Ath10k packages were removed from ar71xx in master in commit
34113999ef ("ar71xx: Remove ath10k packages from archer-c7-v1 (fixes
FS#1743)") but ath79 in master and the 19.07 branch still suffer from
the issue.
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
[commit subject and description facelift]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
ar71xx has just one board name "wndr3700" for WNDR3700 V1/V2,
WNDR3800 and WNDR3800CH, whereas ath79 provides separate images for
the boards. So, update SUPPORTED_DEVICES to store the correct
ar71xx board names.
Fixes: FS#2510
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit fc44a8481c)
Some Ubiquiti devices had the RSSI LEDs configured in 01_leds but
were missing the rssileds package, while others that don't have
RSSI LEDS had the package included.
This commit includes the rssileds package only for those devices
that need it.
Tested on a NanoStation M XW.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
(cherry picked from commit 1c6066a867)
[backported to 19.07]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
In ar71xx, the board name for the TL-WR1043ND v3 is equal to v2:
tl-wr1043nd-v2
Fix SUPPORTED_DEVICES for v3 in ath79 accordingly.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit b5791118cc)
To simplify the upgrade process and ensure easier identification of
device partitioning, the following devices are disabled on ath79
target in openwrt-19.07 branch:
- glinet,gl-ar300m-nor
- glinet,gl-ar300m-nand
- glinet,gl-ar750s
Proper ath79 (NAND) support for the devices is expected to be
introduced based on kernel 4.19 (see GitHub PR #2184).
In openwrt-19.07, ar71xx should be used for those devices.
With this, we ensure that the new ath79 image names (at least for
releases) refer to the updated partitioning.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Unifi AC-LR has identical hardware to the Unifi AC-Lite.
The antenna setup is different according to the vendor,
which explains the thicker enclosure.
Therefore, it is helpful to know the exact device variant,
instead of having "Ubiquiti UniFi-AC-LITE/LR".
Signed-off-by: Andreas Ziegler <dev@andreas-ziegler.de>
[fix legacy name in commit message; add old boardname to
SUPPORTED_DEVICES]
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 07c1ddf522)
Signed-off-by: David Bauer <mail@david-bauer.net>
The ar71xx images for the Ubiquiti NanoStation M (XM) devices use
"nanostation-m" as board name, but the ath79 images are only
compatible with the "nano-m" board name, so sysupgrade complains.
By changing this additional supported device, sysupgrade smoothly
upgrades from ar71xx to ath79.
Ref: openwrt#2418
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit f473ce6f23)
The ar71xx images for the Ubiquiti NanoStation M (XW) devices use
"nanostation-m-xw" as the board name, but the ath79 images are only
compatible with the "nano-m-xw" board name, so sysupgrade complains.
By adding this additional supported device, sysuspgrade smoothly
upgrades from ar71xx to ath79.
Tested on a NanoStation M (XW) running OpenWrt ar71xx r10250-016d1eb.
Ref: https://github.com/openwrt/openwrt/pull/2418
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
[removed duplicate DEVICE_VARIANT, removed uneeded nano-m-xw support]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
(cherry picked from commit 6dda2ea6ad)
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This corrects the additional boardname for the image metadata to the one
used in ar71xx. The previously present additional entry was never used
on a running system.
Reviewed-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 1a256470e7)
Signed-off-by: David Bauer <mail@david-bauer.net>
Now that the md5 check is fixed and metadata present, sysupgrade on
ar71xx will complain about device not being supported by the image.
Since the cause is not matching strings for supported devices add them
accordingly.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
(cherry picked from commit a45cf75eca)
This target enforces metadata check so add the necessary information. It
was previously removed because md5 sum check. When using these sysupgrade
images on ar71xx target the check would complain about them not matching.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
(cherry picked from commit 077d06a1a5)
Hardware
--------
CPU: Qualcomm Atheros QCA9558
RAM: 128M DDR2
FLASH: 16MiB
ETH: 1x Atheros AR8035 (PoE in)
WiFi2: QCA9558 3T3R
WiFi5: QCA9880 3T3R
BTN: 1x Reset
LED: 1x LED Power (non-controllable)
1x LED Status (internal)
1x LED LAN (controlled by PHY)
1x LED WLAN
BEEP: 1x GPIO attached piezo beeper
UART: 3.3V GND TX RX (115200-N-8) (3.3V is square pad)
Header is located next to external-LED header.
Installation
------------
Make sure you set a password for the root user as prompted on first
setup!
1. Upload OpenWRT sysupgrade image via SSH to the device.
Use /tmp as the destination folder on the device.
User is root, password the one set in the web interface.
2. Install OpenWRT with
> sysupgrade -n -F /tmp/<openwrt-image-name>
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit cb3cd52694)
In ath79, identifiers tplink_tl-wdr3600 and tplink_tl-wdr4300 have
been used while most other TP-Link devices include the revision.
Although there actually is only one major revision of these
devices, they bear the revision on their bottom (v1.x). TP-Link
also refers to the devices as V1 on its web page.
This patch thus adds -v1 to both so it is more consistent
with other devices and with what you would expect from reading
the on-device sticker and the support pages.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The TP-Link Archer C25 is a low-cost dual-band router.
