This reverts commit 931fcf6189.
The definition is wrong and require mac-base compatible. Also it's not
clear if it's correct to use 0xc for mac size.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Hardware
--------
SoC: NXP P1010 (1x e500 @ 800MHz)
RAM: 256M DDR3 (2x Samsung K4B1G1646G-BCH9)
FLASH: 32M NOR (Spansion S25FL256S)
BTN: 1x Reset
WiFi: 1x Atheros AR9590 2.4 bgn 3x3
2x Atheros AR9590 5.0 an 3x3
ETH: 2x Gigabit Ethernet (Atheros AR8033 / AR8035)
UART: 115200 8N1 (RJ-45 Cisco)
Installation
------------
1. Grab the OpenWrt initramfs, rename it to ap3715.bin. Place it in
the root directory of a TFTP server and serve it at
192.168.1.66/24.
2. Connect to the serial port and boot the AP. Stop autoboot in U-Boot
by pressing Enter when prompted. Credentials are identical to the one
in the APs interface. By default it is admin / new2day.
3. Alter the bootcmd in U-Boot:
$ setenv ramboot_openwrt "setenv ipaddr 192.168.1.1;
setenv serverip 192.168.1.66; tftpboot 0x2000000 ap3715.bin; bootm"
$ setenv boot_openwrt "sf probe 0; sf read 0x2000000 0x140000 0x1000000;
bootm 0x2000000"
$ setenv bootcmd "run boot_openwrt"
$ saveenv
4. Boot the initramfs image
$ run ramboot_openwrt
5. Transfer the OpenWrt sysupgrade image to the AP using SCP. Install
using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Signed-off-by: David Bauer <mail@david-bauer.net>
This reverts commit aa4a9058fb.
The assumption the bootloader fills out the MAC-address is not
correct. The MAC-address has to be set from userspace based on
information found in the device_id partition.
Signed-off-by: David Bauer <mail@david-bauer.net>
As the mac-address readout never worked, the mac-address fillout by the
bootloader is sufficient. Remove the readout for the Watchguard T10
then.
Signed-off-by: David Bauer <mail@david-bauer.net>
The mac-address accessor functions were not included in the sourced
script. Fix this by importing the correct script path.
Signed-off-by: David Bauer <mail@david-bauer.net>
Hardware
--------
SoC: Freescale P1010
RAM: 512MB
FLASH: 1 MB SPI-NOR
512 MB NAND
ETH: 3x Gigabite Ethernet (Atheros AR8033)
SERIAL: Cisco RJ-45 (115200 8N1)
RTC: Battery-Backed RTC (I2C)
Installation
------------
1. Patch U-Boot by dumping the content of the SPI-Flash using a SPI
programmer. The SHA1 hash for the U-Boot password is currently
unknown.
A tool for patching U-Boot is available at
https://github.com/blocktrron/t10-uboot-patcher/
You can also patch the unknown password yourself. The SHA1 hash is
E597301A1D89FF3F6D318DBF4DBA0A5ABC5ECBEA
2. Interrupt the bootmenu by pressing CTRL+C. A password prompt appears.
The patched password is '1234' (without quotation marks)
3. Download the OpenWrt initramfs image. Copy it to a TFTP server
reachable at 10.0.1.13/24 and rename it to uImage.
4. Connect the TFTP server to ethernet port 0 of the Watchguard T10.
5. Download and boot the initramfs image by entering "tftpboot; bootm;"
in U-Boot.
6. After OpenWrt booted, create a UBI volume on the old data partition.
The "ubi" mtd partition should be mtd7, check this using
$ cat /proc/mtd
Create a UBI partition by executing
$ ubiformat /dev/mtd7 -y
7. Increase the loadable kernel-size of U-Boot by executing
$ fw_setenv SysAKernSize 800000
8. Transfer the OpenWrt sysupgrade image to the Watchguard T10 using
scp. Install the image by using sysupgrade:
$ sysupgrade -n <path-to-sysupgrade>
Note: The LAN ports of the T10 are 1 & 2 while 0 is WAN. You might
have to change the ethernet-port.
9. OpenWrt should now boot from the internal NAND. Enjoy.
Signed-off-by: David Bauer <mail@david-bauer.net>
The bootloader does seem to not correctly patch in the MAC address for
eth0 / eth1 in some cases. While the root cause is not known, manually
applying the MAC-Address in preinit does not hurt.
Reported-by: Tom Herbers <freifunk@tomherbers.de>
Signed-off-by: David Bauer <mail@david-bauer.net>
This drops the shebang from all target files for /lib and
/etc/uci-defaults folders, as these are sourced and the shebang
is useless.
While at it, fix the executable flag on a few of these files.
This does not touch ar71xx, as this target is just used for
backporting now and applying cosmetic changes would just complicate
things.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
CPU: FSL P1020 (2x 800MHz E500 PPC)
RAM: 1GB DDR3
FLASH: 256MiB NAND
WiFi: 2x Atheros AR9382 2x2:2 abgn
ETH: 2x BCM54616S - 1x BCM53128 8-port switch
LED: 5x LEDs (Power, WiFi1, WiFi2, N/D, SYS)
BTN: 1x RESET
Installation
------------
1. Download initrams kernel image, dtb binary and sysupgrade image.
2. Place initramfs kernel into tftp root directory. Rename to
"panda-uimage-factory".
3. Place dtb binary into tftp root directory. Rename to "panda.fdt".
4. Start tftp server on 192.168.100.8/24.
5. Power up the device with the reset button pressed. It will download
the initrams and dtb via tftp and boot into OpenWRT in RAM.
6. SSH into the device and remove the factory partitions.
> ubirmvol /dev/ubi0 --name=kernel1
> ubirmvol /dev/ubi0 --name=rootfs1
> ubirmvol /dev/ubi0 --name=devicetree1
You will have around 60 MiB of free space with that.
You can also delete "kernel2", "devicetree2", "rootfs2" and "storage"
respectively in case you do not want to go back to the vendor firmware.
7. Modify the U-Boot bootcmd to allow for booting OpenWRT
> fw_setenv bootcmd_owrt "ubi part ubi && ubi read 0x1000000 kernel
&& bootm 0x1000000"
> fw_setenv bootargs_owrt "setenv bootargs console=ttyS0,115200
ubi.mtd=3,2048"
> fw_setenv bootcmd "run bootargs_owrt; run bootcmd_owrt"
8. Transfer the sysupgrade image via scp into the /tmp directory.
9. Upgrade the device
> sysupgrade -n /tmp/<imagename>
Signed-off-by: David Bauer <mail@david-bauer.net>
Hardware
========
CPU: Freescale P1010 PowerPC
RAM: 128M DDR3
NAND: 128MiB
ETH: RTL8211F SGMII PHY
RTL8367B 5-port RGMII switch
(not connected to SoC - unmanaged)
WiFi: SparkLan WPEA-121N
- Atheros AR9382 2T2R abgn
USB: 1x USB 2.0
LED: System, Router, Internet, Tunnel controllable
LAN1-4, WAN, Power non-controllable
BTN: None
Installation
============
1. Power on the device while attached to the Console port.
2. Halt the U-Boot by pressing Enter when prompted.
3. Set the correct bootcmd for booting OpenWRT:
> setenv bootargs_owrt "setenv bootargs console=ttyS0,115200"
> setenv bootcmd "run bootargs_owrt;
nand read 0x1000000 0x300000 0x800000;
bootm 0x1000000;"
> saveenv
5. Rename OpenWRT initramfs image to 'kernel.bin' and place it in a
TFTP server root-directory served on 192.168.1.2/24. Connect your
computer to one of the LAN-ports.
4. Boot OpenWRT initramfs image with
> run bootargs_owrt; tftpboot 0x1000000 192.168.1.2:kernel.bin;
bootm 0x1000000;
6. (Optional)
Make a Backup of 'sophos-os1', 'sophos-os2' and 'sophos-data' in case
you ever want to go back to the vendor firmware.
7. Create Ubi Volume on mtd4 by executing
> ubiformat /dev/mtd4 -y
8. Transfer OpenWRT sysupgrade image to the device via SCP and install it
with
> sysupgrade -n <openwrt-image-file>
Back to Stock
=============
If you want to go back to the stock firmware, here is the bootcmd of the
vendor firmware:
> setenv bootargs console=ttyS0,115200 root=/dev/mtdblock5;
nand read 0xc00000 0x00300000 0x100000;
nand read 0x1000000 0x00400000 0x00800000;
bootm 0x1000000 - 0xc00000
Set it via 'setenv' from the U-Boot shell and don't forget to save it
using 'saveenv'!
After this, boot the OpenWRT initramfs image just like you would for
installation. Write back the three vendor partitions using mtd. Reboot
the device afterwards.
Signed-off-by: David Bauer <mail@david-bauer.net>
[refresh and reorder patches]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The watchdog kill command was meant for busybox watchdog. Busybox watchdog
was replaced by the procd watchdog mid 2013 with commit df7ce9301a
("busybox: disable the watchdog utility by default"), which makes the kill
command obsolete since quite some time.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Append and enforce image metadata. Remove the device specific image
checks, they are replaced by image metadata.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Use the values populated by the generic board detect function. The
first compatible from the device tree source file will be the board
name in userspace. The model property from the device tree source file
will be the model name.
Change the board name where used in the userspace and drop the target
specific board detect, to use the generic one.
Signed-off-by: Mathias Kresin <dev@kresin.me>
initramfs is not the proper name for this, as it stores a boot ramdisk
and not a filesystem. Update the name to reflect it's usage correctly.
If CMDLINE_OVERRIDE is enabled, the chosen bootargs aren't used at all.
Drop them from the device tree source file to not cause confusion.
Remove the noinitrd bootarg. Due to the empty ramdisk this parameter
isn't required any longer:
[ 0.000000] Initrd not found or empty - disabling initrd
Use the LEDE mtd-mac-address* device tree properties to set the interfaces
MAC-Addresses.
Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
Signed-off-by: Mathias Kresin <dev@kresin.me>
The following adds the Aerohive HiveAP-330 Access Point to LEDE under
the mpc85xx/p1020 subtarget.
Hardware:
- SoC: Freescale P1020NSE2DFB
- NAND: Intel JS28F512M29EWH 64MB
- Memory: 2x ProMOS V59C1G01168QBJ3 128MB (Total of 256MB)
- 2.4GHz WiFi: Atheros AR9390-AL1A
- 5.0GHz WiFi: Atheros AR9390-AL1A
- Eth1: Atheros AR8035-A PoE
- Eth2: Atheros AR8035-A
- TPM: Atmel AT97SC3204
- LED Driver: TI LP5521
Flashing:
1. Hook into UART (9600 baud) and enter U-Boot. You may need to enter a
password of administrator or AhNf?d@ta06 if prompted.
2. Once in U-Boot, tftp boot the initramfs image:
dhcp;
tftpboot 0x1000000 192.168.1.101:lede-
mpc85xx-p1020-hiveap-330-initramfs.zImage;
tftpboot 0x6000000 192.168.1.101:lede-mpc85xx-p1020-hiveap-330.fdt;
bootm 0x1000000 - 0x6000000;
3. Once booted, scp over the sysupgrade file and sysupgrade the device
to flash LEDE to the NAND.
sysupgrade /tmp/lede-mpc85xx-p1020-hiveap-330-sysupgrade.img
Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
For targets using the generic board detection and board specific
settings in diag.sh, the board name is still unset at the time the
set_state() provided by diag.sh is called by 10_indicate_preinit.
Change the execution order to ensure the boardname is populated before
required the first time. Do the target specific board detection as
early as possible, directly followed by the generic one to allow a
seamless switch to the generic function for populating /tmp/sysinfo/.
Signed-off-by: Mathias Kresin <dev@kresin.me>
ARGC is a 'C-ism', but not known/valid in shell-syntax - insert the correct
var $# (=number of args) here. under normal conditions this had no impact,
but we should at least correct it. the error was observable like this:
root@box:~ [ -e "/etc/functions.sh" ] && . /etc/functions.sh
root@box:~ [ -e "/lib/functions.sh" ] && . /lib/functions.sh
root@box:~ . /lib/upgrade/platform.sh
root@box:~ . /lib/upgrade/common.sh
root@box:~ platform_check_image /tmp/myfirmware.bin
ash: bad number
root@box:~ echo $?
0
Signed-off-by: Bastian Bittorf <bittorf@bluebottle.com>
SVN-Revision: 40915