcomm Atheros QCA9882-BR4A 2x2 2T2R - SERIAL: UART pins at J10 (115200 8n1) Pinout is 3.3V - GND - TX - RX (Arrow Pad is 3.3V) - LEDs: Power (Green/Amber) WiFi 5 (Green) WiFi 2 (Green) - BTN: Reset Installation: 1. Download the OpenWrt initramfs-image. Place it into a TFTP server root directory and rename it to 1D01A8C0.img Configure the TFTP server to listen at 192.168.1.66/24. 2. Connect the TFTP server to the access point. 3. Connect to the serial console of the access point. Attach power and interrupt the boot procedure when prompted. Credentials are admin / new2day 4. Configure U-Boot for booting OpenWrt from ram and flash: $ setenv boot_openwrt 'setenv bootargs; bootm 0xa1280000' $ setenv ramboot_openwrt 'setenv serverip 192.168.1.66; tftpboot 0x89000000 1D01A8C0.img; bootm' $ setenv bootcmd 'run boot_openwrt' $ saveenv 5. Load OpenWrt into memory: $ run ramboot_openwrt 6. Transfer the OpenWrt sysupgrade image to the device. Write the image to flash using sysupgrade: $ sysupgrade -n /path/to/openwrt-sysupgrade.bin Signed-off-by: Albin Hellström <albin.hellstrom@gmail.com> [rename vendor - minor style fixes - update commit message] Signed-off-by: David Bauer <mail@david-bauer.net> |
||
Tomasz Maciej Nowak
|
5897c52e78 |
ath79: move image check for devices with RedBoot
Don't comence the switch to RAMFS when the image format is wrong. This led to rebooting the device, which could lead to false impression that upgrade succeded. Being here, factor out the code responsible for upgrading RedBoot devices to separate file. Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com> |
||
Tomasz Maciej Nowak
|
5c142aad7b |
ath79: switch some RedBoot based devices to OKLI loader
After the kernel has switched version to 5.10, JA76PF2 and RouterStations lost the capability to sysupgrade the OpenWrt version. The cause is the lack of porting the patches responsible for partial flash erase block writing and these boards FIS directory and RedBoot config partitions share the same erase block. Because of that the FIS directory can't be updated to accommodate kernel/rootfs partition size changes. This could be remedied by bootloader update, but it is very intrusive and could potentially lead to non-trivial recovery procedure, if something went wrong. The less difficult option is to use OpenWrt kernel loader, which will let us use static partition sizes and employ mtd splitter to dynamically adjust kernel and rootfs partition sizes. On sysupgrade from ath79 19.07 or 21.02 image, which still let to modify FIS directory, the loader will be written to kernel partition, while the kernel+rootfs to rootfs partition. The caveats are: * image format changes, no possible upgrade from ar71xx target images * downgrade to any older OpenWrt version will require TFTP recovery or usage of bootloader command line interface To downgrade to 19.07 or 21.02, or to upgrade if one is already on OpenWrt with kernel 5.10, for RouterStations use TFTP recovery procedure. For JA76PF2 use instructions from this commit message: commit |
||
Michael Pratt
|
41be1a2de2 |
ath79: add support for Araknis AN-700-AP-I-AC
FCC ID: 2AG6R-AN700APIAC Araknis AN-700-AP-I-AC is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP1750 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - QCA9558 SOC MIPS 74kc, 2.4 GHz WMAC, 3x3 - QCA9880 WLAN PCI card, 5 GHz, 3x3, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16 - UART console J10, populated, RX shorted to ground - 4 antennas 5 dBi, internal omni-directional plates - 4 LEDs power, 2G, 5G, wps - 1 button reset NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide therefore, the power LED is off for default state **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:xb art 0x0 phy1 2.4G *:xc --- phy0 5GHz *:xd --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** Method 1: Firmware upgrade page: (if you cannot access the APs webpage) factory reset with the reset button connect ethernet to a computer OEM webpage at 192.168.20.253 username and password 'araknis' make a new password, login again... Navigate to 'File Management' page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm wait about 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to 192.168.20.253 Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** Method 1: Serial to load Failsafe webpage (above) Method 2: delete a checksum from uboot-env this will make uboot load the failsafe image at next boot because it will fail the checksum verification of the image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait a minute connect to ethernet and navigate to 192.168.20.253 select OEM firmware image and click upgrade Method 3: backup mtd partitions before upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs-kernel.bin to '0101A8C0.img' make available on TFTP server at 192.168.1.101 power board, interrupt boot with serial console execute `tftpboot` and `bootm 0x81000000` NOTE: TFTP may not be reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software is built using SDKs from Senao which is based on a heavily modified version of Openwrt Kamikaze or Altitude Adjustment. One of the many modifications is sysupgrade being performed by a custom script. Images are verified through successful unpackaging, correct filenames and size requirements for both kernel and rootfs files, and that they start with the correct magic numbers (first 2 bytes) for the respective headers. Newer Senao software requires more checks but their script includes a way to skip them. The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be less than 1536k and the OEM upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode` setting through the DTS. Therefore, the Ethernet Configuration registers for GMAC0 do not need the bits for RGMII delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
