The DWR-921-C1 Wireless Routers with LTE embedded modem is based on the
MT7620N SoC.
Specification:
* MediaTek MT7620N (580 Mhz)
* 64 MB of RAM
* 16 MB of FLASH
* 802.11bgn radio
* 5x 10/100 Mbps Ethernet (1 WAN and 4 LAN)
* 2x external, detachable (LTE) antennas
* UART header on PCB (57600 8n1)
* 6x LED (GPIO-controlled)
* 1x bi-color Signal Strength LED (GPIO-controlled)
* 2x button
* JBOOT bootloader
The status led has been assigned to the dwr-921-c1:green:sigstrength (lte
signal strength) led. At the end of the boot it is switched off and is
available for lte operation. Work correctly also during sysupgrade
operation.
Installation:
Apply factory image via d-link http web-gui.
How to revert to OEM firmware:
1.) Push the reset button and turn on the power. Wait until LED start
blinking (~10sec.)
2.) Upload original factory image via JBOOT http (IP: 192.168.123.254)
3.) If http doesn't work, it can be done with curl command:
curl -F FN=@XXXXX.binhttp://192.168.123.254/upg
where XXXXX.bin is name of firmware file.
Signed-off-by: Giuseppe Lippolis <giu.lippolis@gmail.com>
TP-Link TL-WR902AC v3 is a pocket-size dual-band (AC750) router
based on MediaTek MT7628N + MT7650E.
Specification:
- MediaTek MT7628N/N (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 1x 10/100 Mbps Ethernet
* MT7650 ac chip isn't not supported by LEDE/OpenWrt at the moment.
Therefore 5Ghz won' work.
Flash instruction:
The only way to flash LEDE image in TL-WR902AC v3 is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.0.66/24 and tftp server.
2. Rename "openwrt-ramips-mt76x8-tplink_tl-wr902ac-v3-squashfs-tftp-recovery.bin"
to "tp_recovery.bin" and place it in tftp server directory.
3. Connect PC with the LAN port, press the reset button, power up
the router and keep button pressed for around 6-7 seconds, until
device starts downloading the file.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Peter Lundkvist <peter.lundkvist@gmail.com>
[drop p2led_an pinmux, this pin isn't used as gpio, fix whitespace issues]
Signed-off-by: Mathias Kresin <dev@kresin.me>
The DWR-116-A1/2 Wireless Router is based on the MT7620N SoC.
Specification:
MediaTek MT7620N (580 Mhz)
32 MB of RAM
8 MB of FLASH
802.11bgn radio
5x 10/100 Mbps Ethernet (1 WAN and 4 LAN)
2x external, non-detachable antennas
UART (J1 in A1, JP1 in A2) header on PCB (57600 8n1)
6x LED (GPIO-controlled), 2x button
JBOOT bootloader
Known issues:
WAN LED is drived by uartl tx pin. I decide to use this pin as
uartlite tx pin.
Installation:
Apply factory image via http web-gui.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
This board has:
- mt7621 SoC
- 8MB SPI flash
- 128MB RAM
- 5x ethernet ports from internal (SoC) switch
- 1x ethernet port sitting on gmac2 and IC+ phy (not yet supported)
- 3x PCIe slots
- 1x USB 2.0 and 1x USB 3.0
- sound based on wm8960
- SDXC card slot (full size)
First fw write from interactive u-boot menu, interrupt with 2.
After that sysupgrade.
Tested both with 4.9 and 4.14
Signed-off-by: Roman Yeryomin <roman@advem.lv>
ALFA Network AWUSFREE1 is an USB Wi-Fi N300 adapter based on MT7628.
Specification:
- MT7628AN (580 MHz)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 2T2R 2.4 GHz (MT7628) with external FEM (RFFM4203)
- 2x detachable antennas (RP-SMA)
- ASIX AX88772 USB to Ethernet bridge (connected with MT7628 PHY0)
- 4x LED (2 driven by GPIO)
- 1x button (reset)
- 1x mini USB for host and main power input
- UART header on PCB
Flash instruction:
You can use sysupgrade image directly in vendor firmware which is based
on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot:
1. Power device with reset button pressed and release it after ~5 sec.
2. Setup static IP 192.168.1.2/4 on your PC.
3. Go to 192.168.1.1 in browser and upload "sysupgrade" image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Tama Electric Axing W06 is a 2.4 GHz band 11n router, based on Mediatek
MT7688AN.
Specification:
- MT7688AN (575 MHz)
- 64 MB of RAM (DDR2 SDRAM)
- 16 MB of Flash (SPI)
- 1T1R 2.4 GHz
- 1x 10/100/1000 Mbps Ethernet
- 4x LEDs (GPIO connected: 3), 1x button
- 1x USB 2.0 Type-A (host)
- UART header on PCB (GND, RX, TX, Vcc from RJ45 side)
Flash instruction using sysupgrade image:
1. Connect micro-USB cable for power supply into W06 and turn on the
router
2. Connect to wifi with SSID "tama-*" with password. Complete SSID and
password are listed on the back of the router
3. Access to 192.168.1.1 and login with user name "admin" and password
empty
4. In firmware update(ファームウェア更新) page, click "参照" button
and click "ブラウザー" button to open file browser, select the
sysupgrade image and press OK button
5. Wait ~150 seconds to complete flashing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Use the generic board detection for the GnuBee Personal Cloud Two
instead of the target specific one as all recent additions are doing.
Fixup the pinmux to set all pins used as GPIO to the function GPIO.
Request pins where used.
Drop the i2c from the dts. There is nothing connected. While at it fix an
indentation issue and use references instead of duplicating the whole
node path.
Use the same switch config as for the GB-PC1 and drop the led trigger for
the not supported IP1001 phy connected to second rgmii.
Fixes: c60a21532b ("ramips: Add support for the GnuBee Personal Cloud Two")
Signed-off-by: Mathias Kresin <dev@kresin.me>
Use the generic board detection for the D-Link DAP-1522 A1 instead of the
target specific one as all recent additions are doing.
Signed-off-by: Mathias Kresin <dev@kresin.me>
D-Link DAP-1522 is a wireless bridge/access point with 4 LAN
ports and a dual-band wireless chipset.
Specifications:
- Ralink RT2880
- 32 MB of RAM
- 4 MB of Flash
- 4x 10/100/1000 Mbps Ethernet (RTL8366SR)
- 802.11abgn (RT2850)
Flash Instructions:
1. Download lede-ramips-rt288x-dap-1522-a1-squashfs-factory.bin
2. Open the web interface and upload the image
Signed-off-by: George Hopkins <george-hopkins@null.net>
The tftp.bin image for Buffalo WHR-G300N was not built, so I was fixed
it after rewriting to new image build code. And the code for
factory-EU.bin was broken, so I deleted it.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
The GnuBee Personal Cloud Two crowdfunded on https://www.crowdsupply.com
It is a low-cost, low-power, network-attached storage device.
Specifications:
- SoC: MediaTek MT7621AT
- RAM: DDR3 512 MB
- Flash: 32 MB
- Six SATA ports for 3.5" Drives
- One SDcard
- One USB 3.0
- Two USB 2.0
- Gigabit Ethernet: Three Ports
- UART 3.5mm Audio Jack or 3 pin header - 57600 8N1
- Three GPIOs available on a pin header
Flash instructions:
The GnuBee Personal Cloud Two ships with libreCMC installed.
libreCMC is a Free Software Foundation approved fork of LEDE/OpenWrt.
As such one can upgrade using the webinterface or sysupgrade.
Das U-Boot has multiple options for recovery or updates including :
- USB
- http
- tftp
Errata:
- While there are three ethernet ports, the third requires support for
the second GMAC. This will come in kernel 4.14.
- The first hard drive slot has a clearance issue with the two fan
headers. Workaround is to pull the headers out and connect the pins to
jumper wires.
- Using this device as a NAS is problematic with the 4.9 kernel as many
/dev/sdX reads throw silent errors. The current theory behind this is
some kind of unhandled DMA mapping error in the kernel. This is not an
issue with kernel 4.4.
Signed-off-by: L. D. Pinney <ldpinney@gmail.com>
Signed-off-by: Rosen Penev <rosenp@gmail.com>
TP-Link Archer C50 v3 is a router with 5-port FE switch and
non-detachable antennas. It's based on MediaTek MT7628N+MT7612E.
Specification:
- MediaTek MT7628N/N (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 2T2R 5 GHz
- 5x 10/100 Mbps Ethernet
- 4x external, non-detachable antennas
- UART (J1) header on PCB (115200 8n1)
- 7x LED (GPIO-controlled*), 2x button, power switch
* WAN LED in this devices is a dual-color, dual-leads type which isn't
(fully) supported by gpio-leds driver. This type of LED requires both
GPIOs state change at the same time to select color or turn it off.
For now, we support/use only the green part of the LED.
Flash instruction:
The only way to flash LEDE image in ArcherC50v3 is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.0.66/24 and tftp server.
2. Rename "openwrt-ramips-mt7628-ArcherC50v3-squashfs-tftp-recovery.bin"
to "tp_recovery.bin" and place it in tftp server directory.
3. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed for around 6-7 seconds, until
device starts downloading the file.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Henryk Heisig <hyniu@o2.pl>
Convert userspace code to use generic device-tree compatible board
detection method. Users of the existing code will have to use
sysupgrade -F once to switch to the new generic board naming.
Properly setup pinctrl fixing the switch port LEDs.
Fixes commit 9c4fe103cb (ramips: add support for ZBT-WE1226)
Reported-by: Mathias Kresin <dev@kresin.me>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Widora has updated their Widora Neo board recently.
The new model uses 32MB WSON-8 factor SPI flash
instead of the original 16MB SOP-8 factor SPI flash.
All the other hardware components are the same as
the first revision.
Detailed hardware specs listed below:
CPU: MTK MT7688AN
RAM: 128MB DDR2
ROM: 32MB WSON-8 factor SPI Flash (Winbond)
WiFi: Built-in 802.11n 150Mbps?
Ethernet: 10/100Mbps x1
Audio codec: WM8960
Other IO: USB OTG;
USB Power+Serial (CP2104);
3x LEDs (Power, LAN, WiFi);
2x Keys (WPS, CPU Reset)
1x Audio In/Out
1x IPEX antenna port
1x Micro SD slot
Signed-off-by: Jackson Ming Hu <huming2207@gmail.com>
Signed-off-by: Mathias Kresin <dev@kresin.me>
Rename the Widora neo by adding a flash size prefix. Move the common parts
into a dtsi to be prepare everything for upcomming support of the 32MB
version.
Migrate the Widora neo to the generic board detection as well.
Signed-off-by: Mathias Kresin <dev@kresin.me>
According to console log during TP-Link TL-WR840N v5 OEM firmware update
procedure 0x3e0000-0x3f0000 64kB "config" partition, which is used to store
router's configuration settings, is erased and recreated again during every
OEM firmware update procedure, thus does not contain any valuable factory data.
So it is conviniant to use this extra 64kB erase block for jffs overlay due
limited flash size on this device like it used on TP-Link's ar71xx boards.