Specification:
- CPU: Atheros QCA9561 775 MHz
- RAM: 64 MB
- Flash: 8 MB
- Wifi: 3x3 2.4 GHz (integrated), 1x1 5 GHz QCA9887
- NET: 5x 10/100 Mbps Ethernet
Some LEDs are controlled by an additional 74HC595 chip, but not
all of them as e.g. for the C59.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- Atheros AR9331 (400 MHz)
- 64 MB of RAM (DDR2)
- 16 MB of Flash (SPI)
- 1T1R 2.4 Wlan (AR9331)
- 2x 10/100 Mbps Ethernet
- 3x LEDs, 1x gpio button
- 1x USB 2.0, 5V
- UART over usb, 115200n8
Upgrading from ar71xx target:
- Put image into board:
scp openwrt-ath79-generic-8dev_carambola2-squashfs-sysupgrade.bin \
root@192.168.1.1/tmp/
- Run sysupgrade
sysupgrade /tmp/sysupgrade.bin
Upgrading from u-boot:
- Set up tftp server with sysupgrade.bin image
- Go to u-boot (reboot and press ESC when prompted)
- Set TFTP server IP
setenv serverip 192.168.1.254
- Set device ip from same subnet
setenv ipaddr 192.168.1.1
- Copy new firmware to board
tftpboot 0x81000000 sysupgrade.bin
- erase flash
erase 0x9f050000 +${filesize}
- flash firmware
cp.b 0x81000000 0x9f050000 ${filesize}
- Reset board
reset
Signed-off-by: Rytis Zigmantavičius <rytis.z@8devices.com>
[wrapped long line in commit description, whitespace and art address
fix in DTS, keep default lan/wan setup, removed -n in sysupgrade]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
ZBT-WD323 is a dual-LTE router based on AR9344. The detailed
specifications are:
* AR9344 560MHz/450MHz/225MHz (CPU/DDR/AHN).
* 128 MB RAM
* 16MB of flash(SPI-NOR, 22MHz)
* 1x 2.4GHz wifi (Atheros AR9340)
* 3x 10/100Mbos Ethernet (AR8229)
* 1x USB2.0 port
* 2x miniPCIe-slots (USB2.0 only)
* 2x SIM slots (standard size)
* 4x LEDs (1 gpio controlled)
* 1x reset button
* 1x 10 pin terminal block (RS232, RS485, 4x GPIO)
* 2x CP210x UART bridge controllers (used for RS232 and RS485)
* 1x 2 pin 5mm industrial interface (input voltage 12V~36V)
* 1x DC jack
* 1x RTC (PCF8563)
Tested:
- Ethernet switch
- Wifi
- USB port
- MiniPCIe-slots (+ SIM slots)
- Sysupgrade
- Reset button
- RS232
Intallation and recovery:
The board ships with OpenWRT, but sysupgrade does not work as a
different firmware format than what is expected is generated. The
easiest way to install (and recover) the router, is to use the
web-interface provided by the bootloader (Breed).
While the interface is in Chinese, it is easy to use. First, in order to
access the interface, you need to hold down the reset button for around
five seconds. Then, go to 192.168.1.1 in your browser. Click on the
second item in the list on the left to access the recovery page. The
second item on the next page is where you select the firmware. Select
the menu item containing "Atheros SDK" and "16MB" in the dropdown close
to the buttom, and click on the button at the bottom to start
installation/recovery.
Notes:
* RS232 is available on /dev/ttyUSB0 and RS485 on /dev/ttyUSB1
Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
[removed unused poll-interval from gpio-keys, i2c-gpio 4.19 compat]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
SoC: AR9344
RAM: 128MB
Flash: 16MiB Winbond 25Q128BVFG SPI NOR
5GHz WiFi: AR9380 PCIe 3x3:3 802.11n
2.4GHz WiFi: AR9344 (SoC) AHB 2x2:2 802.11n
5x Gigabit ethernet via AR8327N switch (green + amber LEDs)
2x USB 2.0 via GL850G hub
4x front LEDs from SoC GPIO
1x front WPS button from SoC GPIO
1x bottom reset button from SoC GPIO
Known issues:
AR8327N LEDs only have default functionality, not presented in sysfs.
This is a regression from ar71xx.
UART header JP1, 115200 no parity 1 stop
TX
GND
VCC
(N/P)
RX
See https://openwrt.org/toh/wd/n750 for flashing detail.
Procedures unchanged from ar71xx.
Tested sysupgrade + factory flash from WD Emergency Recovery
Signed-off-by: Ryan Mounce <ryan@mounce.com.au>
The GL.iNet AR750S USB and microSD port is currently not working out of
the box. GPIO 7 is used to control the power of the USB port. Add GPIO
7 as a fixed-regulator for the port. Also add &usb1 to DTS to get the
microSD port to work.
Signed-off-by: Alexander Wördekemper <alexwoerde@web.de>
TP-Link Archer D50 v1 is a dual-band AC1200 router + modem.
The router section is based on Qualcomm/Atheros QCA9531 + QCA9882.
The "DSL" section is based on BCM6318 but it's currently not supported.