56716b578e |
ath79: add support for Araknis AN-500-AP-I-AC
FCC ID: 2AG6R-AN500APIAC Araknis AN-500-AP-I-AC is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP1200 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - QCA9557 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2 - QCA9882 WLAN PCI card 168c:003c, 5 GHz, 2x2, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16 - UART console J10, populated, RX shorted to ground - 4 antennas 5 dBi, internal omni-directional plates - 4 LEDs power, 2G, 5G, wps - 1 button reset NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide therefore, the power LED is off for default state **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:e1 art 0x0 phy1 2.4G *:e2 --- phy0 5GHz *:e3 --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** Method 1: Firmware upgrade page: (if you cannot access the APs webpage) factory reset with the reset button connect ethernet to a computer OEM webpage at 192.168.20.253 username and password 'araknis' make a new password, login again... Navigate to 'File Management' page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm wait about 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to 192.168.20.253 Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** Method 1: Serial to load Failsafe webpage (above) Method 2: delete a checksum from uboot-env this will make uboot load the failsafe image at next boot because it will fail the checksum verification of the image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait a minute connect to ethernet and navigate to 192.168.20.253 select OEM firmware image and click upgrade Method 3: backup mtd partitions before upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs-kernel.bin to '0101A8C0.img' make available on TFTP server at 192.168.1.101 power board, interrupt boot with serial console execute `tftpboot` and `bootm 0x81000000` NOTE: TFTP may not be reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software is built using SDKs from Senao which is based on a heavily modified version of Openwrt Kamikaze or Altitude Adjustment. One of the many modifications is sysupgrade being performed by a custom script. Images are verified through successful unpackaging, correct filenames and size requirements for both kernel and rootfs files, and that they start with the correct magic numbers (first 2 bytes) for the respective headers. Newer Senao software requires more checks but their script includes a way to skip them. The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be less than 1536k and the OEM upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode` setting through the DTS. Therefore, the Ethernet Configuration registers for GMAC0 do not need the bits for RGMII delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
561f46bd02 |
ath79: add support for Araknis AN-300-AP-I-N
FCC ID: U2M-AN300APIN Araknis AN-300-AP-I-N is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EWS310AP the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - AR9344 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2 - AR9382 WLAN PCI on-board 168c:0030, 5 GHz, 2x2 - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM 1839ZFG V59C1512164QFJ25 - UART console J10, populated, RX shorted to ground - 4 antennas 5 dBi, internal omni-directional plates - 4 LEDs power, 2G, 5G, wps - 1 button reset NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide therefore, the power LED is off for default state **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:7d art 0x0 phy1 2.4G *:7e --- phy0 5GHz *:7f --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** Method 1: Firmware upgrade page: (if you cannot access the APs webpage) factory reset with the reset button connect ethernet to a computer OEM webpage at 192.168.20.253 username and password 'araknis' make a new password, login again... Navigate to 'File Management' page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm wait about 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to 192.168.20.253 Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** Method 1: Serial to load Failsafe webpage (above) Method 2: delete a checksum from uboot-env this will make uboot load the failsafe image at next boot because it will fail the checksum verification of the image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait a minute connect to