Signed-off-by: Serg Studzinskii <serguzhg@gmail.com>
TP-Link Archer C20 v4 is a router with 5-port FE switch and
non-detachable antennas. It's based on MediaTek MT7628N+MT7610EN.
Specification:
- MediaTek MT7628N/N (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 5x 10/100 Mbps Ethernet
- 3x external, non-detachable antennas
- UART (J1) header on PCB (115200 8n1)
- 7x LED (GPIO-controlled*), 2x button, power input switch
* WAN LED in this devices is a dual-color, dual-leads type which isn't
(fully) supported by gpio-leds driver. This type of LED requires both
GPIOs state change at the same time to select color or turn it off.
For now, we support/use only the green part of the LED.
* MT7610EN ac chip isn't not supported by LEDE. Therefore 5Ghz won't
work.
Flash instruction:
The only way to flash LEDE image in ArcherC20v4 is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.0.66/24 and tftp server.
2. Rename "openwrt-ramips-mt7628-ArcherC20v4-squashfs-tftp-recovery.bin"
to "tp_recovery.bin" and place it in tftp server directory.
3. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed for around 6-7 seconds, until
device starts downloading the file.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
This changes device name from "TP-Link Archer C20" to "TP-Link Archer C20 v1"
because of TPLINK released new TP-Link Archer C20 v4. Additionally
migration to the generic board detection has been made.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
ALFA Network AC1200RM is an AC1200 router, with 5-port FE switch and
USB 2.0 port. Device is based on MediaTek MT7620A + MT7612EN.
Specification:
- MT7620A (580 MHz)
- 64 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 5x 10/100 Mbps Ethernet with passive PoE output in WAN and LAN4
- 2T2R 2.4 GHz (MT7620A)
- 2T2R 5 GHz (MT7612EN)
- 1x USB 2.0
- 9x LED (8 driven by GPIO)
- 1x button (reset)
- DC jack for main power input (12-24 V)
- 2x UART, I2C, I2S and LED headers
Flash instruction (do it under U-Boot, using UART and TFTP server):
Select option "2: Load system code then write to Flash via TFTP" and
use "sysupgrade" image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
TP-Link TL-MR3420 v5 are simple N300 router with
5-port FE switch and non-detachable antennas.
Its very similar to TP-Link TL-WR841N V13.
Specification:
- MT7628N/N (580 MHz)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH
- 2T2R 2.4 GHz
- 5x 10/100 Mbps Ethernet
- 2x external, non-detachable antennas
- USB 2.0 Port
- UART (J1) header on PCB (115200 8n1)
- 8x LED, 2x button, power input switch
Flash instruction:
The only way to flash LEDE image in mr3420v5 is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.0.225/24 and tftp server.
2. Rename "lede-ramips-mt7628-tplink_tl-mr3420-v5-squashfs-tftp-recovery.bin"
to "tp_recovery.bin" and place it in tftp server directory.
3. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed for around 6-7 seconds, until
device starts downloading the file.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Henryk Heisig <hyniu@o2.pl>
Move common tplink image build code into own recipe. Include the common
parts instead of including a full build recipe and overwriting former set
varaibles.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Previously Newifi D2 could only use PandoraBox M1's firmware.
It works fine, but LED GPIO is different.
As a result, a separated DTS file for this device should be implemented.
Hardware spec:
* CPU: MTK MT7621A
* RAM: 512MB
* ROM: 32MB SPI Flash
* WiFi: MTK MT7603+MT7612
* Button: 2 buttons (reset, wps)
* LED: 3 single-color LEDs (USB, WiFi 2.4GHz, WiFi 5GHz) &
2 dual-color LEDs (Power, Internet)
* Ethernet: 5 ports, 4 LAN + 1 WAN
Installation method:
Same as Newifi D1, users may need to request unlock code from the device
manufacturer. Otherwise, a SPI flash programmer may be necessary to get
the firmware flashed. After the device is unlocked, press and hold reset
button before power cable plugs in. Then go to http://192.168.1.1 to
upload and flash the firmware package.
Signed-off-by: Jackson Ming Hu <huming2207@gmail.com>
The VAR11N-300 is a tiny wireless-N device with a hardwired Ethernet
cable, one extra Ethernet port, and an internal antenna, based on the
MediaTek MT7620n chipset.
Specs:
- MT7620n WiSoC @ 600MHz
- 32 MB SDRAM
- 4 MB SPI flash
- 2T2R 2.4GHz WiFi-N
- 1 attached 10/100 Ethernet cable (LAN)
- 1 10/100 Ethernet port (WAN)
- 1 attached USB / barrel 5vdc power cable
- 5 LEDs (see notes below)
- 1 reset button
- 1 UART (3 pads on board)
Installation:
The stock firmware does not support uploading new firmware directly,
only checking the manufacturer's site for updates. This process may be
possible to spoof, but the update check uses some kind of homebrew
encryption that I didn't investigate. Instead, you can install via a
backdoor:
1. Set up a TFTP server to serve the firmware binary
(lede-ramips-mt7620-var11n-300-squashfs-sysupgrade.bin)
2. Factory reset the device by holding the reset button for a few
seconds.
3. Open the web interface (default IP: 192.168.253.254)
4. Log in with the "super admin" credentials: username `vonets`,
password `vonets26642519`.
5. On the "Operative Status" page, click the text "System Uptime", then
quickly click the uptime value.
6. If successful, an alert dialog will appear reading "Ated start", and
the device will now accept telnet connections. If the alert does not
appear, repeat step 5 until it works (the timing is a bit tricky).
7. Telnet to the device using credentials "admin / admin"
8. Retrieve the firmware binary from the tftp server: `tftp -l lede.bin
-r lede-ramips-mt7620-var11n-300-squashfs-sysupgrade.bin -g
<tftp-server-ip>`
9. Write the firmware to flash: `mtd_write write lede.bin /dev/mtd4`
10. Reboot
Tested:
- LAN / WAN ethernet
- WiFi
- LAN / WAN / status LED GPIOs (see notes below)
- Reset button
- Sysupgrade
Notes:
LEDs:
The board has 5 LEDs - two green LEDs for LAN / WAN activity, one blue
LED for WiFi, and a pair of "status" LEDs connected to the same GPIO
(the blue LED lights when the GPIO is low, and the green when it's
high). I was unable to determine how to operate the WiFi LED, as it
does not appear to be controlled by a GPIO directly.
Recovery:
The default U-boot installation will only boot from flash due to a
missing environment block. I generated a valid 4KB env block using
U-boot's `fw_setenv` tool and wrote it to flash at 0x30000 using an
external programmer. After this, it was possible to enter the U-boot
commandline interface and download a new image via TFTP (`tftpboot
81b00000 <image-filename>`), but while I could boot this image
sucessfully (`bootm`), writing it to flash (`cp.linux`) just corrupted
the flash chip. The sysupgrade file can be written to flash at 0x50000
using an external programmer.
Signed-off-by: Andrew Crawley <acrawley@gmail.com>
Use <manufacturer>_<modelname> as image name for board using the
devicetree compat string as boardname.
Replace the underline of the device define, to keep the SUPPORTED_DEVICES
in sync with a devicetree compat string based boardname.
Override the default SUPPORTED_DEVICES for board which are having an
userspace boardname with an underline.
Signed-off-by: Mathias Kresin <dev@kresin.me>
This will avoid some conflicts when doing a git rebase or merge,
specially when adding support to a new device.
Signed-off-by: Luis Araneda <luaraneda@gmail.com>
[drop brcm47xx changes which rename the images]
Signed-off-by: Mathias Kresin <dev@kresin.me>
This is a variant of the MT7620N-based Asus routers.
Specifications:
- MT7620N (580 MHz)
- 32 MB RAM
- 8 MB Flash
- 5x 10/100Mbps Ethernet (built-in switch)
- 2.4 GHz WLAN
- 2x external, non-detachable antennas
- UART (J2) header on PCB (115200 8n1)
Flash instructions:
1. Configure PC with static IP 192.168.1.75/24
2. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed for around 6-7 seconds. All 4 LEDs will
start to blink, which is when the router will accept firmware files via TFTP.
No known limitations on firmware filenames, just send it with a TFTP client
to 192.168.1.1.
3. Router will download file from server, write it to flash and reboot.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
Add kmod-sound-core, it is a dependency of kmod-sound-mt7620 and will
not be autoselected.
Remove kmod-i2c-core, it will be autoselected by kmod-i2c-ralink.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Setting the pins of the UARTF group to GPIO+I2S at the time the I2C
driver loads is to late for the wps GPIO button.
The gpio-keys driver fails to load since the pin used by the wps button
is not yet set to GPIO. The wps button with the rfkill keycode is
essential for this wireless only board.
Add the missing sound and I2C kernel modules corresponding to the
device nodes.
Signed-off-by: Mathias Kresin <dev@kresin.me>
This is a variant of the ZBT WG3526 with a few minor modifications.
The wifi chips are swapped, and there is no GPIO controllable status
LED. There is also no SATA port.
Specifications:
- MT7621AT (880 MHz)
- 512 MB RAM
- 16 MB Flash (SPI NOR)
- 5x 1Gbps Ethernet (built-in switch)
- MT7612E 802.11ac 5 GHz WLAN
- MT7603E 802.11n 2.4 GHz WLAN
Signed-off-by: Felix Fietkau <nbd@nbd.name>
UniElec U7628-01 is a router platform board based on MediaTek MT7628AN.
The device has the following specifications:
- MT7628AN (580MHz)
- 64/128/256 MB of RAM (DDR2)
- 8/16 MB of flash (SPI NOR)
- 5x 10/100 Mbps Ethernet (MT7628 built-in switch)
- 1x 2T2R 2.4 GHz Wi-Fi (MT7628)
- 1x miniPCIe slot (with PCIe and USB 2.0 buses)
- 1x miniSIM slot
- 1x microSD slot
- 1x USB 2.0 port
- 7x single-color LEDs (GPIO-controlled)
- 1x bi-color LED (green GPIO-controlled, red -> LED_WLAN# in miniPCIe)
- 1x reset button
- 1x UART header (4-pins)
- 1x SDXC/GPIO header (10-pins, connected with microSD slot)
- 1x DC jack for main power (12 V)
The following has been tested and is working:
- Ethernet switch
- miniPCIe slot (tested with modem and Wi-Fi card)
- miniSIM slot
- sysupgrade
- reset button
- USB 2.0 port*
Due to a missing driver (MMC over GPIO) this is not supported:
- microSD card reader
* Warning:
USB buses in miniPCIe and regular A-type socket are connected together,
without any proper analog switch or USB HUB.
Installation:
This board might come with a different firmware versions (MediaTek SDK,
PandoraBox, Padavan, etc.). If your board comes with PandoraBox, you can
install LEDE using sysupgrade. Just SSH to the router and perform forced
sysupgrade (due to a board name mismatch). The default IP of this board
should be: 192.168.1.1 and username/password: root/admin. In case of a
different firmware, you can use web based recovery described below.