Internally eth0 is connected to the Broadcom CPU.
Router section - Specification:
CPU: QCA9531 650/600/200 MHz (CPU/DDR/AHB)
RAM: 64 MB (DDR2)
Flash: 8 MB (SPI NOR)
Wifi 2.4GHz: QCA9531 2T2R
Wifi 5GHz: QCA9982 2T2R
4x 10/100 Mbps Ethernet
8x LED, 3x button
UART header on PCB
Known issues:
DSL not working (eth0) (WIP)
UART connection
---------------
J2 HEADER (Qualcomm CPU)
. TX
. RX
. GND
O VCC
J16 HEADER (Broadcom CPU)
O VCC
. GND
. RX
. TX
The following instructions require a connection to the J2 UART header.
Flash instruction under U-Boot, using UART
------------------------------------------
1. Press any key to stop autobooting and obtain U-Boot CLI access.
2. Setup ip addresses for U-Boot and your tftp server.
3. Issue below commands:
tftpboot 0x81000000 openwrt-ath79-generic-tplink_archer-d50-v1-squashfs-sysupgrade.bin
erase 0x9f020000 +$filesize
cp.b 0x81000000 0x9f020000 $filesize
reset
Initramfs instruction under U-Boot for testing, using UART
----------------------------------------------------------
1. Press any key to stop autobooting and obtain U-Boot CLI access.
2. Setup ip addresses for U-Boot and your tftp server.
3. Issue below commands:
tftpboot 0x81000000 openwrt-ath79-generic-tplink_archer-d50-v1-initramfs-kernel.bin
bootm 0x81000000
Restore the original firmware
-----------------------------
0. Backup every partition using the OpenWrt web interface
1. Download the OEM firmware from the TP-Link website
2. Extract the bin file in a folder (eg. Archer_D50v1_0.8.0_1.3_up_boot(170223)_full_2017-02-24_09.37.45.bin)
3. Remove the U-Boot and the Broadcom image part from the file.
Issue the following command:
dd if="Archer_D50v1_0.8.0_1.3_up_boot(170223)_full_2017-02-24_09.37.45.bin" of="Archer_D50v1_0.8.0_1.3_up_boot(170223)_full_2017-02-24_09.37.45.bin.mod" skip=257 bs=512 count=15616
4. Double check the .mod file size. It must be 7995392 bytes.
5. Flash it using the OpenWrt web interface. Force the update if needed.
WARNING: Remember to NOT keep settings.
5b. (Alternative to 5.) Flash it using the U-Boot and UART connection.
Issue below commands in the U-Boot:
tftpboot 0x81000000 Archer_D50v1_0.8.0_1.3_up_boot(170223)_full_2017-02-24_09.37.45.bin.mod
erase 0x9f020000 +$filesize
cp.b 0x81000000 0x9f020000 $filesize
reset
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [removed
default-state = "off", it's already the default, added pcie node,
fixed typo]
SoC: Atheros AR7161-8C1A @ 680 MHz
RAM: 128MB - 2x Etron Technology EM6AB160TSA-5G
NOR: 16MB - 1x MXIC MX25L12845EMI-10G (SPI-NOR)
WI1: Atheros AR9223-AC1A 802.11bgn
WI2: Atheros AR9220-AC1A 802.11an
ETH: Atheros AR8021-BL1E + PoE
LED: Dual-Color Power/Status, Ethernet, WLAN2G and WLAN5G
BTN: 1 x Reset
I2C: AT97SC4303s TPM (needs driver!)
CON: RS232-level 8P8C/RJ45 Console Port - 9600 Baud
Factory installation:
- Needs a u-boot replacement. See Wiki for
information on how to do a in-circut flash with
a SPI-Flasher like a CH314A or flashrom. Wiki page
can be found at https://openwrt.org/toh/aruba/aruba_ap-105
- Be careful when dis- and reassembling the device to
not squish any of the antenna cables in the process!
- Be sure to make a full 16 MiB backup of your device
before flashing the new u-boot! This is needed if you
ever have interest in reverting back to stock firmware.
Not working:
- TPM (needs a driver)
Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
Specifications:
- QCA9563 at 775 MHz
- 64 MB RAM Zentel A3R12E40CBF-8E
- 16 MB flash Winbond W25Q128FVSG
- 3 (non-detachable) Antennas / 450 Mbit
- 1x/4x WAN/LAN Gbps Ethernet (QCA8337)
- reset and Wi-Fi buttons
TP-Link TL-WR1043N v5 appears to be identical to the TL-WR1043ND v4,
except that the USB port has been removed and there is no longer a
removable antenna option. It also has different partitioning scheme.
The software is more in line with the Archer series in that it uses a
nested bootloader scheme.
(This has been adapted from the OpenWrt Wiki page)
<https://openwrt.org/toh/tp-link/tl-wr1043nd>
Installation on HW rev.5:
Factory firmware can be installed via the WEB interface.
Alternatively, it is also possible to use a TFTP server
for recovery purposes:
- Rename OpenWRT or original firmware to WR1043v5_tp_recovery.bin
- Set static IP of your PC to *192.168.0.66*
- Router will obtain IP 192.168.0.86 for a few seconds while
loading, when reset button pressed at power On.