ethernet and navigate to 192.168.20.253 select OEM firmware image and click upgrade Method 3: backup mtd partitions before upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs-kernel.bin to '0101A8C0.img' make available on TFTP server at 192.168.1.101 power board, interrupt boot with serial console execute `tftpboot` and `bootm 0x81000000` NOTE: TFTP may not be reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software is built using SDKs from Senao which is based on a heavily modified version of Openwrt Kamikaze or Altitude Adjustment. One of the many modifications is sysupgrade being performed by a custom script. Images are verified through successful unpackaging, correct filenames and size requirements for both kernel and rootfs files, and that they start with the correct magic numbers (first 2 bytes) for the respective headers. Newer Senao software requires more checks but their script includes a way to skip them. The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be less than 1536k and the OEM upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode` setting through the DTS. Therefore, the Ethernet Configuration registers for GMAC0 do not need the bits for RGMII delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Sven Eckelmann
|
8143709c90 |
ath79: Add support for OpenMesh OM2P v1
Device specifications: ====================== * Qualcomm/Atheros AR7240 rev 2 * 350/350/175 MHz (CPU/DDR/AHB) * 32 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 18-24V passive POE (mode B) + used as WAN interface - eth1 + builtin switch port 4 + used as LAN interface * 12-24V 1A DC * external antenna The device itself requires the mtdparts from the uboot arguments to properly boot the flashed image and to support dual-boot (primary + recovery image). Unfortunately, the name of the mtd device in mtdparts is still using the legacy name "ar7240-nor0" which must be supplied using the Linux-specfic DT parameter linux,mtd-name to overwrite the generic name "spi0.0". Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
1699c1dc7f |
ath79: Add support for OpenMesh OM5P-AC v2
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/200 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* 4x GPIO-LEDs (3x wifi, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
- eth0
+ AR8035 ethernet PHY (RGMII)
+ 10/100/1000 Mbps Ethernet
+ 802.3af POE
+ used as LAN interface
- eth1
+ AR8031 ethernet PHY (RGMII)
+ 10/100/1000 Mbps Ethernet
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
This device support is based on the partially working stub from commit
|
||
Sven Eckelmann
|
97f5617259 |
ath79: Add support for OpenMesh OM5P-AC v1
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi (11n) * 2T2R 5 GHz Wi-Fi (11ac) * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring * 2x ethernet - eth0 + AR8035 ethernet PHY (RGMII) + 10/100/1000 Mbps Ethernet + 802.3af POE + used as LAN interface - eth1 + AR8035 ethernet PHY (SGMII) + 10/100/1000 Mbps Ethernet + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
72ef594550 |
ath79: Add support for OpenMesh OM5P-AN
Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 1T1R 2.4 GHz Wi-Fi * 2T2R 5 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring * 2x ethernet - eth0 + AR8035 ethernet PHY + 10/100/1000 Mbps Ethernet + 802.3af POE + used as LAN interface - eth1 + 10/100 Mbps Ethernet + builtin switch port 1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
9a172797e5 |
ath79: Add support for OpenMesh A40
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi (11n) * 2T2R 5 GHz Wi-Fi (11ac) * multi-color LED (controlled via red/green/blue GPIOs) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x ethernet - eth0 + Label: Ethernet 1 + AR8035 ethernet PHY (RGMII) + 10/100/1000 Mbps Ethernet + 802.3af POE + used as WAN interface - eth1 + Label: Ethernet 2 + AR8035 ethernet PHY (SGMII) + 10/100/1000 Mbps Ethernet + used as LAN interface * 1x USB * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
eaf2e32c12 |
ath79: Add support for OpenMesh A60
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * multi-color LED (controlled via red/green/blue GPIOs) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x ethernet - eth0 + Label: Ethernet 1 + AR8035 ethernet PHY (RGMII) + 10/100/1000 Mbps Ethernet + 802.3af POE + used as WAN interface - eth1 + Label: Ethernet 2 + AR8031 ethernet PHY (SGMII) + 10/100/1000 Mbps Ethernet + used as LAN interface * 1x USB * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Michael Pratt
|
37ea5d9a65 |
ath79: add factory.bin for ALLNET ALL-WAP02860AC
This device is a Senao-based product using hardware and software from Senao with the tar-gz platform for factory.bin and checksum verification at boot time using variables stored in uboot environment and a 'failsafe' image when it fails. Extremely similar hardware/software to Engenius EAP1200H and other Engenius APs with qca955x Tested-by: Tomasz Maciej Nowak <tmn505@gmail.com> Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
d5035f0d26 |
ath79: add Senao 'failsafe' sysupgrade procedure