Use the following command to perform the sysupgrade (for the 128MB
RAM/16MB flash version):
sysupgrade -n -F lede-ramips-mt76x8-u7628-01-128M-16M-squashfs-sysupgrade.bin
Recovery:
This board contains a Chinese, closed-source bootloader called Breed
(Boot and Recovery Environment for Embedded Devices). Breed supports web
recovery and to enter it, you keep the reset button pressed for around
5 seconds during boot. Your machine will be assigned an IP through DHCP
and the router will use IP address 192.168.1.1. The recovery website is
in Chinese, but is easy to use. Click on the second item in the list to
access the recovery page, then the second item on the next page is where
you select the firmware. In order to start the recovery, you click the
button at the bottom.
SDXC/GPIO header (J3):
1. SDXC_D3 / I2C_SCLK
2. SDXC_D2 / I2C_SD
3. SDXC_D1 / I2S_DI
4. SDXC_D0 / I2S_WS
5. SDXC_CMD / I2S_CLK
6. SDXC_CLK / GPIO0
7. SDXC_CD / UART_RXD1
8. UART_TXD1
9. 3V3
10. GND
Other notes:
1. The board is available with different amounts of RAM and flash. We
have only added support for the 128/16 MB configuration, as that seems
to be the default. However, all the required infrastructure is in place
for making support for the other configurations easy.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
UniElec U7621-06 is a router platform board based on MediaTek MT7621AT.
The device has the following specifications:
- MT7621AT (880 MHz)
- 256/512 MB of RAM (DDR3)
- 8/16/32/64 MB of FLASH (SPI NOR)
- 5x 1 Gbps Ethernet (MT7621 built-in switch)
- 1x ASMedia ASM1061 (for mSATA and SATA)
- 2x miniPCIe slots (PCIe bus only)
- 1x mSATA slot (with USB 2.0 bus for modem)
- 1x SATA
- 1x miniSIM slot
- 1x microSD slot
- 1x USB 3.0
- 12x LEDs (3 GPIO-controlled)
- 1x reset button
- 1x UART header (4-pins)
- 1x GPIO header (30-pins)
- 1x FPC connector for LEDs (20-pin, 0.5 mm pitch)
- 1x DC jack for main power (12 V)
The following has been tested and is working:
- Ethernet switch
- miniPCIe slots (tested with Wi-Fi cards)
- mSATA slot (tested with modem and mSATA drive)
- miniSIM slot
- sysupgrade
- reset button
- microSD slot
Installation:
This board might come with a different firmware versions (MediaTek SDK,
PandoraBox, Padavan, etc.). If your board comes with PandoraBox, you can
install LEDE using sysupgrade. Just SSH to the router and perform forced
sysupgrade (due to a board name mismatch). The default IP of this board
should be: 192.168.1.1 and username/password: root/admin. In case of a
different firmware, you can use web based recovery described below.
Use the following command to perform the sysupgrade (for the 256MB
RAM/16MB flash version):
sysupgrade -n -F lede-ramips-mt7621-u7621-06-256M-16M-squashfs-sysupgrade.bin
Recovery:
This board contains a Chinese, closed-source bootloader called Breed
(Boot and Recovery Environment for Embedded Devices). Breed supports web
recovery and to enter it, you keep the reset button pressed for around
5 seconds during boot. Your machine will be assigned an IP through DHCP
and the router will use IP address 192.168.1.1. The recovery website is
in Chinese, but is easy to use. Click on the second item in the list to
access the recovery page, then the second item on the next page is where
you select the firmware. In order to start the recovery, you click the
button at the bottom.
LEDs list (top row, left to right):
- LED_WWAN# (connected with pin 42 in LTE/mSATA slot)
- Power (connected directly to 3V3)
- CTS2_N (GPIO10, configured as "status" LED)
- TXD2 (GPIO11, configured as "led4", without default trigger)
- RXD2 (GPIO12, configured as "led5", without default trigger)
- LED_WLAN# (connected with pin 44 in wifi0 slot)
LEDs list (bottom row, left to right):
- ESW_P0_LED_0
- ESW_P1_LED_0
- ESW_P2_LED_0
- ESW_P3_LED_0
- ESW_P4_LED_0
- LED_WLAN# (connected with pin 44 in wifi1 slot)
Other notes:
1. The board is available with different amounts of RAM and flash. We
have only added support for the 256/16 MB configuration, as that seems
to be the default. However, all the required infrastructure is in place
for making support for the other configurations easy.
2. The manufacturer offers five different wireless cards with MediaTek
chipsets, based on MT76x2, MT7603 and MT7615. Images of the board all
show that the miniPCIe slots are dedicated to specific Wi-Fi cards.
However, the slots are generic.
3. All boards we got access to had the same EEPROM content. The default
firmware reads the Ethernet MAC from offset 0xe000 in factory partition.
This offset only contains 0xffs, so a random MAC will be generated on
every boot of the router. There is a valid MAC stored at offset 0xe006
and this MAC is shown as the WAN MAC in the bootloader. However, it is
the same on all boards we have checked. Based on information provided
by the vendor, all boards sold in small quantities are considered more
as samples for development purposes.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
TP-Link TL-WR840N v5 is simple N300 router with 5-port FE switch and
non-detachable antennas, based on MediaTek MT7628NN (aka MT7628N) WiSoC.
Specification:
- MT7628N/N (580 MHz)
- 64 MB of RAM (DDR2)
- 4 MB of FLASH
- 2T2R 2.4 GHz
- 5x 10/100 Mbps Ethernet
- 2x external, non-detachable antennas
- UART (J1) header on PCB (115200 8n1)
- 1x LED (GPIO-controlled), 1x button
* LED in TL-WR840N v5 is a dual-color, dual-leads type which isn't
(fully) supported by gpio-leds driver. This type of LED requires both
GPIOs state change at the same time to select color or turn it off.
For now, we support/use only the green part of the LED.
Orange LED is registered so you can later use it for your own purposes.
Flash instruction:
Unlike TL-WR840N v4 flashing through WEB UI works in v5.
1. Download lede-ramips-mt76x8-tl-wr840n-v5-squashfs-sysupgrade.bin image.
2. Go to 192.168.0.1
3. Flash the sysupgrade image through Firmware upgrade section of WEB UI.
4. Wait until green LED stops flashing and use the router.
Notes:
TFTP recovery is broken since TP-Link reused bootloader code for v4 and
that does not take into account only 4 MB of flash and bricks the device.
So do not use TFTP Recovery or you will have to rewrite SPI flash.
They fixed it in later GPL code,but it is unknown which version of
bootloader you have.
After manually compiling and flashing bootloader from GPL sources TFTP
recovery works properly.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Remove the ephy-pins from the ethernet device tree node. The ephy-pins
are useed to controll the ePHY LEDs and this board doesn't have these.
Instead one of the ePHY pins is used in GPIO mode to control the WAN
LED.
Use the switch LED trigger to control the WAN LED. Move the power LED
handling to diag.sh to show the boot status via this LED.
Add the missing kernel packages for USB and microSD card reader to the
default package selection.
Fix the maximum image size value. The board has a 32MByte flash chip.
Fixes: FS#1055
Signed-off-by: Edmunt Pienkowsky <roed@onet.eu>
[make the commit message more verbose, remove GPIO pinmux for pins not
used as GPIOs]
Signed-off-by: Mathias Kresin <dev@kresin.me>
the nexx wt3020-8M has a usb 2.0 port,
add usb 2.0 support packages to its default package list.
Signed-off-by: Alberto Bursi <alberto.bursi@outlook.it>
Kimax U-25AWF-H1 is is a 2,5" HDD Enclosure with Wi-Fi/Eth conection
and battery, based on MediaTek MT7620A.
Patch rewritten from: https://forum.openwrt.org/viewtopic.php?pid=305643
Specification:
- MT7620A CPU
- 64 MB of RAM
- 16 MB of FLASH
- 802.11bgn WiFi
- 1x 10/100 Mbps Ethernet
- USB 2.0 Host
- UART for serial console
Flash instruction:
1. Download lede-ramips-mt7620-u25awf-h1-squashfs-sysupgrade.bin
2. Open webinterface a upgrade
3. After boot connect via ethernet to ip 192.168.1.1
Signed-off-by: Daniel Kucera <daniel.kucera@gmail.com>
[fix reset button gpio, don't add a lan/wan vlan config for single
port board, add -H1 suffix do make sure that this revision of the
board is supported/tested]
Signed-off-by: Mathias Kresin <dev@kresin.me>
The tplink 841n v13 requires an tplink v2 image header in
front of an initramfs image.
To boot an initramfs image:
- break the uboot by holding the '4' key
- setup your tftp server 192.168.0.255
- tftp 81000000 lede-ramips-mt76x8-tl-wr841n-v13-initramfs-kernel.bin
- bootm
Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
This patch adds all the board-specific values currently hardcoded
in mktplinkfw2.c back to the respective device declarations in the
makefiles.
The rationale is to avoid modifying the source code every time a
new board or board variant is added.
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
This commit improves support for the Xiaomi Mi Router 3G originally
added in commit 6e283cdc0d
Improvements:
- Remove software watchdog as hardware watchdog now working as per
commit 3fbf3ab44f for all mt7621
devices.
- Reset button polarity corrected - length of press determines reboot
(short press) vs. reset to defaults (long press) behaviour.
- Enable GPIO amber switch port LEDs on board rear - lit indicates 1Gbit
link and blink on activity. Green LEDs driven directly by switch
indicating any link speed and tx activity.
- USB port power on/off GPIO exposed as 'usbpower'
- Add access to uboot environment settings for checking/setting uboot
boot order preference from user space.
Changes:
- Front LED indicator is physically made of independent Yellow/Amber,
Red & Blue LEDs combined via a plastic 'lightpipe' to a front panel
indicator, hence the colour behaviour is similar to an RGB LED. RGB
LEDs are not supported at this time because they produce colour results
that do not then match colour labels, e.g. enabling 'mir3g:red' and
'mir3g:blue' would result in a purple indicator and we have no such
label for purple.
The yellow, red & blue LEDs have been split out as individual yellow,
red & blue status LEDs, with yellow being the default status LED as
before and with red's WAN and blue's USB default associations removed.
- Swapped order of vlan interfaces (eth0.1 & eth0.2) to match stock vlan
layout. eth0.1 is LAN, eth0.2 is WAN
- Add 'lwlll' vlan layout to mt7530 switch driver to prevent packet
leakage between kernel switch init and uci swconfig
uboot behaviour & system 'recovery'
uboot expects to find bootable kernels at nand addresses 0x200000 &
0x600000 known by uboot as "system 1" and "system 2" respectively.
uboot chooses which system to hand control to based on 3 environment
variables: flag_last_success, flag_try_sys1_failed & flag_try_sys2_failed
last_success represents a preference for a particular system and is set
to 0 for system 1, set to 1 for system 2. last_success is considered *if*
and only if both try_sys'n'_failed flags are 0 (ie. unset) If *either*
failed flags are set then uboot will attempt to hand control to the
non failed system. If both failed flags are set then uboot will check
the uImage CRC of system 1 and hand control to it if ok. If the uImage
CRC of system is not ok, uboot will hand control to system 2
irrespective of system 2's uImage CRC.