And finally, there's always u-boot access through the UART.
For information visit the wiki.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[reworked commit message]
Specification:
- Qualcomm Atheros SoC QCA9558
- 720/600/200 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 1x 10/100/1000 Mbps Ethernet
- 3T3R 2.4 GHz (QCA9558 WMAC)
- 3T3R 5.8 Ghz (QCA9880-BR4A, Senao PCE4553AH)
https://fccid.io/A8J-ECB1750
Tested and working:
- lan, wireless, leds, sysupgrade (tftp)
Flash instructions:
1.) tftp recovery
- use a 1GbE switch or direct attached 1GbE link
- setup client ip address 192.168.1.10 and start tftpd
- save "openwrt-ath79-generic-engenius_ecb1750-initramfs-kernel.bin" as "ap.bin" in tfpd root directory
- plugin powercord and hold reset button 10secs.. "ap.bin" will be downloaded and executed
- afterwards login via ssh and do a sysuprade
2.) oem webinterface factory install (not tested)
Use normal webinterface upgrade page und select "openwrt-ath79-generic-engenius_ecb1750-squashfs-factory.bin".
3.) oem webinterface command injection
OEM Firmware already running OpenWrt (Attitude Adjustment 12.09).
Use OEM webinterface and command injection. See wiki for details.
https://openwrt.org/toh/engenius/engenius_ecb1750_1
Signed-off-by: sven friedmann <sf.openwrt@okay.ms>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[use interrupt-driven "gpio-keys" binding]
I-O DATA ETG3-R is a wired router. So wireless-related packages are
unnecessary and remove those packages from default configuration to
reduce flash usage.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
This adds support for the TP-Link WR842N v3 which is already supported on ar71xx
target (0b45bec22c).
Specification:
* SoC: QCA9533 ver 2 rev 0
* 16 MB Flash (gd25q128)
* 64 MB RAM
* 1 WAN 10/100 MBit/s (blue connector)
* 4 LAN 10/100 MBit/s (AR8229; 4 ports; yellow connectors)
* Atheros AR9531 (2,4GHz, two fixed antennas)
* USB
* Reset / WPS button
* WiFi button (rf kill)
* 8 green leds; 1 red/green led
* serial console (115200 8N1, according to the OpenWrt-wiki some soldering is needed)
Installation:
* flash via vendor WebUI (the filename must not exceed certain length)
* sysupgrade from installed OpenWrt (also ar71xx)
Thanks to Holger Drefs for providing the hardware
Tested-by: @kofec (github)
Signed-off-by: Sven Roederer <devel-sven@geroedel.de>
This is sold as a dual-band 802.11ac range extender. It has a sliding
switch for Extender mode or Access Point mode, a WPS button, a recessed
Reset button, a hard-power button, and a multitude of LED's, some
multiplexed via an NXP 74AHC164D chip. The internal serial header pinout is
Vcc, Tx, Rx, GND, with GND closest to the corner of the board. You may
connect at 115200 bps, 8 data bits, no parity, 1 stop bit.
Specification:
- System-On-Chip: QCA9558
- CPU/Speed: 720 MHz
- Flash-Chip: Winbond 25Q128FVSG
- Flash size: 16 MiB
- RAM: 128 MiB
- Wireless No1: QCA9558 on-chip 2.4GHz 802.11bgn, 3x3
- Wireless No2: QCA99x0 chip 5GHz 802.11an+ac, 4x4
- PHY: Atheros AR8035-A
Installation:
If you can get to the stock firmware's firmware upgrade option, just feed
it the factory.img and boot as usual. As an alternative, TFTP the
factory.img to the bootloader.
Signed-off-by: Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us>
[whitespace fix in DTS and reorder of make variables]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Remove Netgear-specific image build variables which are set to the same
value.
Signed-off-by: Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us>
[reordering of variables, removed stray newline]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The Ubiquiti Network airCube ISP is a cube shaped 2.4 GHz with internal
2x2 MIMO antennas. It can be supplied via a USB connector or via PoE.
There are for 10/100 Mbps ports (1 * WAN + 3 * LAN). There is an
optional PoE passthrough from the first LAN port to the WAN port.
SoC: Qualcomm / Atheros QCA9533-BL3A
RAM: 64 MB DDR2
Flash: 16 MB SPI NOR
Ethernet: 4x 10/100 Mbps (1 WAN + 3 LAN)
LEDS: 1x via a SPI controller (not yet supported)
Buttons: 1x Reset
Serial: 1x (only RX and TX); 115200 baud, 8N1
Missing points:
- LED not yet supported
- Factory upgrade via web IF or TFTP recovery not yet supported
(Needs RSA signed images, for details see PR#1958)
The serial port is on a four pin connextor labeled J1 and located
between Ethernet and USB connector. The pinout is:
1. 3V3 (out)
2. Rx (in)
3. Tx (out)
4. GND
Upgrading via serial port / U-Boot:
- Connect the serial port via a level converter
- Power the system and stop U-Boot with pressing any key when `Hit any
key to stop autoboot` is displayed. Note: Pressing space multiple
times untill U-Boot reaches that location works well.
- Connect a PC with the IP 192.168.1.100 (or some other in that net)
running a TFTP-Server to one of the LAN ports. Copy the sysupgrade
image to the server.
- Set the U-Boot server IP with
setenv serverip 192.168.1.100
- Load the flash image to RAM with
tftpboot 0x81000000 sysupgrade.bin
- Erase the flash with
erase 0x9f050000 0x9ffaffff
- Write the new flash content with
cp 0x81000000 0x9f050000 ${filesize}
- Reset the device with
reset
Signed-off-by: Christian Mauderer <oss@c-mauderer.de>
[removed full stop in subject and added lockdown note to commit message]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
SOC: Qualcomm Atheros QCA9558
RAM: 128MB
FLASH: 16MB (Macronix MX25L12845EMI-10G)
WLAN1: QCA9558 2.4GHz 802.11bgn 3SS
WLAN2: QCA9880 5GHz 802.11ac 3SS
LED: Power, LAN1, LAN2, 2.4GHz, 5GHz
Serial:Next to SPI Flash,
Pinout is 3V3 - GND - TX - RX (Square Pin is 3V3)
The Serial setting is 115200-8-N-1
INSTALLATION:
1. Serve an OpenWrt ramdisk image named "ursus.bin".
Set your IP-address to 192.168.100.8/24.
2. Connect to the serial. Power up the device and interrupt
the boot process.
3. Set the correct bootcmd with
> setenv bootcmd run bootcmd_1
> saveenv
4. Run
> tftpboot 0x81000000 ursus.bin
> bootm 0x81000000
5. Wait for OpenWrt to boot up.
6. Transfer OpenWrt sysupdate image and flash via sysupgrade.
Signed-off-by: Markus Scheck <markus.scheck1@gmail.com>
Tested-by: David Bauer <mail@david-bauer.net>
[whitespace fix, renamed LED labels and SoC type fix]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Currently, tplink-safeloader definition is only used a base for
another common definition.
This patch adjusts tplink-safeloader so it can be actually used
for some targets in generic-tp-link.mk.
This patch is cosmetic except for the order of
"check-size $$$$(IMAGE_SIZE)" and "append-metadata" exchanged
for the tplink_re350k-v1 .
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [dealed with
tplink_cpe210-v2 and tplink_cpe210-v3, removed tplink-safeloader-uimage's
extra IMAGE/sysupgrade.bin rule]
This PR adds support for a popular low-cost 2.4GHz N based AP
Specifications:
- SoC: Qualcomm Atheros QCA9533 (650MHz)
- RAM: 64MB
- Storage: 8 MB SPI NOR
- Wireless: 2.4GHz N based built into SoC 2x2
- Ethernet: 1x 100/10 Mbps, integrated into SoC, 24V POE IN
Installation:
Flash factory image through stock firmware WEB UI
or through TFTP
To get to TFTP recovery just hold reset button while powering on
for around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP adress:192.168.0.254
This is based on the support patch for the identical CPE210 v3
by Mario Schroen <m.schroen@web.de>.
Tested-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
[renamed dtsi filename]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Specifications:
* SoC: Qualcomm Atheros QCA9533 (650MHz)
* RAM: 64MB
* Storage: 8 MB SPI NOR
* Wireless: 2.4GHz N based built into SoC 2x2
* Ethernet: 1x 100/10 Mbps, integrated into SoC, 24V POE IN
Installation:
Flash factory image through stock firmware WEB UI or TFTP
To get to TFTP recovery just hold reset button while powering
on for around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP adress:192.168.0.254
Thanks to robimarko for the work inside the ar71xx tree.
Thanks to adrianschmutzler for deep discussion and fixes.
Signed-off-by: Mario Schroen <m.schroen@web.de>
[Split into DTS/DTSI, read-only config partition in DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
[renamed dtsi filename, light subject touches]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
COMFAST CF-E5/E7 is a outdoor 4G LTE AP with PoE support, based on
Qualcomm/Atheros QCA9531.
Short specification:
2x 10/100 Mbps Ethernet, with 24v PoE support
64 MB of RAM (DDR2)
16 MB of FLASH (SPI)
2T2R 2.4 GHz, 802.11b/g/n
built-in 1x 3 dBi antennas
output power (max): 80 mW (19 dBm)
Qucetel EC20 LTE MODULE(1x external detachable antenna)
Flash instruction:
Original firmware is based on OpenWrt.
Use sysupgrade image directly in vendor GUI.
Signed-off-by: Ding Tengfei <dtf@comfast.cn>
[commit subject fix]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
This commit adds support for TP-Link TL-WR710N v1 router.
CPU: Atheros AR9331 400MHz
RAM: 32MB
FLASH: 8MiB
PORTS: 1 Port 100/10 LAN (connected to a switch), 1 Port 100/10 WAN
WiFi: Atheros AR9331 1x2:1 bgn
USB: ChipIdea HDRC USB2.0
LED: SYS
BTN: Reset
Sysupgrade from `ar71xx` works without glitches.
Network interfaces assigned for LAN and WAN ports are `eth1` and `eth0`
respectively, what's consistent with `ar71xx` target. Wireless radio
path is automatically upgraded from `platform/ar933x_wmac` to
`platform/ahb/18100000.wmac`.
Signed-off-by: Marcin Jurkowski <marcin1j@gmail.com>
This adds support for the Chinese version of TL-WR941N v7.
It uses QCA9558+AR8236 while the international version
uses TP9343 instead.
Specification:
- SoC: Qualcomm Atheros QCA9558
- Flash: 4 MB
- RAM: 64 MB
- Ethernet: Atheros AR8236 with 5 FE ports
Flash instruction:
Upload the generated factory firmware on web interface.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
The NanoBeam is a small AR9342 based directional 5 GHz AC CPE with hardware
almost identical to the Ubiquiti NanoStation AC loco. Over the NanoStation
AC loco it has 5 additional LEDs. Four of those LEDs are used as rssi
indicators, the fifth LED is used as an ethernet link/activity indicator.
CPU: Atheros AR9342 SoC
RAM: 64 MB DDR2
Flash: 16 MB NOR SPI
WLAN: QCA988X
Ports: 1x GbE
Flashing procedure is identical to the NanoStation AC loco and can be performed
either via serial or the factory firmware upgrade.
Serial flashing:
1. Connect to serial header on device (8N1 115200)
2. Power on device and enter uboot console
3. Set up tftp server serving an openwrt initramfs build
4. Load initramfs build using the command tftpboot in the uboot cli
5. Boot the loaded image using the command bootm
6. Copy squashfs openwrt sysupgrade build to the booted device
7. Use mtd to write sysupgrade to partition "firmware"
8. Reboot and enjoy
Flashing through factory firmware:
1. Ensure firmware version v8.5.0.36727 is installed. Up/downgrade to this exact version.
2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe fe/00 00 00 00/g' | hexdump -R > /tmp/fwupdate.real`
3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real`
4. Copy the squashfs factory image to /tmp on the device
5. Flash OpenWRT using `/tmp/fwupdate.real -m <squashfs-factory image>`
6. Wait for the device to reboot
Thanks to @cybermaus for testing!
Tested-by: Maurits van Dueren den Hollander <cybermaus@gmail.com>
Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
Support for the Nanostation M (XW) was added in 40530c8eb with board
name "nanostation-m-xw". The current image for the "Nanostation M"
uses "nano-m" as the board name.
This commit renames it to the full product name as it's used by all
other boards. The legacy boardname of the ar71xx target is added
via SUPPORTED_DEVICES to ease switching to ath79 target.
Signed-off-by: Sven Roederer <devel-sven@geroedel.de>
[touch-ups on the commit message, removed subject remains]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
jjPlus JA76PF2 (marketed as IntellusPro2) is a network embedded board.
Specification
SoC: Atheros AR7161
RAM: 64 MB DDR
Flash: 16 MB SPI NOR
Ethernet: 2x 10/100/1000 Mbps AR8316
LAN (CN11), WAN/PoE (CN6 - close to power barrel
connector, 48 V)
MiniPCI: 2x
LEDS: 4x, which 3 are GPIO controlled
Buttons: 2x GPIO controlled
Reset (SW1, closer to ethernet ports), WPS (SW2)
Serial: 1x (only RX and TX are wired)
baud: 115200, parity: none, flow control: none
Currently there is one caveat compared to ar71xx target images as the
MAC addresses are random on every reboot. To remedy this one needs to
store the WAN MAC address in RedBoot configuration. OpenWrt on first
boot, after flashing, will read out the address and assign proper ones
to both WAN and LAN ports. It is iportant to NOT keep the old
configuration when doing sysupgrade from ar71xx.
Upgrading from OpenWrt ar71xx image
1. Connect to serial port,
2. Download OpenWrt sysupgrade image to /tmp directory and flash it
with:
sysupgrade -n <openwrt_sysupgrade_image_name>
3. After writing new image OpenWrt will reboot, now interrupt boot
process and enter RedBoot (bootloader) command line by pressing
Ctrl+C,
4. Enter following commands (replace variable accordingly),
set_mac (to view MAC addresses)
alias ethaddr <wan_port_mac_adress>
(confirm storing the value by inputting y and pressing Enter)
reset
5. Now board should restart and boot OpenWrt with proper MAC addresses.
Installation
1. Prepare TFTP server with OpenWrt initramfs image,
2. Connect to WAN ethernet port,
3. Connect to serial port,
4. Power on the board and enter RedBoot (bootloader) command line by
pressing Ctrl+C,
5. Enter following commands (replace variables accordingly):
set_mac (to view MAC addresses)
alias ethaddr <wan_port_mac_address>
(confirm storing the value by inputting y and pressing Enter)
ip_adress -l <board_ip_adress>/24 -h <tftp_server_ip_adress>
load -r -b 0x80060000 <openwrt_initramfs_image_name>
exec -c ""
6. Now board should boot OpenWrt initramfs image,
7. Download OpenWrt sysupgrade image to /tmp directory and flash it
with:
sysupgrade <openwrt_sysupgrade_image_name>
8. Wait few minutes, after the D2 LED will stop blinking, the board
is ready for configuration.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
In PR [1] introducing initial support for Ubiquiti RouterStation boards,
Mathias Kresin suggested to replace the combined sysupgrade image with
tarball generated by sysupgrade-tar.sh. This would simplify deployment
of sysupgrade as the kernel size (needed to update FIS partition) could
be simply calculated on the fly instead of reading value from combined
image header. Unfortunately this would break sysupgrade compatibility
between ar71xx image and ath79 image. Therefore this commit creates
migration path to use new sysuprade image, it adds code to accept both
of them at this moment. The plan is to keep it until new stable version
is released. Then the image recipe should be changed to new format and
compatibility code for old image removed.
1. https://github.com/openwrt/openwrt/pull/1237
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
EnGenius EPG5000 (v1.0.0, marketed as IoT Gateway) is a dual band
wireless router.
Specification
SoC: Qualcomm Atheros QCA9558
RAM: 256 MB DDR2
Flash: 16 MB SPI NOR
WIFI: 2.4 GHz 3T3R integrated
5 GHz 3T3R QCA9880 Mini PCIe card
Ethernet: 5x 10/100/1000 Mbps QCA8337N
USB: 1x 2.0
LEDS: 4x GPIO controlled
Buttons: 2x GPIO controlled
UART: 4 pin header, starting count from white triangle on PCB
1. VCC 3.3V, 2. GND, 3. TX, 4. RX
baud: 115200, parity: none, flow control: none
Installation
1. Connect to one of LAN (yellow) ethernet ports,
2. Open router configuration interface,
3. Go to Tools > Firmware,
4. Select OpenWrt factory image with dlf extension and hit Apply,
5. Wait few minutes, after the Power LED will stop blinking, the router
is ready for configuration.
Alternative installation
1. Prepare TFTP server with OpenWrt sysupgrade image,
2. Connect to one of LAN (yellow) ethernet ports,
3. Connect to UART port (leaving out VCC pin!),
4. Power on router,
5. When asked to enter a number 1 or 3 hit 2, this will select flashing
image from TFTP server option,
6. You'll be prompted to enter TFTP server ip (default is 192.168.99.8),
then router ip (default is 192.168.99.9) and for last, image name
downloaded from TFTP server (default is uImageESR1200_1750),
7. After providing all information U-Boot will start flashing the image,
You can observe progress on console, it'll take few minutes and when
the Power LED will stop blinking, router is ready for configuration.
Additional information
If connected to UART, when prompted for number on boot, one can enter
number 4 to open bootloader (U-Boot) command line.
OEM firmware shell password is: aigo3d0a0tdagr
useful for creating backup of original firmware.
When doing upgrade from OpenWrt ar71xx image, it is recomended to not keep
the old configuration.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
AR300M-Lite is single-Ethernet variant of the AR300M series
Its eth0 would otherwise be assigned to the WAN interface
making it unreachable firstboot or failsafe.
Installation instructions from OEM (OpenWrt variant):
* Install sysupgrade.bin using OEM's "Advanced" GUI (LuCI),
* Do not preserve settings
* Access rebooted device via Ethernet at OpenWrt default address
Add previously missing LED defaults for all three variants;
-nand, -nor, -lite to the definitions in 01_leds
Non-lite variants thanks to Andreas Ziegler
https://patchwork.ozlabs.org/patch/1049396/
Runtime-tested: GL.iNet AR300M-Lite
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
Hardware
--------
SOC: QCA9558
RAM: 128M DDR2
Flash: 16MiB SPI-NOR
ETH: QCA8337N: 2x 10/100/1000 PoE and PoE pass-through
WiFi2: QCA9558 (bgn) 2T2R
WiFi5: 2x mPCIE with AR9582 (an) 2T2R
BTN: 1x Reset
GPIO: multiple GPIO on header, PoE passthrough enable
UART: 3.3V 115200 8N1 header on the board
WDG: ATTiny13 watchdog
JTAG: header on the board
USB: 1x connector and 1x header on the board
PoE: 10-32V input in ETH port 1, passthrough in port 2
mPCIE: 2x populated with radios (but replaceable)
OpenWrt is preinstalled from factory. To install use <your-image>-sysupgade.bin
using the web interface or with sysupgrade -n.
Flash from bootloader (in case failsafe does not work)
1. Connect the LibreRouter with a serial adapter (TTL voltage) to the UART
header in the board.
2. Connect an ETH cable and configure static ip addres 192.168.1.10/24
3. Turn on the device and stop the bootloader sending any key through the serial
interface.
4. Use a TFTP server to serve <your image>-sysupgrade.bin file.
5. Execute the following commands at the bootloader prompt:
ath> tftp 82000000 <your image>-sysupgrade.bin
ath> erase 0x9f050000 +$filesize
ath> cp.b 0x82000000 0x9f050000 $filesize
ath> bootm 0x9f050000
More docs
* Bootloader https://github.com/librerouterorg/u-boot
* Board details (schematics, gerbers): https://github.com/librerouterorg/board
Signed-off-by: Santiago Piccinini <spiccinini@altermundi.net>
TP-Link RE350K v1 (FCC ID: TE7RE350K) is a wall-plug AC1200 Wi-Fi range
extender with 'Kasa Smart' support. Device is based on Qualcomm/Atheros
QCA9558 + QCA9882 + AR8035 platform and is available only on US market.
Specification:
- 720/600/200 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 1x 1 Gbps Ethernet (AR8035)
- 2T2R 2.4 GHz (QCA9558), with ext. PA (SE2565T) and LNA (SKY65971-11)
- 2T2R 5 GHz (QCA9882), with ext. PA (SE5003L1-R) and LNA (SKY65981-11)
- 2x U.FL connector on PCB
- 2x dual-band PCB antennas
- 1x LED, 2x dual-color LED (all driven by GPIO)
- 3x button (app config, led, reset)
- 1x mechanical on/off slide switch
- 1x UART (4-pin, 2.54 mm pitch) header on PCB
- 1x JTAG (8-pin, 1.27 mm pitch) header on PCB
Flash instruction:
Use 'factory' image directly in vendor GUI (default IP: 192.168.0.254,
default credentials: admin/admin).
Warning:
This device does not include any kind of recovery mechanism in U-Boot.
Vendor firmware access:
You can access vendor firmware over serial (RX line requires jumper
resistor in R306 place, near XTAL) with: root/sohoadmin credentials.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
YunCore A770 is a ceiling AC750 AP with 2 Fast Ethernet ports, PoE
(802.3at) support, based on QCA9531 + QCA9887.
Specification:
- 650/597/216 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 2x 10/100 Mbps Ethernet (PoE 802.3at support in WAN port)
- 2T2R 2.4 GHz (QCA9531), with ext. PA and LNA
- 1T1R 5 GHz (QCA9887), with ext. FEM (SKY85728-11)
- 2x regular LED, 1x RGB LED (all driven by GPIO)
- 1x button (reset)
- DC jack for main power input (12 V)
- UART header on PCB
Flash instruction:
1. First, gain root access to the device, following below steps:
- Login into web gui (default password/IP: admin/192.168.188.253).
- Go to 'Advanced' -> 'Management' -> 'System' and download backup of
configuration (bakfile.bin).
- Open the file as tar.gz archive, edit/update 'shadow' file and change
hash of root password to something known.
- Repack the archive, rename it back to 'bakfile.bin' and use to
restore configuration of the device.
- After that, device will reboot and can be accessed over SSH.
2. Then, install OpenWrt:
- Login over SSH and issue command:
fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
- Upload 'sysupgrade' image and install it (only if previous command
succeeded) with command: 'sysupgrade -n -F openwrt-...'.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
CPU: AR9342 SoC
RAM: 64 MB DDR2
Flash: 8 MB NOR SPI
Ports: 2x100 MBit (24V PoE in, 24V PoE out), AR8236 switch
WLAN: 2.4/5 GHz
UART: 1 UART
LEDs: Power, 2x Ethernet, 4x RSSI LEDs (orange, red, 2x green)
Buttons: Reset
Flashing instructions using recovery method over TFTP
1. Unplug the ethernet cable from the router.
2. Using paper clip press and hold the router's reset button. Make sure
you can feel it depressed by the paper clip. Do not release the button
until step 4.
3. While keeping the reset button pressed in, plug the ethernet cable
back into the AP. Keep the reset button depressed until you see the
device's LEDs flashing in upgrade mode (alternating LED1/LED3 and
LED2/LED4), this may take up to 25 seconds.
4. You may release the reset button, now the device should be in TFTP
transfer mode.
5. Set a static IP on your Computer's NIC. A static IP of 192.168.1.25/24
should work.
6. Plug the PoE injector's LAN cable directly to your computer.
7. Start tftp client and issue following commands:
tftp> binary
tftp> connect 192.168.1.20
tftp> put openwrt-ath79-generic-ubnt-nano-m-xw-squashfs-factory.bin
Tested-by: Joe Ayers <ae6xe@arrl.net>
Signed-off-by: Petr Štetiar <ynezz@true.cz>
This patch adds support for the COMFAST CF-E120A v3, an outdoor wireless
CPE with two Ethernet ports and a 802.11an radio.
Specifications:
- AR9344 SoC
- 535/400/267 MHz (CPU/DDR/AHB)
- 2x 10/100 Mbps Ethernet, both with PoE-in support
- 64 MB of RAM (DDR2)
- 8 MB of FLASH
- 2T2R 5 GHz, up to 25 dBm
- 11 dBi built-in antenna
- POWER/LAN/WAN/WLAN green LEDs
- 4x RSSI LEDs (2x red, 2x green)
- UART (115200 8N1) and GPIO (J9) headers on PCB
Flashing instructions:
The original firmware is based on OpenWrt so a sysupgrade image can be
installed via the stock web GUI. Settings from the original firmware
will be saved and restored on the new one, so a factory reset will be
needed. To do so, once the new firmware is flashed, enter into failsafe
mode by pressing the reset button several times during the boot
process, while while the WAN LED flashes, until it starts flashing
faster. Once in failsafe mode, perform a factory reset as usual.
The U-boot bootloader contains a recovery HTTP server to upload the
firmware. Push the reset button while powering the device on and
keep it pressed for >10 seconds. The recovery page will be at
http://192.168.1.1
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>