Use a similar upgrade method for sysupgrade.bin, like factory.bin, for Senao boards with the tar.gz OEM upgrade platform, and 'failsafe' image which is loaded on checksum failure. This is inspired by the OEM upgrade script /etc/fwupgrade.sh and the existing platforms for dual-boot Senao boards. Previously, if the real kernel was damaged or missing the only way to recover was with UART serial console, because the OKLI lzma-loader is programmed to halt. uboot did not detect cases where kernel or rootfs is damaged and boots OKLI instead of the failsafe image, because the checksums stored in uboot environment did not include the real kernel and rootfs space. Now, the stored checksums include the space for both the lzma-loader, kernel, and rootfs. Therefore, these boards are now practically unbrickable. Also, the factory.bin and sysupgrade.bin are now the same, except for image metadata. This allows for flashing OEM image directly from openwrt as well as flashing openwrt image directly from OEM. Make 'loader' partition writable so that it can be updated during a sysupgrade. tested with ENS202EXT v1 EAP1200H EAP350 v1 EAP600 ECB350 v1 ECB600 ENH202 v1 Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Sebastian Schaper
|
dc4745da7a |
ath79: add support for D-Link DAP-3662 A1
Specifications: * QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R * QCA9882, 802.11ac 2T2R * 2x Gigabit LAN (1x 802.11af PoE) * IP68 pole-mountable outdoor case Installation: * Factory Web UI is at 192.168.0.50 login with 'admin' and blank password, flash factory.bin * Recovery Web UI is at 192.168.0.50 connect network cable, hold reset button during power-on and keep it pressed until uploading has started (only required when checksum is ok, e.g. for reverting back to oem firmware), flash factory.bin After flashing factory.bin, additional free space can be reclaimed by flashing sysupgrade.bin, since the factory image requires some padding to be accepted for upgrading via OEM Web UI. Both ethernet ports are set to LAN by default, matching the labelling on the case. However, since both GMAC Interfaces eth0 and eth1 are connected to the switch (QCA8337), the user may create an additional 'wan' interface as desired and override the vlan id settings to map br-lan / wan to either the PoE or non-PoE port, depending on the individual scenario of use. So, the LAN and WAN ports would then be connected to different GMACs, e.g. config interface 'lan' option ifname 'eth0.1' ... config interface 'wan' option ifname 'eth1.2' ... config switch_vlan option device 'switch0' option vlan '1' option ports '1 0t' config switch_vlan option device 'switch0' option vlan '2' option ports '2 6t' Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net> [add configuration example] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
0988e03f0e |
ath79: Add support for OpenMesh MR1750 v2
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
ae7680dc4b |
ath79: Add support for OpenMesh MR1750 v1
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, apply shared DTSI/device node, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
31172e53f9 |
ath79: Add support for OpenMesh MR900 v2
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi * 3T3R 5 GHz Wi-Fi * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
e06c9eec5d |
ath79: Add support for OpenMesh MR900 v1
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi * 3T3R 5 GHz Wi-Fi * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
d9a3af46d8 |
ath79: Add support for OpenMesh MR600 v2
Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi * 2T2R 5 GHz Wi-Fi * 8x GPIO-LEDs (6x wifi, 1x wps, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
4b35999588 |
ath79: Add support for OpenMesh MR600 v1
Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi * 2T2R 5 GHz Wi-Fi * 4x GPIO-LEDs (2x wifi, 1x wps, 1x power) * 1x GPIO-button (reset) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, make WLAN LEDs consistent, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
80713657b2 |
ath79: Add support for OpenMesh OM5P
Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 5 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas WAN/LAN LEDs appear to be wrong in ar71xx and have been swapped here. Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [add LED swap comment] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
ff9e48e75c |
ath79: Add support for OpenMesh OM2P v2
Device specifications: ====================== * Qualcomm/Atheros AR9330 rev 1 * 400/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * external antenna Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
eb3a5ddba0 |
ath79: Add support for OpenMesh OM2P-LC
Device specifications: ====================== * Qualcomm/Atheros AR9330 rev 1 * 400/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
75900a25ed |
ath79: add support for OpenMesh OM2P-HS v3
Device specifications: ====================== * Qualcomm/Atheros AR9341 rev 1 * 535/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 802.3af POE + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
f096accce2 |