NOTE: uboot only ever sets failed flags, it *never* clears them. uboot
sets a system's failed flag if that system's was selected for boot but
the uImage CRC is incorrect.
Fortunately with serial console access, uboot provides the ability to
boot an initramfs image transferred via tftp, similarly an image may
be flashed to nand however it will flash to *both* kernels so a backup
of stock kernel image is suggested. Note that the suggested install
procedure below set's system 1's failed flag (stock) thus uboot ignores
the last_success preference and boots LEDE located in system 2.
Considerable thought has gone into whether LEDE should replace both
kernels, only one (and which one) etc. LEDE kernels do not include a
minimal rootfs and thus unlike the stock kernel cannot include a
method of controlling uboot environment variables in the event of
rootfs mount failure. Similarly uboot fails to provide an external
mechanism for indicating boot system failure.
Installation - from stock.
Installation through telnet/ssh:
- copy lede-ramips-mt7621-mir3g-squashfs-kernel1.bin and
lede-ramips-mt7621-mir3g-squashfs-rootfs0.bin to usb disk or wget it
from LEDE download site to /tmp
- switch to /extdisks/sda1/ (if copied to USB drive) or to /tmp if
wgetted from LEDE download site
- run: mtd write lede-ramips-mt7621-mir3g-squashfs-kernel1.bin kernel1
- run: mtd write lede-ramips-mt7621-mir3g-squashfs-rootfs0.bin rootfs0
- run: nvram set flag_try_sys1_failed=1
- run: nvram commit
- run: reboot
Recovery - to stock.
Assuming you used the above installation instructions you will have a
stock kernel image in system 1. If it can be booted then it may be used
to perform a stock firmware recovery, thus erasing LEDE completely. From
a 'working' LEDE state (even failsafe)
Failsafe only:
- run: mount_root
- run: sh /etc/uci-defaults/30_uboot-envtools
Then do the steps for 'All'
All:
- run: fw_setenv flag_try_sys2_failed 1
- run: reboot
The board will reboot into system 1 (stock basic kernel) and wait with
system red light slowly blinking for a FAT formatted usb stick with a
recovery image to be inserted. Press and hold the reset button for
around 1 second. Status LED will turn yellow during recovery and blue
when recovery complete.
Signed-off-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
TP-Link Archer C20 v1 is a router with 5-port FE switch and
non-detachable antennas. It's very similiar to TP-Link Archer C50.
Also it's based on MediaTek MT7620A+MT7610EN.
Specification:
- MediaTek MT7620A (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 5x 10/100 Mbps Ethernet
- 2x external, non-detachable antennas
- UART (J1) header on PCB (115200 8n1)
- 8x LED (GPIO-controlled*), 2x button, power input switch
- 1 x USB 2.0 port
* WAN LED in this devices is a dual-color, dual-leads type which isn't
(fully) supported by gpio-leds driver. This type of LED requires both
GPIOs state change at the same time to select color or turn it off.
For now, we support/use only the blue part of the LED.
* MT7610EN ac chip isn't not supported by LEDE. Therefore 5Ghz won't
work.
Factory image notes:
These devices use version 3 of TP-Link header, fortunately without RSA
signature (at least in case of devices sold in Europe). The difference
lays in the requirement for a non-zero value in "Additional Hardware
Version" field. Ideally, it should match the value stored in vendor
firmware header on device.
We are able to prepare factory firwmare file which is accepted and
(almost) correctly flashed from the vendor GUI. As it turned out, it
accepts files without U-Boot image with second header at the beginning
but due to some kind of bug in upgrade routine, flashed image gets
corrupted before it's written to flash. So, to flash this device we must
to prepare image using original firmware from tp-link site with uboot.
Flash instruction:
Until (if at all) TP-Link fixes described problem, the only way to flash
LEDE image in these devices is to use tftp recovery mode in U-Boot.
There are two ways to flash the device to LEDE:
1) Using tftp mode with UART connection and original LEDE image
- Place lede-ramips-mt7620-ArcherC20-squashfs-factory.bin in tftp
server directory
- Configure PC with static IP 192.168.0.66/24 and tftp server.
- Connect PC with one of LAN ports, power up the router and press
key "4" to access U-Boot CLI.
- Use the following commands to update the device to LEDE:
setenv serverip 192.168.0.66
tftp 0x80060000 lede-ramips-mt7620-ArcherC20-squashfs-factory.bin
erase tplink 0x20000 0x7a0000
cp.b 0x80060000 0x20000 0x7a0000
reset
- After that the device will reboot and boot to LEDE
2) Using tftp mode without UART connection but require some
manipulations with target image
- Download and unpack TP-Link Archer C20 v1 firmware from original web
site
- Split uboot.bin from original firmware by this command (example):
dd if=Archer_C20v1_0.9.1_4.0_up_boot(160427)_2016-04-27_13.53.59.bin of=uboot.bin bs=512 count=256 skip=1
- Create ArcherC20V1_tp_recovery.bin using this command:
cat uboot.bin lede-ramips-mt7620-ArcherC20-squashfs-factory.bin > ArcherC20V1_tp_recovery.bin
- Place ArcherC20V1_tp_recovery.bin in tftp server directory.
- Configure PC with static IP 192.168.0.66/24 and tftp server.
- Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed for around 6-7 seconds, until
device starts downloading the file.
- Router will download file from server, write it to flash and reboot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
The ZBT WE1026-5G
(http://www.zbtlink.com/products/router/WE1026-5G.html) is the follow-up
to the ZBT WE1026 and is based on MT7620. For the previous WE1026, the
ZBT WE826 image could be used. However, as the name implies, the -5G
comes equipped with a 5GHz wifi radio. As the WE826 only has a 2.4GHz
radio, the addition of 5GHz means that a separate image is needed for
the WE1026-5G. I suspect that this image will also work on the previous
WE1026, but I don't have a device to test with.
The WE1026-5G has following specifications:
* CPU: MT7620A
* 1x 10/100Mbps Ethernet.
* 16 MB Flash.
* 64 MB RAM.
* 1x USB 2.0 port.
* 1x mini-PCIe slots.
* 1x SIM slots.
* 1x 2.4Ghz WIFI.
* 1x 5GHz wifi (MT7612)
* 1x button.
* 3x controllable LEDs.
Works:
* Wifi.
* Switch.
* mini-PCIe slot. Only tested with a USB device (a modem).
* SIM slot.
* Sysupgrade.
* Button (reset).
Not working:
* The 5GHz WIFI LED is completely dead. I suspect the issue is the same
as on other devices with Mediatek 5Ghz wifi-cards/chips. The LED is
controlled by the driver, and mt76 (currently) does not support this.
Not tested:
* SD card reader.
Notes:
* The modem (labeled 3G/4G) and power LEDs are controlled by the
hardware.
* There is a 32MB version of this device available, but I do not have
access to it. I have therefor only added support for the 16MB version,
but added all the required infrastructure to make adding support for the
32MB version easy.
Installation:
The router comes pre-installed with OpenWRT, including a variant of
Luci. The initial firmware install can be done through this UI,
following normal procedure. I.e., access the UI and update the firmware
using the sysupgrade-image. Remember to select that you do not want to
keep existing settings.
Recovery:
If you brick the device, the WE1026-5G supports recovery using HTTP. Keep the
reset button pressed for ~5sec when booting to start the web server. Set the
address of the network interface on your machine to 192.168.1.2/24, and
point your browser to 192.168.1.1 to access the recovery UI. From the
recovery UI you can upload a firmware image.
Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
For the Archer C50v1, the EU and US versions are differentiated by their
respective HW additional version (0x0 for US, 0x2 for EU).
The stock web interface checks this field before flashing, making it
impossible to flash the current (US) factory image on EU hardware.
However the bootloader does not check this field, making it possible to use
a single sysupgrade image for both hardware.
This patch adds the necessary build bits to generate both EU and US factory
images, and renames the target as "Archer C50v1" since there are as of now
3 different versions of Archer C50 (all with different CPUs).
Signed-off-by: Thibaut VARENE <hacks@slashdirt.org>
The HNET C108
(http://www.szhwtech88.com/Product-product-cid-100-id-4374.html) is a
mifi based on MT7602A, which has the following specifications:
* CPU: MT7620A
* 1x 10/100Mbps Ethernet.
* 16 MB Flash.
* 64 MB RAM.
* 1x USB 2.0 port. Only power is connected, this port is meant for
charging other devices.
* 1x mini-PCIe slots.
* 1x SIM slots.
* 1x 2.4Ghz WIFI.
* 1x button.
* 6000 mAh battery.
* 5x controllable LEDs.
Works:
* Wifi.
* Switch.
* mini-PCIe slot. Only tested with a USB device (a modem).
* SIM slot.
* Sysupgrade.
* Button (reset).
Not working (also applies to the factory firmware):
* Wifi LED. It is always switched on, there is no relation to the
up/down state or activity of the wireless interface.
Not tested:
* SD card reader.
Notes:
* The C108 has no dedicated status LED. I therefore set the LAN LED as
status LED.
Installation:
The router comes pre-installed with OpenWRT, including a variant of
Luci. The initial firmware install can be done through this UI,
following normal procedure. I.e., access the UI and update the firmware
using the sysupgrade-image. Remember to select that you do not want to
keep existing settings.
Recovery:
If you brick the device, the C108 supports recovery using TFTP. Keep the
reset button pressed for ~5sec when booting to trigger TFTP. Set the
address of the network interface on your machine to 10.10.10.3/24, and
rename your image file to Kernal.bin.
Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
The ramips subtargets of mt7628 and mt7688 dts files all #include "mt7628an.dtsi"
They are essentially a single subtarget.
This patch merges the ramips subtargets mt7628 and mt7688 into a single subtarget mt76x8.
Signed-off-by: L. D. Pinney <ldpinney@gmail.com>
This commit adds support for Xiaomi Mi WiFi Router 3G.
Short specification:
- MT7621AT + MT7603EN + 7612EN
- 256MB DDR3 RAM
- 128MB NAND flash
- 1+2 x 1000M Ethernet
- 1x USB 3.0 port
- reset button
- yellow, blue, red leds
Installation through telnet/ssh:
- copy lede-ramips-mt7621-mir3g-squashfs-kernel1.bin and
lede-ramips-mt7621-mir3g-squashfs-rootfs0.bin to usb disk or wget it
from LEDE download site to /tmp
- switch to /extdisks/sda1/ (if copied to USB drive) or to /tmp if
wgetted from LEDE download site
- run: mtd write lede-ramips-mt7621-mir3g-squashfs-kernel1.bin kernel1
- run: mtd write lede-ramips-mt7621-mir3g-squashfs-rootfs0.bin rootfs0
- run: mtd erase kernel0
- run: reboot
Originally stock firmware has following partitions:
- ...
- kernel0 (primary kernel image)
- kernel1 (secondary kernel image, used by u-boot in failsafe routine)
- rootfs0 (primary rootfs)
- rootfs1 (secondary rootfs in case primary fails)
- overlay (used as ubi overlay)
This commit squashes rootfs0, rootfs1 and overlay partitions into 1, so
it can be used by LEDE fully for package installation, resulting in 117,5MiB.
This device lacks hw watchdog, so adding softdog instead (stock does the same).
Signed-off-by: Pavel Kubelun <be.dissent@gmail.com>
The VoCore2 Lite uses the same PCB as the Vocore2.
This patch moves the common VoCore2 parts into dtsi.
Removed memory node in the device tree source file.
Memory is detected automatically.
http://vocore.io/http://vonger.net/http://vonger.cn/
Specifications:
- SoC: MediaTek MT7688AN
- RAM: 64MB DDR2 EtronTech EM68B16CWQH-25H
- Flash: 8MB NOR SPI Flash GigaDevice GD25Q64CWIG
- Wireless: Built into MT7688AN with onboard IPEX connector
Firmware installation:
- VoCore2-Lite ships with firmware forked from OpenWrt.
- Installation from the bootloader is recommended.
- If using luci/sysupgrade use the -n option (do not keep settings)
original firmware uses a modified proprietary MediaTek wireless driver.
- The wireless is disabled by default in LEDE.
- If reverting to factory firmware using the bootloader is recommended.
Signed-off-by: L. D. Pinney <ldpinney@gmail.com>
Tested by: Noble Pepper <noblepepper@gmail.com>
The Netgear EX3800 is essentially an EX3700 with a mains output socket.
Both devices use the exact same firmware image (original firmware is named
EX3700-EX3800-version.chk).
This patch adds suport by renaming the EX3700 device to EX3700/EX3800 and
updating the necessary glue.
Signed-off-by: Thibaut VARENE <hacks@slashdirt.org>
Cleanup the dtsi files and remove one layer of dtsi. Set the size of
the firmware partition to a value matching the flash size from the
board (variant) name.
Remove the usb led trigger. There is neither a default config for the
usb led trigger nor a LED for usb activity indication.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Reference the Omnima MiniEMBWiFi device tree source file in the image
build code. Otherwise the dts of the image processed before is used.
Signed-off-by: Mathias Kresin <dev@kresin.me>
With d2b6bf1416 ("ramips: fix image validation errors") the board
name was changed to fix an image validation error. But this change
wasn't applied to all other files using the board name, which broke
sysupgrade.
Revert this change and use the former board name in the metadata
instead.
Signed-off-by: Mathias Kresin <dev@kresin.me>
The WMDR-143N is a small module originally used as a Wifi client
in some Loewe smart TV sets. It is sold cheaply at german surplus
shops. The module contains a RT3662 SOC.
Specifications:
- 500 MHz CPU Clock
- 1x 10/100Mbps Ethernet (pin header)
- 32 MB of RAM
- 8 MB of FLASH
- 2T3R 2.4/5 GHz (SOC internal)
- 3 Antennas on PCB
- UART pads on PCB (J3: 1 = +3.3V, 2 = RX, 3 = TX, 4 = GND), TX
and RX are 3,3V only! The square hole is pin 1
- Power supply pads on PCB (J6: 1 and 2 = +5V, 3 and 4 = GND)
The square hole is pin 1
The original firmware has two identical kernel/rootfs images and
two "Factory" calibration data blocks in flash. The LEDE image
leaves only the first "Factory" block in place and uses both
"Kernel" blocks and the redundant "Factory" block together to gain
enough space for the jffs2 partition.
Flash instructions:
You need UART and Ethernet connections to flash the board. Use
the LEDE "sysupgrade.bin" image with tftp.
Apply power to the board and in the first 5 seconds, hit 2 to
select TFTP upload. The bootloader asks for board- and server IP
addresses and filename.
Alternate method: With the vendor firmware running, assign an IP
address to the ethernet port, tftp the firmware image to
/tmp and write to mtd4 ("KernelA").
Signed-off-by: Oliver Fleischmann <ogf@bnv-bamberg.de>
[remove pinctrl node from dts, no pin is used as GPIO]
Signed-off-by: Mathias Kresin <dev@kresin.me>
The GnuBee Personal Cloud One crowdfunded on https://www.crowdsupply.com
It is a low-cost, low-power, network-attached storage device.
Specifications:
- SoC: MediaTek MT7621AT
- RAM: DDR3 512 MB
- Flash: 32 MB
- Six SATA ports for 2.5" Drives
- One micro SDcard
- One USB 3.0
- Two USB 2.0
- Gigabit Ethernet: 1 x WAN and 1 x LAN
- UART 3.5mm Audio Jack or 3 pin header - 57600 8N1
- Four GPIOs available on a pin header
Flash instructions:
The GnuBee Personal Cloud One ships with libreCMC installed.
libreCMC is a Free Software Foundation approved fork of LEDE/OpenWrt.
As such one can upgrade using the webinterface or sysupgrade.
Das U-Boot has multiple options for recovery or updates including :
- USB
- http
- tftp
Signed-off-by: L. D. Pinney <ldpinney@gmail.com>
[use switchdev led trigger, all interfaces are in vlan1; rename leds
according to board.d setting; remove ge2 group from the pinmux, this
group doesn't exist in the driver]
Signed-off-by: Mathias Kresin <dev@kresin.me>
The TP-Link RE350 is a wall-wart AC1200 range extender/access point with
a single gigabit ethernet port and two non-detachable antennas, based on
the MT7621A SoC with MT7603E and MT7612E radios.
Firmware wise it is very similar to the QCA based RE450.
SoC: MediaTek MT7621A (880MHz)
Flash: 8MiB (Winbond W25Q64)
RAM: 64MiB (DDR2)
Ethernet: 1x 1Gbit
Wireless: 2T2R 2.4Ghz (MT7603E) and 5GHz (MT7612E)
LEDs: Power, 2.4G, 5G (blue), WPS (red and blue), ethernet link/act
(green)
Buttons: On/off, LED, reset, WPS
Serial header at J1, 57600 8n1:
Pin 1 TX
Pin 2 RX
Pin 3 GND
Pin 4 3.3V
Factory image can be uploaded directly through the stock UI.
Signed-off-by: Alex Maclean <monkeh@monkeh.net>
It uses one MT7615D radio chip with DBDC mode enabled. This mode allows
this single chip act as an 2x2 11n radio and an 2x2 11ac radio at the
same time. However mt76 doesn't support it currently so there is no
wireless available.
Specification:
- SoC: MediaTek MT7621AT
- Flash: 16 MB
- RAM: 128 MB
- Ethernet: 1 x WAN (10/100/1000Mbps) and 4 x LAN (10/100/1000 Mbps)
- Wireless radio: MT7615D on PCIE0
- UART: 1 x UART on PCB - 57600 8N1
Issue:
- Wireless radio doesn't work due to the lack of driver.
Flash instruction:
Using UART:
1. Configure PC with a static IP address and setup an TFTP server.
2. Put the firmware into the tftp directory.
3. Connect the UART line as described on the PCB.
4. Power up the device and press 2,then follow the instruction to
set device and tftp server IP address and input the firmware
file name.U-boot will then load the firmware and write it into
the flash.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Most of the ubnt-erx definition can be reused; the package removals in
DEVICE_PACKAGES have become redundant after d17cb4a68a "ramips: purge
default packages on MT7621".
Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
TP-Link TL-WR840N v4 and TL-WR841N v13 are simple N300 routers with
5-port FE switch and non-detachable antennas. Both are very similar
and are based on MediaTek MT7628NN (aka MT7628N) WiSoC.
The difference between these two models is in number of available
LEDs, buttons and power input switch.
This work is partially based on GitHub PR#974.
Specification:
- MT7628N/N (580 MHz)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH
- 2T2R 2.4 GHz
- 5x 10/100 Mbps Ethernet
- 2x external, non-detachable antennas
- UART (J1) header on PCB (115200 8n1)
- TL-WR840N v4: 5x LED (GPIO-controlled), 1x button
- TL-WR841N v13: 8x LED (GPIO-controlled*), 2x button, power input
switch
* WAN LED in TL-WR841N v13 is a dual-color, dual-leads type which isn't
(fully) supported by gpio-leds driver. This type of LED requires both
GPIOs state change at the same time to select color or turn it off.
For now, we support/use only the green part of the LED.
Factory image notes:
These devices use version 3 of TP-Link header, fortunately without RSA
signature (at least in case of devices sold in Europe). The difference
lays in the requirement for a non-zero value in "Additional Hardware
Version" field. Ideally, it should match the value stored in vendor
firmware header on device ("0x4"/"0x13" for these devices) but it seems
that anything other than "0" is correct.
We are able to prepare factory firwmare file which is accepted and
(almost) correctly flashed from the vendor GUI. As it turned out, it
accepts files without U-Boot image with second header at the beginning
but due to some kind of bug in upgrade routine, flashed image gets
corrupted before it's written to flash.
Tests showed that the GUI upgrade routine copies value of "Additional
Hardware Version" from existing firmware into offset "0x2023c" in
provided file, _before_ storing it in flash. In case of vendor firmware
upgrade files (which all include U-Boot image and two headers), this
offset points to the matching field in kernel+rootfs firmware part
header. Unfortunately, in case of LEDE factory image file which contains
only one header, it points to the offset "0x2023c" in kernel image. This
leads to a corrupted kernel and ends up with a "soft-bricked" device.
The good news is that U-Boot in these devices contains well known tftp
recovery mode, which can be triggered with "reset" button. What's more,
in comparison to some of older MediaTek based TP-Link devices, this
recovery mode doesn't write whole file at offset "0x0" in flash, without
verifying provided file in advance. In case of recovery mode in these
devices, first "0x20000" bytes are always skipped and "0x7a0000" bytes
from rest of the file are stored in flash at offset "0x20000".
Flash instruction:
Until (if at all) TP-Link fixes described problem, the only way to flash
LEDE image in these devices is to use tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.0.66/24 and tftp server.
2. Rename "lede-ramips-mt7628-tl-wr84...-squashfs-tftp-recovery.bin"
to "tp_recovery.bin" and place it in tftp server directory.
3. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed for around 6-7 seconds, until
device starts downloading the file.
4. Router will download file from server, write it to flash and reboot.
To access U-Boot CLI, keep pressed "4" key during boot.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
There are already two targets (lantiq, ramips) which use mktplinkfw2
tool for creating images. This de-duplicates code, introduces two new
build commands: tplink-v2-header, tplink-v2-image and makes use of
them in place of old, (sub)target specific ones.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
This patch adds support for the Ubiquiti EdgeRouter X-SFP and
improves support for the EdgeRouter X (PoE-passthrough).
Specification:
- SoC: MediaTek MT7621AT
- Flash: 256 MiB
- RAM: 265 MiB
- Ethernet: 5 x LAN (1000 Mbps)
- UART: 1 x UART on PCB (3.3V, RX, TX, GND) - 57600 8N1
- EdgeRouter X:
- 1 x PoE-Passtrough (Eth4)
- powered by Wallwart or passive PoE
- EdgeRouter X-SFP:
- 5 x PoE-Out (24V, passive)
- 1 x SFP (unknown status)
- powered by Wallwart (24V)
Doesn't work:
* SoC has crypto engine but no open driver.
* SoC has nat acceleration, but no open driver.
* This router has 2MB spi flash soldered in but MT
nand/spi drivers do not support pin sharing,
so it is not accessable and disabled. Stock
firmware could read it and it was empty.
Installation
via vendor firmware:
- build an Initrd-image (> 3MiB) and upload the factory-image
- initrd can have luci-mod-failsafe
- flash final firmware via LuCI / sysupgrade on rebooted system
via TFTP:
- stop uboot into tftp-load into option "1"
- upload factory.bin image
Signed-off-by: Sven Roederer <devel-sven@geroedel.de>
This patch adds supports for the GL-inet GL-MT300N-V2.
Specification:
- SoC: MediaTek MT7628AN
- Flash: 16 MiB (W25Q128FVSG)
- RAM: 128 MiB DDR
- Ethernet: 1 x WAN (100 Mbps) and 1 x LAN (100 Mbps)
- USB: 1 x USB 2.0 port
- Button: 1 x switch button, 1 x reset button
- LED: 3 x LEDS (system power led is not GPIO controller)
- UART: 1 x UART on PCB (JP1: 3.3V, RX, TX, GND)
Installation through Luci:
- The original firmware is LEDE, so both LuCI or sysupgrade can be used.
- Do not keep settings, for sysupgrade please use the -n option.
Installation through bootloader webserver:
- Plug power and hold reset button until red LED blink to bright.
- Install sysupgrade image using web interface on 192.168.1.1.
Signed-off-by: Kyson Lok <kysonlok@gmail.com>
[match maximum image size with firmware partition]
Signed-off-by: Mathias Kresin <dev@kresin.me>
This PR allow the 3G modem embedded in the DWR-512 to be managed
by the wwan-ncm scripts. The modem will use the usb-option and
usb-cdc-ether drivers.
The DWR-512 DT is updated accordingly.
Signed-off-by: Giuseppe Lippolis <giu.lippolis@gmail.com>
Specification:
- SoC: MediaTek MT7620A (580 MHz)
- RAM: 64 MiB (Winbond W9751G6JB-25)
- Flash: 16 MiB (Spansion S25FL128SAIF00)
- LAN: x4 100M
- WAN: x1 100M
- Others: USB 2.0, reset button, wps button and 9 LEDs
Issues:
- 5 GHz band is not functional (missing driver support)
Installation:
Asus windows recovery tool:
- install the Asus firmware restoration utility
- unplug the router, hold the reset button while powering it on
- release when the power LED flashes slowly
- specify a static IP on your computer:
IP address: 192.168.1.75;
Subnet mask 255.255.255.0
- Start the Asus firmware restoration utility, specify the sysupgrade
image, and press upload
TFTP Recovery method:
- set computer to a static ip, 192.168.1.75
- connect computer to the LAN 1 port of the router
- hold the reset button while powering on the router for a few seconds
- send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put lede-ramips-mt7620-rt-ac51u-squashfs-sysupgrade.bin
tftp> quit
Signed-off-by: Ørjan Malde <foxyred333@gmail.com>
This device exactly same as NBG-419N but with USB port and USB Led.
Specification:
- SoC: Ralink RT3052 (MIPS24Kc) @384MHz
- RAM: 32 MiB
- Flash: 8 MiB
- WLAN: WiSoC 2T2R/300Mbps (2.4GHz)
- LAN: 4x100M
- WAN: 1x100M
- USB: 1x2.0
Installation via serial console (57600 8N1) from TFTP server
- rename the firmware to something shorter, for example
"sysupgrade.bin" (max. 32 chars)
- copy firmware TFTP server's directory
- when you power on device, and see U-Boot log, immediatly push "2"
once.
- You will see this message:
2: System Load Linux Kernel then write to Flash via TFTP.
Warning!! Erase Linux in Flash then burn new one. Are you sure?
- Push "y", and enter: device IP, then TFTP server's IP, and then
image firmware file name.
The firmware will be downloaded within ~30 seconds and flashed to the
device (It will take about 2 minutes).
Signed-off-by: Alexey Belyaev <spider@spider.vc>
[squash commits, compact commit message, fix compatible string, remove
superfluous pinmuxes]
Signed-off-by: Mathias Kresin <dev@kresin.me>
In order to have a smaller initramfs image remove all packages not
needed on all devices and add them explicitely for those actually
needing them. Also remove wpad-mini from ramips default package set
and add it to all sub-targets except for MT7621.
While at it reorder packages alphabetically and replace kmod-mt76 with
kmod-mt7603 and/or kmod-mt76x2 depending on the chip actually used on
a specific board.
Hopefully fixes FS#758
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The ZBT-WG826 is available with 16 or 32 MByte of flash. Split the
device tree source file, rename the currently supported 16 MByte
version and add the 32 MByte variant.
Signed-off-by: Mathias Kresin <dev@kresin.me>
The Digineo AC1200 Pro is the 32MB flash variant of the ZBT-WG3526 with
unpopulated/exposed sdhci slot. Rename to board to the OEM/ODM name and
add the sdhci kernel module to use it for multiple clones.
Signed-off-by: Mathias Kresin <dev@kresin.me>
The ZBT-WG3526 is available with 16 or 32 MByte of flash. Rename the
current supported 16MByte version to indicate which flash size variant
is supported.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Specification:
- SoC: MT7621AT, MT7603EN and MT7612EN
- Flash: 16 MiB (W25Q128FVSG)
- RAM: 512 MiB (EM6GE16EWXD-12H)
- Ethernet: 1 x WAN (10/100/1000Mbps) and 4 x LAN (10/100/1000 Mbps)
- Others: USB 2.0, micro SD slot, reset button and 8 x LEDs
Issues:
- Two LEDs for 2.4 GHz and 5 GHz Wi-Fi do not work, can't find GPIOs.
- The pwr LED is not GPIO controllable
How to install:
- The original firmware is OpenWrt, so both LuCI or sysupgrade can be used.
- Do not keep settings, for sysupgrade please use the -n option.
Signed-off-by: Jiawei Wang <buaawjw@gmail.com>
We need to keep the former used (unmodified) boardname in the metadata.
Otherwise an upgrade from an board using the old boardname will be
refused.
Fixes: a75ce960ac ("ramips: use different board names for variants")
Signed-off-by: Mathias Kresin <dev@kresin.me>
PSG1218 got only 4 Ethernet ports and WAN on port 3 while
PSG1218K2C got 5 Ethernet ports and WAN on port 4
Switch to use kmod-kt76x2 instead of kmod-mt76 for both devices while
at it.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The Netgear R6220 requires the kmod-usb3 package and misses
kmod-usb-ledtrig-usbport package to setup the configured usb led
trigger.
Drop the already target selected kmod-mt76.
Fixes: FS#686
Fixes: 38bee61dab ("ramips: add support for Netgear R6220")
Signed-off-by: Mathias Kresin <dev@kresin.me>
The factory image has an uImage header covering the entire image and
not only the kernel. The original uImage header which covers only the
kernel is appended to the end of the image.
During LEDE boot the uImage rootfs splitter skips the whole filesystem,
can't find a valid filesystem magic and panics.
The last known working version was OpenWrt 14.07, which simply kept on
searching for an uImage header if the first found didn't resulted into
a working rootfs. This behaviour is kind of error prone since it could
produce false positives.
Since the sysupgrade image works fine in combination with the tftp
recovery for doing the initial installation of LEDE, simply drop the
factory image.
Related: FS#462
Signed-off-by: Mathias Kresin <dev@kresin.me>
This patch adds support for the Zbtlink ZBT-WE2026.
Specification:
- SoC: MediaTek MT7620N (580MHz)
- RAM: 64 MiB
- Flash: 8 MiB SPI
- LAN: 4x100M
- WAN: 1x100M
Installation through bootloader webserver:
- With the power unplugged press and hold reset button.
- Plug power and hold reset button until LED starts to blink.
- Install sysupgrade image using web interface on 192.168.1.1.
Signed-off-by: Vaclav Svoboda <svoboda@neng.cz>
Specifications:
* SoC: MT7620A
* RAM: 64 MB DDR
* Flash: 8MB NOR SPI flash
* WiFi: MT7612E (5Ghz) and builtin MT7620A (2.4GHz)
* LAN: 1x100M
The -factory images can be flashed from the device's web
interface or via nmrpflash.
Co-authored-by: Paul Oranje <por@xs4all.nl>
Signed-off-by: Paul Oranje <por@xs4all.nl>
Signed-off-by: Joseph C. Lehner <joseph.c.lehner@gmail.com>
This patch adds support for the Netgear R6220, aka Netgear AC1200 and
R6220-100NAS.
Specification:
- SoC: MediaTek MT7621ST (880 MHz)
- Falsh: 128 MiB (Macronix MX30LF1G08AA-TI)
- RAM: 128 MiB (Nanya NT5CB64M16FP-DH)
- Wireless: MediaTek MT7603EN b/g/n , MediaTek MT7612EN an+ac
- LAN speed: 10/100/1000
- LAN ports: 4
- WAN speed: 10/100/1000
- WAN ports: 1
- Serial baud rate of Bootloader and factory firmware: 57600
Installation through telnet:
- Copy kernel.bin and rootfs.bin to a USB flash disk, plug to usb port
on the router.
- Enable telnet with link: http://192.168.1.1/setup.cgi?todo=debug
(login if required, default: admin password)
- You will see "Debug Enabled!"
- Telnet 192.168.1.1 and login with "root"
- ls /mnt/shares/ to find out path of your USB disk. 'myUdisk' for
example.
- cd /mnt/shares/myUdisk
- mtd_write write rootfs.bin Rootfs
- mtd_write write kernel.bin Kernel
- reboot
nmrpflash can be used to recover to the netgear firmware if a broken
image was flashed.
Signed-off-by: Hanqing Wong <hquu@outlook.com>
* The left most mini-PCIe slot (the one attached to SIM2) can be
power-cycled by setting GPIO 0 to high/low.
* The D240 only needs the MT76x2 module, so update makefile to reflect this.
Note that until the default mt7620 target is updated, then kmod-mt76 (and thus
kmod-mt7603) will be selected by default.
v2->v3:
* Indentation error.
v1->v2:
* Rename gpio and remove redundant comment (thanks Piotr Dymacz)
Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
mtk-mmc/mtk_sd.ko only depends on mmc_core and mmc_block.
And, we remove kmod-sdhci dependence assignment from all related target devices.
Signed-off-by: Furong Xu <xfr@outlook.com>
These modules are not needed by the EX2700, since it does not
have an external wifi chip (MT7620A is covered by rt2x00).
Signed-off-by: Joseph C. Lehner <joseph.c.lehner@gmail.com>
This device features both a 2.4 and 5Ghz radio, and supports
802.11a/b/g/n/ac modes.
It has 5 Gb-Ethernet ports and a USB 3.0 host port.
It is powered by the Mediatek MT7621 SoC, and the MT7602E and MT7612E wifi
chipsets, together with 128MB of RAM and 16 MB of SPI Flash.
The stock firmware is in fact based on some openwrt barrier breaker, with a
mediatek SDK kernel, and an afoundry custom made web interface (not LuCI
based).
Firmware update page on the stock web interface can not accept sysupgrade
images, it bricks the device.
At this point, the only working solution I found was to connect to the
serial console port (available on J4 header) and to use opkg to install
dropbear.
Then scp the sysupgrade file in the device's /tmp and run sysupgrade from
console without preserving configuration files.
Signed-off-by: Francois Goudal <francois@goudal.net>
This patch adds supports for the HiWiFi HC5962(gee4) http://www.hiwifi.com
Short specification:
- MT7621AT + MT7612EN + 7603EN
- 256MB DDR3 RAM
- 128MB NAND flash
- 1+3 x 1000M Ethernet
- 1x USB 2.0 port. 1x USB 3.0 port.
- reset button
- UART pad on PCB (JP3: TX, RX, GND, 3.3V)
Flash instruction:
1, Download lede-ramips-mt7621-hc5962-squashfs-factory.bin
2, Login as root via SSH on 192.168.199.1 and then copy factory.bin(using wget or nc or...) to /tmp/
3, use the following commands:
$ mtd write /tmp/lede-ramips-mt7621-hc5962-squashfs-factory.bin firmware
$ mtd erase firmware_backup && reboot
After reboot you should be able to login as root via SSH on 192.168.1.1
Signed-off-by: ZengFei Zhang <zhangzengfei@kunteng.org>
HC5661A is almost the same as HC5661 but MT7628AN is used instead of MT7620A.
- MT7628AN
- 128 MiB DDR2 RAM (W971GG6KB-25)
- 16 MiB SPI NOR flash (W25Q128)
- SD slot (not work yet)
- 1+4 x 100M Ethernet
- 802.11 b/g/n Wi-Fi
- 3 x LED
- 1 x button
- UART pad on PCB (JP1: TX, RX, GND, 3.3V)
The factory flash layout seems different from HC5661.
"hwf_config" is renamed to "oem" and its size changes to 0x20000.
It is modified accordingly in the dts file.
0x000000000000-0x000000030000 : "u-boot"
0x000000030000-0x000000040000 : "hw_panic"
0x000000040000-0x000000050000 : "Factory"
0x000000050000-0x000000160000 : "kernel"
0x000000160000-0x000000fc0000 : "rootfs"
0x000000bb0000-0x000000fc0000 : "rootfs_data"
0x000000fc0000-0x000000fe0000 : "oem"
0x000000fe0000-0x000000ff0000 : "bdinfo"
0x000000ff0000-0x000001000000 : "backup"
0x000000050000-0x000000fc0000 : "firmware"
To install LEDE, enabled the "developer mode",
which will *void your warranty* and open the SSH server at port 1022.
sysupgrade -n -F lede-ramips-mt7628-hc5661a-squashfs-sysupgrade.bin
SD slot:
- Tried to add modules kmod-sdhci kmod-sdhci-mt7620, and corresponding dts block.
- It will block WAN + 3xLAN ports, only one LAN works.
- I'm not sure why, everything else works fine.
Signed-off-by: Wang JiaWei <buaawjw@gmail.com>
This patch frees up flash space on the EX2700, by
removing unused mt76 drivers and firmware.
Signed-off-by: Joseph C. Lehner <joseph.c.lehner@gmail.com>
mtdsplit_lzma requires that the rootfs be aligned to a block boundary.
Pad the kernel partition to make this so.
Signed-off-by: Claudio Leite <leitec@gmail.com>
The Sanlinking Technologies D240
(http://www.sanlinking.com/en/29-dual-4g-wifi-router.html) is basically the same
device as the ZBT WE826, so adding support for it in LEDE is straight forward.
The differences is that the D240 has two mini-PCIe slots (instead of one), blue
LEDs and supports PoE.
Specification:
* CPU: MT7620A
* 1x 10/100Mbps POE (802.3af/802.3at) Ethernet, 4x 10/100Mbps.
* 16 MB Flash.
* 128 MB RAM.
* 1x USB 2.0 port.
* 2x mini-PCIe slots.
* 2x SIM slots.
* 1x 2.4Ghz WIFI.
* 1x button.
Wifi, USB, switch and both mini-PCIe slots are working. I have not been able to
test the SD card reader.
The device comes pre-installed with an older version of OpenWRT, including Luci.
In order to install LEDE, you need to follow the existing procedure for updating
OpenWRT/LEDE using Luci. I.e., you need to access the UI and update the firmware
using the sysupgrade-image. Remember to select that you do not want to keep
existing settings. The default router address is 192.168.10.1 and
username/password admin/root (at least on my devices).
If you brick the device, the procedure for recovery is the same as for the
WE826. Please see the wiki page for that device for instructions.
Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
This patch moves the fakeroot code required by some devices to
`image-commands.mk`.
Create the fakeroot on the fly by using the undocumented -s (skip copy)
parameter of mkimage.
Signed-off-by: Joseph C. Lehner <joseph.c.lehner@gmail.com>
[remove unused NETGEAR_KERNEL_MAGIC, remove workarounds to have a dummy
rootfs for mkimage]
Signed-off-by: Mathias Kresin <dev@kresin.me>
The factory image can't be bigger than 3328 KByte. If the image is
bigger than that, the gemtek-header tool throws an error and breaks
the build.
Make sure the output file to which the gemtek header should be added
exists and wasn't removed during the check-size step because of it
size. This will prevent hard errors in case the factory image is to big
similar to what is done for sysupgrade images.
Signed-off-by: Mathias Kresin <dev@kresin.me>
This activates the CONFIG_MIPS_APPENDED_RAW_DTB kernel configuration and
configures the F5D8235 V1 target to use append-dtb for kernel creation
instead of OWRTDTB.
Signed-off-by: Tobias Wolf <github-NTEO@vplace.de>
[Jo-Philipp Wich: rewrap commit message]
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
Buffalo WCR-1166DS is a small wireless router with
- MT7628AN + MT7612E
- 64MiB DDR2 SDRAM
- 16MiB SPI flash
- 2T2R 11ac/a/b/g/n Wi-Fi
- 2x 10/100M ethernet switch
- 8x programmable LED
- 3x button
- UART pad on PCB (J2: 3.3V, GND, TX, RX)
factory image can be installed via stock web UI.
due to the "dual image" function in the bootloader, the second half of
the SPI flash ("firmware2" partition) cannot be used as a part of the
file system.
Signed-off-by: FUKAUMI Naoki <naobsd@gmail.com>
ramips/rt288x WLI-TX4-AG300N was missing support for its 100Mbit switch which
should be included by default.
Signed-off-by: Yo Abe <abe.geel@gmail.com>
[Jo-Philipp Wich: picked from OpenWrt PR#359, rewrap commit msg, fix Sob]
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
This patch adds support for the Netgear WN3000RPv3
http://www.netgear.com/support/product/wn3000rpv3.aspx
Specifications:
- SoC: MediaTek MT7620A (580MHz, ramips)
- RAM: 32MB DDR
- Storage: 8MB NOR SPI flash
- Wireless: builtin MT7620A, 2x2:2 with u.FL connectors
- Ethernet: 1x100M
- Serial: JP1 header, 57600-8N1
- Stock firmware based on OpenWRT Kamikaze
Like the EX2700, the bootloader expects a secondary image signature,
see https://forum.openwrt.org/viewtopic.php?pid=312577#p312577
This is why the same fakeroot image is used for the WN3000
Signed-off-by: Thibaut VARENE <hacks@slashdirt.org>
This patch adds support for the Onion Omega2 and Omega2+ (https://onion.io)
Specifications:
- SoC: MediaTek MT7688AN (580MHz, ramips)
- Omega2
- RAM: 64MB DDR
- Storage: 16MB NOR SPI flash onboard
- Omega2+
- RAM: 128MB DDR
- Storage: 32MB NOR SPI flash onboard + microSD slot
- Wireless: Built into MT7688AN (mt76) with onboard 1x chip antenna and u.FL connecter
- Ethernet: 1x100M pins on Omega2 & Omega2+, can use Ethernet Expansion and an Omega Dock to get a physical Ethernet port
- Strongly recommend using the Omega2 & Omega2+ with a Dock (Expansion Dock, Power Dock, Arduino Dock 2, Mini Dock)
- All Docks Provide:
- Micro-USB port to provide power to the Omega
- On the Expansion and Mini Docks, can also access the terminal (UART0) via serial
- USB 2.0 socket connected to Omega
- Just the Expansion Dock, Power Dock, and Arduino Dock 2 provide:
- Omega GPIO breakout
- Allows for connection of Omega Expansions:
- Ethernet Expansion
- Relay Expansion
- PWM Expansion
- OLED Expansion
- Ethernet Expansion
- Proto Expansion
- Cellular Expansion
Signed-off-by: Lazar Demin <lazar@onion.io>
I made a commit that added the RTC driver to the kernel config with
the intent that it would fix hctosys. Unfortunately while the RTC
driver is in there, it's connected through I2C, the driver for which
comes in module form and is thus loaded late. After this commit, it
works fine.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
This patch adds support for the VoCore VoCore2 and its complementary
"ultimate" dock.
Specifications:
- SoC: MediaTek MT7628AN (580MHz, ramips)
- RAM: 128MB DDR2 166MHz
- Storage: 16MB NOR SPI flash onboard + microSD slot on dock
- Wireless: Built into MT7628AN (mt76) with 1T1R firmware on VoCore2
boards with onboard 1x chip antenna
- Ethernet: 1x100M (port0) on dock, 1x100M (port2) on PCB header
- Dock hardware:
- USB 2.0 socket
- MicroSD socket
- 100Mbps Ethernet x1
- 3.5mm headphone jack (TRRS) connected to Everest Semi ES8388 I2S
DAC/ADC (support WIP)
- Micro USB for power and console (UART2)
Initial installation:
- VoCore2 comes preinstalled with a fork of OpenWrt CC and AP on
SSID "VoCore2"
- Connect to VoCore2 by Ethernet or Wi-Fi
- `ssh root@192.168.1.1` (password is "vocore")
- scp/wget/etc. LEDE sysupgrade.bin to VoCore2
- `sysupgrade -n <your image>.bin` (don't keep old config, as the
original firmware uses Ralink SDK Wi-Fi drivers and not
mt76+mac80211)
- after sysupgrade completes, Wi-Fi will be disabled by default so use
Ethernet or the micro USB console to configure Wi-Fi again
Signed-off-by: Andrew Yong <me@ndoo.sg>
There was a typo in Makefile that prevented using these profiles.
Fixes: a75ce960ac ("ramips: use different board names for variants")
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Use different names for flash size related board variants, to make sure
that only images for the actual flash size are considered as valid by
the image validation code.
Remove the flash size suffix from the string returned by
ramips_board_detect() to ensure that existing scripts relying on the
former used boardname are still working.
Signed-off-by: Mathias Kresin <dev@kresin.me>
The name from the Device define will be used in the metadata. Due to
typos/different spelling, this name might not match the one exported in
/lib/ramips.sh.
Fix all name mismatches which were found by checking if the name used
in the metadata exists in /lib/ramips.sh.
Signed-off-by: Mathias Kresin <dev@kresin.me>
The Dlink DWR-512-B modem is a ralink 5350 processor based embedding
a 3G mini-pcie router.
The oem JBOOT bootloader has to be replaced by a RT5350 SDK
U-Boot such as https://github.com/stevenylai/ralink_sdk - U-Boot
configured for the RT5350 256MiB SDR.
Main reason to change the bootloader is the encrypted header used to
store the kernel image. In this way an image can only be generated
using the propietary binboy tool (included in the GPL distribution
from Dlink). The binboy tool doesn't allow to modify the kernel/rootfs
partition scheme. This is considered a big constraint (limited kernel
size and inefficient usage of flash space).
For interested people I pubblished the details of my investigation
about the encrypted firmware header here:
http://lists.infradead.org/pipermail/lede-dev/2016-October/003435.html
Signed-off-by: Giuseppe Lippolis <giu.lippolis@gmail.com>
Factory image can be installed via Zyxel WebUI.
Signed-off-by: Vitaly Chekryzhev <13hakta@gmail.com>
[removed linux,modalias parameter from flash node in dts]
[removed sdhci node from dts; no sd card slot here]
Signed-off-by: Mathias Kresin <dev@kresin.me>
The Sitecom firmware upgrade file has SENAO_FIRMWARE_TYPE 2 set. This
looks rather wrong since SENAO_FIRMWARE_TYPE 2 is kernel only but the
file is way to big for only including a kernel.
The factory image need to have the dlf file extension. Otherwise the
Sitecom firmware rejects the file.
The stock firmware uses the following mac addresses:
LAN: 00:0C:F6:AA:BB:D8 (u-boot env: ethaddr)
2,4: 00:0C:F6:AA:BB:D8 (EEPROM)
5: 00:0C:F6:AA:BB:DC (EEPROM)
WAN: 00:0C:F6:AA:C8:43 (u-boot env: wanaddr)
Assuming the mac address range :D8 to :DC is reserved for this device,
the MAC addresses were reorder to have a unique MAC address for each
interface:
2.4GHz: 00:0C:F6:AA:BB:D8
LAN: 00:0C:F6:AA:BB:D9
WAN: 00:0C:F6:AA:BB:DA
5 GHz: 00:0C:F6:AA:BB:DC
The first MAC is assigned to the 2.4GHz WiFi interface
to keep compatibility with the SSIDs printed on the case, which have
the last three sextets of the MAC address appended.
There are still issues with the rt2x00 driver. It is not possible to
use both wireless interfaces at the same time. The 2.4 GHz
wireless (PCIe) only works if the internal 5GHz wireless is/has been
enabled or used for scanning. The internal 5GHz wireless only works if
the 2.4GHz wireless (PCIe) was never enabled. Disabling the 2.4Ghz
after it was enabled will result in stations seeing the 5Ghz AP but are
unable to connect.
Due to the not optimal working wifi the manufacture, backup and storage
partitions of the OEM firmware are kept for now to allow an easy switch
back to the Sitecom firmware.
Signed-off-by: Jasper Scholte <NightNL@outlook.com>
Signed-off-by: Mathias Kresin <dev@kresin.me>
The MikroTik hEX v3 (RB750Gr3) is a MT7621AT board which is similar to most MT7621 reference designs, it can be easily supported by this patch; however, the stock RouterBOOT bootloader has to be replaced by a MT7621 SDK U-Boot such as https://github.com/ndoo/RB750Gr3-U-Boot - U-Boot configured for the RB750Gr3 (16MiB SPI flash, 256MiB DDR3 RAM at 1200MHz).
RouterBOOT, the stock bootloader, does not initialize the UART and boots silently, making it preferable to replace it with a MT7621 SDK U-Boot with UART (57600 8N1) that supports HTTP, TFTP or serial upload of sysupgrade firmware and U-Boot.
Furthermore, RouterOS, the stock firmware, is contained in a proprietary modification of SquashFS without GPL sources; UART is also disabled in stock firmware.
The combination of LEDE firmware generated by this PR and MT7621 SDK U-Boot expects the printed MAC address to reside at offset `0xe000` of the factory partition (absolute offset is `0x4e000`); this is similar to the factory MAC address offset for several other MT7621 devices.
A 16MiB flash dump suitable for use with flashrom will be provided if/once this patch is accepted and binaries are built by LEDE buildbot. Alternatively, writing the U-Boot to the SPI flash starting at 0x0 offset and booting the board with serial console attached will allow TFTP, HTTP or serial upload of sysupgrade firmware.
Signed-off-by: Andrew Yong <me@ndoo.sg>
This patch adds the kmod-usb3 and kmod-usb-ledtrig-usbport packages to the
DIR-860L B1 profile. The DIR-860L B1 has a USB 3 port.
Signed-off-by: Stijn Segers <francesco.borromini@inventati.org>
Build the RTC driver into the kernel, (and remove the optional module), in order
to make hctosys working. (Currently the module is loaded after hctosys has failed previously)
Signed-off-by: Rosen Penev <rosenp@gmail.com>
This makes init.d script handle existing UCI entries using the new
trigger. It also switches all targets to use its package.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Images installed via TFTP recovery or the Edimax webinterface of the
3g-6200n(l) are writting with the edimax header to flash.
Use only one image type for these boards. The migration to the
factory only images need to be done via TFTP recovery.
Use the same start address for the 3g-6200n(l) factory images as the
stock firmware images.
Thanks to Jan Dostrasil for reporting all the issues of the 3g-6200nl
and the patient testing of all changes.
Signed-off-by: Mathias Kresin <dev@kresin.me>
applied bb-final-ramips-add-zyxel-nbg-419n2.patch from
123serge123, found at https://yadi.sk/d/1ZV0lKJwbTE65;
see https://forum.openwrt.org/viewtopic.php?pid=246905#p246905,
modified slightly to fit to CC release and to new lede build
system: image/rt305x.mk include file is used now
changed NBG-419N2.dts format to fit style of other dts files
Signed-off-by: Klaus <k-laus@quantentunnel.de>
- CPU: MT7620A 580MHz
- Flash: 8MB - RAM: 64MB
- External PA+LNA on both WLAN2.4 and WLAN5
- 4x LAN ethernet and 1x WAN ethernet
Signed-off-by: Xuefu Lin <xuefulin@gmail.com>
kmod-rt2x00-lib and kmod-mac80211 need to be removed, as they depend on
kmod-cfg80211. kmod-rt2800-pci should not be installed anyways.
Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
The D-Link DIR-860L B1 has a flash chip which doesn't support
4K sectors. Since the DIR-860L B1 was the only mt7621 board which had
the 4k blocksize set, the 4K sector support is removed from the kernel
config.
I've checked the flash chips of all boards having set a 4K blocksize
again. This time I searched harder to finding bootlogs instead of
relying on wikis articles and/or the device tree source file.
The Planex MZK-DP150N has an en25q32b instead of the mentioned one in
the dts. Albeit the en25q32b supports 4K sectors, 4K support is not
enabled in the driver. Change the blocksize for this board back to 64K.
Reported-by: Russell Senior <russell@personaltelco.net>
Signed-off-by: Mathias Kresin <dev@kresin.me>
Only add them where they are actually required.
Should help with compatibility issues with stock U-Boot images that
access UBI
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Now that all seama images are using the new build code this seama recipe
used with the old build code can be dropped.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Set the blocksize for devices having only 4MB of flash for ramips
devices already using the new image build code.
Informations about the used flash chip are gathered from the OpenWrt
wiki, wikidevi, forums, OEM bootlogs or the compatible property in the
device tree source file.
The en25q32b from the AirLive Air3GII does not have 4k support in the
kernel.
For the following boards no information about the used flash chip could
be found and a 64k blocksize is assumed:
- Ralink V11ST-FE
- Ralink AP-RT3052-V22RW-2X2
- MediaTek MT7628 EVB
- MediaTek MT7621 EVB
- UPVEL UR-326N4G
- Buffalo WZR-AGL300NH
Signed-off-by: Mathias Kresin <dev@kresin.me>
The image generation for TEW-691GR and TEW-692GR was broken since
79d02229 due to the move of the UMedia recipe to another Makefile.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Thunder Timecloud is a small NAS with MT7621A. It has 1 USB port and an
SD Card slot. There is no wireless cards.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Now that the "sysupgrade-nand" step is used by non-NAND targets as well,
rename it to "sysupgrade-tar" to make it more generic.
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
D-Link DCH-M225 is based on Mediatek MT7620 with 64MB ram, 8MB flash,
3.5mm audio out support. but no ethernet and usb ports.
so you must default enable wifi.
Signed-off-by: Michael Lee <igvtee@gmail.com>
The NixCore X1 is a Ralink/MediaTek rt5350 WiFi Module.
http://nixcores.com/
Signed-off-by: L. D. Pinney <ldpinney@gmail.com>
Acked-by: Drew Gaylo <drew@nixcores.com>
Pinmux for rgmii needs to be set to rgmii, not gpio.
Hide the ESW switch on boot (using new rgmii esw devicetree attribute).
Also add a Sitecom-specific profile, since the image needs to include
the rtl8366 kernel driver.
Signed-off-by: Tobias Diedrich <ranma+openwrt@tdiedrich.de>
The ZBT APE522II is a dual-radio outdoor CPE based on the MT7620a SoC. It has
64 MB RAM, 8 MB flash, 2 Fast Ethernet ports via internal switch (one with
802.3af 48V PoE support), a 802.11b/g/n SoC 2.4 GHz radio and an 802.11a/n/ac
MT7612E-based 5 GHz radio.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
DuZun DM06 is a develop board based on mt7628
64M RAM, 8M SPI Flash, 1 WAN, 1 LAN.
wm8960 codec with line out, line in and speaker output.
Signed-off-by: Michael Lee <igvtee@gmail.com>
The Widora board is similar to the Linkit 7688 but features a larger flash
capacity.
Signed-off-by: Yuan Chenmang <771992497@qq.com>
[Jo-Philipp Wich: Reword commit message, cleanup initial PR]
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
The previous image creation code would have failed if the
unpadded kernel uImage size was less than 64 bytes from the
next erase block boundary. Fix that.
Signed-off-by: Joseph C. Lehner <joseph.c.lehner@gmail.com>
The bootloader on this device expects the kernel partition to end
on a 64k boundary. The last 64 byte of the kernel partition must
contain a valid uImage header (the fakeroot partition).
Signed-off-by: Joseph C. Lehner <joseph.c.lehner@gmail.com>