ath79: add support for OpenMesh OM2P-HS v2
Device specifications: ====================== * Qualcomm/Atheros AR9341 rev 1 * 535/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 802.3af POE + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
a462412977 |
ath79: add support for OpenMesh OM2P-HS v1
Device specifications: ====================== * Qualcomm/Atheros AR9341 rev 1 * 535/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 802.3af POE + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [drop redundant status from eth1] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
d0a9cf662e |
ath79: increase openmesh sysupgrade copy block size
The upgrade script for the openmesh sysupgrade procedure used always an 1 byte block size. This made it easier to seek the correct position in the CE image and to make sure the right amount of data was copied. But this also meant that the reading/writing of data required an excessive amount of syscalls and copy operations. A 5.4MB big sysupgrade image on an OM2P-HS v3 needed roughly 120s for the write operation (170s in total) during the sysupgrade. But it is possible to reduce this overhead slightly: * index access to read the file size can be done in single 8 byte chunk (while doing the seek with byte granularity) because each size entry is example 8 bytes long * the fwupgrade.cfg can be read as one block (while seeking to its position using its actual byte offset) because it should be rather small and fit into the RAM easily * the kernel can be read in 1KB blocks (while seking to its positions using its actual byte offset) because the the size of the kernel is always a multiple of the NOR flash block size (64KB and 256KB) This results in a sysupgrade write time of roughly 90s (140s in total). This could be reduced even further when also using larger chunks for the rootfs. But the squashfs rootfs image is at the moment always (256KB or 64KB) * block + 4 bytes long. It would be expected that the time for the sysupgrade write could be reduced to roughly 30s (80s in total) when busybox's dd would support the iflag count_bytes. Reported-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
5b37b52e69 |
ath79: Add support for OpenMesh OM2P-HS v4
Device specifications: ====================== * Qualcomm/Atheros QCA9533 v2 * 650/600/217 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 24V passive POE (mode B) + used as WAN interface - eth1 + 802.3af POE + builtin switch port 1 + used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
dd1d95cb03 |
ath79: Add support for OpenMesh OM2P v4
Device specifications: ====================== * Qualcomm/Atheros QCA9533 v2 * 650/600/217 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + Label: Ethernet 1 + 24V passive POE (mode B) - eth1 + Label: Ethernet 2 + 802.3af POE + builtin switch port 1 * 12-24V 1A DC * external antenna Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [wrap two very long lines, fix typo in comment] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
17e5920490 |
ath79: Add support for Plasma Cloud PA300E
Device specifications: * Qualcomm/Atheros QCA9533 v2 * 650/600/217 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash (mx25l12805d) - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * multi-color LED (controlled via red/green/blue GPIOs) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + Label: Ethernet 1 + 24V passive POE (mode B) + used as WAN interface - eth1 + Label: Ethernet 2 + 802.3af POE + builtin switch port 2 + used as LAN interface * 12-24V 1A DC * external antennas Flashing instructions: The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the factory image to the u-boot when the device boots up. Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
5fc28ef479 |
ath79: Add support for Plasma Cloud PA300
Device specifications: * Qualcomm/Atheros QCA9533 v2 * 650/600/217 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash (mx25l12805d) - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * multi-color LED (controlled via red/green/blue GPIOs) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + Label: Ethernet 1 + 24V passive POE (mode B) + used as WAN interface - eth1 + Label: Ethernet 2 + 802.3af POE + builtin switch port 2 + used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the factory image to the u-boot when the device boots up. Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Tomasz Maciej Nowak
|
760952ad02 |
ath79: restore sysupgrade support for ja76pf2 and routerstations
Because the bug described in FS#2428 has been fixed with |
||
Christoph Krapp
|
459c8c9ef8 |
ath79: add support for ZyXEL NBG6616
Specifications: SoC: Qualcomm Atheros QCA9557 RAM: 128 MB (Nanya NT5TU32M16EG-AC) Flash: 16 MB (Macronix MX25L12845EMI-10G) Ethernet: 5x 10/100/1000 (1x WAN, 4x LAN) Wireless: QCA9557 2.4GHz (nbg), QCA9882 5GHz (ac) USB: 2x USB 2.0 port Buttons: 1x Reset Switches: 1x Wifi LEDs: 11 (Pwr, WAN, 4x LAN, 2x Wifi, 2x USB, WPS) MAC addresses: WAN *:3f uboot-env ethaddr + 3 LAN *:3e uboot-env ethaddr + 2 2.4GHz *:3c uboot-env ethaddr 5GHz *:3d uboot-env ethaddr + 1 The label contains all four MAC addresses, however the one without increment is first, so this one is taken for label MAC address. Notes: The Wifi is controlled by an on/off button, i.e. has to be implemented by a switch (EV_SW). Despite, it appears that GPIO_ACTIVE_HIGH needs to be used, just like recently fixed for the NBG6716. Both parameters have been wrong at ar71xx. Flash Instructions: At first the U-Boot variables need to be changed in order to boot the new combined image format. ZyXEL uses a split kernel + root setup and the current kernel is too large to fit into the partition. As resizing didnt do the trick, I've decided to use the prefered combined image approach to be future-kernel-enlargement-proof (thanks to blocktrron for the assistance). First add a new variable called boot_openwrt: setenv boot_openwrt bootm 0x9F120000 After that overwrite the bootcmd and save the environment: setenv bootcmd run boot_openwrt saveenv After that you can flash the openwrt factory image via TFTP. The servers IP has to be 192.168.1.33. Connect to one of the LAN ports and hold the WPS Button while booting. After a few seconds the NBG6616 will look for a image file called 'ras.bin' and flash it. Return to vendor firmware is possible by resetting the bootcmd: setenv bootcmd run boot_flash saveenv and flashing the vendor image via the TFTP method as described above. Accessing the U-Boot Shell: ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02" When the device is starting up, the user can enter the the loader shell by simply pressing a key within the 3 seconds once the following string appears on the serial console: | Hit any key to stop autoboot: 3 The user is then dropped to a locked shell. | NBG6616> ? | ATEN x,(y) set BootExtension Debug Flag (y=password) | ATSE x show the seed of password generator | ATSH dump manufacturer related data in ROM | ATRT (x,y,z,u) ATRT RAM read/write test (x=level, y=start addr, z=end addr, u=iterations | ATGO boot up whole system | ATUR x upgrade RAS image (filename) In order to escape/unlock a password challenge has to be passed. Note: the value is dynamic! you have to calculate your own! First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env) to get the challange value/seed. | NBG6616> ATSE NBG6616 | 00C91D7EAC3C This seed/value can be converted to the password with the help of this bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors): - tool.sh - ror32() { echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) )) } v="0x$1" a="0x${v:2:6}" b=$(( $a + 0x10F0A563)) c=$(( 0x${v:12:14} & 7 )) p=$(( $(ror32 $b $c) ^ $a )) printf "ATEN 1,%X\n" $p - end of tool.sh - | # bash ./tool.sh 00C91D7EAC3C | ATEN 1,10FDFF5 Copy and paste the result into the shell to unlock zloader. | NBG6616> ATEN 1,10FDFF5 If the entered code was correct the shell will change to use the ATGU command to enter the real u-boot shell. | NBG6616> ATGU | NBG6616# Signed-off-by: Christoph Krapp <achterin@googlemail.com> [move keys to DTSI, adjust usb_power DT label, remove kernel config change, extend commit message] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Natalie Kagelmacher
|
8ff631feff |
ath79: add support for AVM FRITZ!WLAN Repeater DVB-C
This commit adds support for the AVM FRITZ!WLAN Repeater DVB-C SOC: Qualcomm Atheros QCA9556 RAM: 64 MiB FLASH: 16 MB SPI-NOR WLAN: QCA9556 3T3R 2.4 GHZ b/g/n and QCA9880 3T3R 5 GHz n/ac ETH: Atheros AR8033 1000 Base-T DVB-C: EM28174 with MaxLinear MXL251 tuner BTN: WPS Button LED: Power, WLAN, TV, RSSI0-4 Tested and working: - Ethernet (correct MAC, gigabit, iperf3 about 200 Mbit/s) - 2.4 GHz Wi-Fi (correct MAC) - 5 GHz Wi-Fi (correct MAC) - WPS Button (tested using wifitoggle) - LEDs - Installation via EVA bootloader (FTP recovery) - OpenWrt sysupgrade (both CLI and LuCI) - Download of "urlader" (mtd0) Not working: - Internal USB - DVB-C em28174+MxL251 (depends on internal USB) Installation via EVA bootloader (FTP recovery): Set NIC to 192.168.178.3/24 gateway 192.168.178.1 and power on the device, connect to 192.168.178.1 through FTP and sign in with adam2/adam2: ftp> quote USER adam2 ftp> quote PASS adam2 ftp> binary ftp> debug ftp> passive ftp> quote MEDIA FLSH ftp> put openwrt-sysupgrade.bin mtd1 Wait for "Transfer complete" together with the transfer details. Wait two minutes to make sure flash is complete (just to be safe). Then restart the device (power off and on) to boot into OpenWrt. Revert your NIC settings to reach OpenWrt at 192.168.1.1 Signed-off-by: Natalie Kagelmacher <nataliek@pm.me> [fixed sorting - removed change to other board - prettified commit message] Signed-off-by: David Bauer <mail@david-bauer.net> |
||
Adrian Schmutzler
|
48c1fdd046 |
treewide: drop shebang from non-executable target files
This drops the shebang from all target files for /lib and /etc/uci-defaults folders, as these are sourced and the shebang is useless. While at it, fix the executable flag on a few of these files. This does not touch ar71xx, as this target is just used for backporting now and applying cosmetic changes would just complicate things. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |