aa0e3c4bbe12 iwinfo: nl80211: add support for printing the device path for a phy
dd6d6d2dec35 iwinfo: nl80211: use new path lookup function for nl80211_phy_idx_from_uci_path
268bb26d2e2a iwinfo: nl80211: support looking up phy by path=.. and macaddr=...
c0414642fead iwinfo: nl80211: fix typo
Signed-off-by: Felix Fietkau <nbd@nbd.name>
86ee86e nmea: parse $GPZDA sentences for date/time
8e12414 nmea: parse $GPGLL sentences for position
5e88403 ubus: display only available information
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This is only cosmetic, but the next one adding a patch here would
have to do it anyway, and thus will get a smaller diff for review
now.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The removed patches were integrated upstream.
The brcmf_driver_work workqueue was removed in brcmfmac with kernel
5.10.42, the asynchronous call was covered to a synchronous call. There
is no need to wait any more.
This part was removed manually from this patch:
brcm/860-brcmfmac-register-wiphy-s-during-module_init.patch
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add mt7915e dependency on kmod-thermal
22b690334c0f mt76: mt7915: do not fail if the cooling device could not be registered
Signed-off-by: Felix Fietkau <nbd@nbd.name>
In there linux-firmware repository located in kernel, there were removed old
broadcom firmware [1] as they seem to be likely vulnerable to KrØØk vulnerability
(CVE-2019-15126), because Cypress released new versions and superseded
by it.
In OpenWrt, there is Makefile for cypress-firmware, which already provides
the same named packages like it was in linux-firmware. For example, cypress-firmware-43455-sdio
provides brcmfmac-firmware-43455-sdio [2].
Changelog between 2020118 and 20210315:
3568f96 (tag: 20210315) linux-firmware: Update firmware file for Intel Bluetooth AX210
9e96e50 linux-firmware: Update firmware file for Intel Bluetooth AX200
c8d0db5 linux-firmware: Update firmware file for Intel Bluetooth AX201
5e2a387 Merge tag 'iwlwifi-fw-2021-03-05-v3' of git://git.kernel.org/pub/scm/linux/kernel/git/iwlwifi/linux-firmware into main
b0d3e31 rtw88: 8822c: Update normal firmware to v9.9.6
5a2fd63 iwlwifi: add new FWs from core59-66 release
4f54906 iwlwifi: update 9000-family firmwares
11b7607 iwlwifi: update 7265D firmware
e425f76 Merge branch 'add-silabs-wf200' of github.com:jerome-pouiller/linux-firmware into main
5ecd13f Mellanox: Add new mlxsw_spectrum firmware xx.2008.2406
58fb90a linux-firmware: add frimware for mediatek bluetooth chip (MT7921)
e576a1b rtw89: 8852a: add firmware v0.9.12.2
048a7cb WHENCE: add missing symlink for BananaPi M3
aa6c6e7 Add symlink for BananaPi M2 to brcmfmac43430-sdio config
58825f7 brcm: Fix Raspberry Pi 4B NVRAM file
520f71b silabs: add new firmware for WF200
f7915a0 amdgpu: add initial firmware for green sardine
80cb579 rtw88: RTL8822C: Update normal firmware to v9.9.5
b79d239 (tag: 20210208) Merge branch 'DG1-guc-huc-ADLS-dmc' of git://anongit.freedesktop.org/drm/drm-firmware into main
66970e1 Merge branch 'qcom-rb5' of https://github.com/lumag/linux-firmware into main
cf6fc2b Mellanox: Add new mlxsw_spectrum firmware xx.2008.2304
391fd50 linux-firmware: add firmware for MT7921
c5e3240 rtw88: RTL8821C: Update firmware to v24.8
d33d2d8 linux-firmware: Update firmware file for Intel Bluetooth AX210
3027ae4 linux-firmware: Update firmware file for Intel Bluetooth AX200
13979c3 linux-firmware: Update firmware file for Intel Bluetooth AX201
348d8a9 i915: Add DMC v2.01 for ADL-S
f33f1f7 i915: Add HuC v7.7.1 for DG1
6a422f5 i915: Add GuC v49.0.1 for DG1
df822a8 qcom: Add venus firmware files for VPU-1.0
11a1db1 qcom: Add SM8250 Compute DSP firmware
e55248b qcom: Add SM8250 Audio DSP firmware
da74cc6 qcom: add firmware files for Adreno a650
0578970 brcm: Link RPi4's WiFi firmware with DMI machine name.
d528862 brcm: Add NVRAM for Vamrs 96boards Rock960
870b805 brcm: Update Raspberry Pi 3B+/4B NVRAM for downstream changes
a28a590 cypress: Fix link direction
060ad8b cypress: Link the new cypress firmware to the old brcm files
0f0aefd brcm: remove old brcm firmwares that have newer cypress variants
f580dc2 rtl_bt: Update RTL8822C BT(UART I/F) FW to 0x059A_25CB
7df2220 rtl_bt: Update RTL8822C BT(USB I/F) FW to 0x099a_7253
e79405d rtl_bt: Add firmware and config files for RTL8852A BT USB chip
ef3813d rtl_bt: Update RTL8821C BT(USB I/F) FW to 0x829a_7644
646f159 (tag: 20201218) make AP6212 in bananpi m2 plus/zero work
28185ec linux-firmware: Update firmware file for Intel Bluetooth AX210
23da869 linux-firmware: Update firmware file for Intel Bluetooth AX200
2099248 linux-firmware: Update firmware file for Intel Bluetooth AX201
94de5e2 linux-firmware: Update firmware file for Intel Bluetooth 9560
27a3689 linux-firmware: Update firmware file for Intel Bluetooth 9260
5c3c4af Merge branch 'lt9611uxc' of https://github.com/lumag/linux-firmware into main
aaed4a8 Merge branch 'v1.1.6' of https://github.com/irui-wang/linux_fw_vpu_v1.1.6 into main
d8c9865 Merge branch 'master' of https://github.com/sampnimm/linux-firmware-BT into main
63ab3db linux-firmware: add firmware for Lontium LT9611UXC DSI to HDMI bridge
0fe0fe0 mediatek: update MT8173 VPU firmware to v1.1.6
1a08ec9 QCA : Updated firmware files for WCN3991
7455a36 Merge branch 'guc_v49' of git://anongit.freedesktop.org/drm/drm-firmware into main
7eb7fda linux-firmware: Update firmware file for Intel Bluetooth AX210
5cbf459 linux-firmware: Update firmware file for Intel Bluetooth AX210
c487f7d i915: Add GuC firmware v49.0.1 for all platforms
d9ffb07 i915: Remove duplicate KBL DMC entry
b362fd4 Mellanox: Add new mlxsw_spectrum firmware xx.2008.2018
bc9cd0b linux-firmware: Update AMD SEV firmware
54c797a amdgpu: add sienna cichlid firmware for 20.45
1340e9c amdgpu: update vega20 firmware for 20.45
b260c9c amdgpu: update vega12 firmware for 20.45
d683bd5 amdgpu: update vega10 firmware for 20.45
7c81cc2 amdgpu: update renoir firmware for 20.45
3619e57 amdgpu: update navi14 firmware for 20.45
68ce0fb amdgpu: update navi12 firmware for 20.45
e889b80 amdgpu: update navi10 firmware for 20.45
f4edc15 amdgpu: update raven2 firmware for 20.45
e71210f amdgpu: update raven firmware for 20.45
[1] https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/commit/?id=0f0aefd733f70beae4c0246edbd2c158d5ce974c
[2] eeda8652f1/package/firmware/cypress-firmware/Makefile (L124)
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
This adds support for the Askey RT4230W REV6
(Branded by Spectrum/Charter as RAC2V1K)
At this time, there's no way to reinstall the stock firmware so don't install
this on a router that's being rented.
Specifications:
Qualcomm IPQ8065
1 GB of RAM (DDR3)
512 MB Flash (NAND)
2x Wave 2 WiFi cards (QCA9984)
5x 10/100/1000 Mbps Ethernet (Switch: QCA8337)
1x LED (Controlled by a microcontroller that switches it between red and
blue with different patterns)
1x USB 3.0 Type-A
12V DC Power Input
UART header on PCB - pinout from top to bottom is RX, TX, GND, 5V
Port settings are 115200n8
More information: https://forum.openwrt.org/t/askey-rac2v1k-support/15830https://deviwiki.com/wiki/Askey_RAC2V1K
To check what revision your router is, restore one of these config backups
through the stock firmware to get ssh access then run
"cat /proc/device-tree/model".
https://forum.openwrt.org/t/askey-rac2v1k-support/15830/17
The revision number on the board doesn't seem to be very consistent so that's
why this is needed. You can also run printenv in the uboot console and if
machid is set to 177d, that means your router is rev6.
Note: Don't install this if the router is being rented from an ISP. The defined
partition layout is different from the OEM one and even if you changed the
layout to match, backing up and restoring the OEM firmware breaks /overlay so
nothing will save and the router will likely enter a bootloop.
How to install:
Method 1: Install without opening the case using SSH and tftp
You'll need:
RAC2V1K-SSH.zip:
https://github.com/lmore377/openwrt-rt4230w/blob/master/RAC2V1K-SSH.zip
initramfs and sysupgrade images
Connect to one of the router's LAN ports
Download the RAC2V1K-SSH.zip file and restore the config file that
corresponds to your router's firmware (If you're firmware is newer than what's
in the zip file, just restore the 1.1.16 file)
After a reboot, you should be able to ssh into the router with username:
"4230w" and password: "linuxbox" or "admin". Run the following commannds
fw_setenv ipaddr 10.42.0.10 #IP of router, can be anything as long as
it's in the same subnet as the server
fw_setenv serverip 10.42.0.1# #IP of tftp server that's set up in next
steps
fw_setenv bootdelay 8
fw_setenv bootcmd "tftpboot initramfs.bin; bootm; bootipq"
Don't reboot the router yet.
Install and set up a tftp server on your computer
Set a static ip on the ethernet interface of your computer (use this for
serverip in the above commands)
Rename the initramfs image to initramfs.bin, and host it with the tftp
server
Reboot the router. If you set up everything right, the router led should
switch over to a slow blue glow which means openwrt is booted. If for some
reason the file doesn't get loaded into ram properly, it should still boot to
the OEM firmware.
After openwrt boots, ssh into it and run these commands:
fw_setenv bootcmd "setenv mtdids nand0=nand0 && setenv mtdparts
mtdparts=nand0:0x1A000000@0x2400000(firmware) && ubi part firmware && ubi
read 0x44000000 kernel 0x6e0000 && bootm"
fw_setenv bootdelay 2
After openwrt boots up, figure out a way to get the sysupgrade file onto it
(scp, custom build with usb kernel module included, wget, etc.) then flash it
with sysupgrade. After it finishes flashing, it should reboot, the light should
start flashing blue, then when the light starts "breathing" blue that means
openwrt is booted.
Method 2: Install with serial access (Do this if something fails and you can't
boot after using method 1)
You'll need:
initramfs and sysupgrade images
Serial access:
https://openwrt.org/inbox/toh/askey/askey_rt4230w_rev6#opening_the_case
Install and set up a tftp server
Set a static ip on the ethernet interface of your computer
Download the initramfs image, rename it to initramfs.bin, and host it with
the tftp server
Connect the wan port of the router to your computer
Interrupt U-Boot and run these commands:
setenv serverip 10.42.0.1 (You can use whatever ip you set for the computer)
setenv ipaddr 10.42.0.10 (Can be any ip as long as it's in the same subnet)
setenv bootcmd "setenv mtdids nand0=nand0 &&
set mtdparts mtdparts=nand0:0x1A000000@0x2400000(firmware) && ubi part firmware
&& ubi read 0x44000000 kernel 0x6e0000 && bootm"
saveenv
tftpboot initramfs.bin
bootm
After openwrt boots up, figure out a way to get the sysupgrade file onto it
(scp, custom build with usb kernel module included, wget, etc.) then flash it
with sysupgrade. After it finishes flashing, it should reboot, the light should
start flashing blue, then when the light starts "breathing" blue that means
openwrt is booted.
Signed-off-by: Lauro Moreno <lmore377@gmail.com>
[add entry in 5.10 patch, fix whitespace issues]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 128MB NAND
- Ethernet: 5 Gigabit ports
- WiFi: 2.4G/5G MT7615N
- USB: 1 USB 3.0, 1 USB 2.0
This device is very similar to the EA7300 v1/v2 and EA7500 v2.
Installation:
Upload the generated factory image through the factory web interface.
(following part taken from EA7300 v2 commit message:)
This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.
Reverting to factory firmware:
Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.
With thanks to Leon Poon (@LeonPoon) for the initial bringup.
Signed-off-by: Tee Hao Wei <angelsl@in04.sg>
[add missing entry in 10_fix_wifi_mac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Amped Wireless ALLY is a whole-home WiFi kit, with a router (model
ALLY-R1900K) and an Extender (model ALLY-00X19K). Both are devices are
11ac and based on MediaTek MT7621AT and MT7615N chips. The units are
nearly identical, except the Extender lacks a USB port and has a single
Ethernet port.
Specification:
- SoC: MediaTek MT7621AT (2C/4T) @ 880MHz
- RAM: 128MB DDR3 (Nanya NT5CC64M16GP-DI)
- FLASH: 128MB NAND (Winbond W29N01GVSIAA)
- WiFi: 2.4/5 GHz 4T4R
- 2.4GHz MediaTek MT7615N bgn
- 5GHz MediaTek MT7615N nac
- Switch: SoC integrated Gigabit Switch
- USB: 1x USB3 (Router only)
- BTN: Reset, WPS
- LED: single RGB
- UART: through-hole on PCB.
J1: pin1 (square pad, towards rear)=3.3V, pin2=RX,
pin3=GND, pin4=TX. Settings: 57600/8N1.
Note regarding dual system partitions
-------------------------------------
The vendor firmware and boot loader use a dual partition scheme. The boot
partition is decided by the bootImage U-boot environment variable: 0 for
the 1st partition, 1 for the 2nd.
OpenWrt does not support this scheme and will always use the first OS
partition. It will set bootImage to 0 during installation, making sure
the first partition is selected by the boot loader.
Also, because we can't be sure which partition is active to begin with, a
2-step flash process is used. We first flash an initramfs image, then
follow with a regular sysupgrade.
Installation:
Router (ALLY-R1900K)
1) Install the flashable initramfs image via the OEM web-interface.
(Alternatively, you can use the TFTP recovery method below.)
You can use WiFi or Ethernet.
The direct URL is: http://192.168.3.1/07_06_00_firmware.html
a. No login is needed, and you'll be in their setup wizard.
b. You might get a warning about not being connected to the Internet.
c. Towards the bottom of the page will be a section entitled "Or
Manually Upgrade Firmware from a File:" where you can manually choose
and upload a firmware file.
d: Click "Choose File", select the OpenWRT "initramfs" image and click
"Upload."
2) The Router will flash the OpenWrt initramfs image and reboot. After
booting, LuCI will be available on 192.168.1.1.
3) Log into LuCI as root; there is no password.
4) Optional (but recommended) is to backup the OEM firmware before
continuing; see process below.
5) Complete the Installation by flashing a full OpenWRT image. Note:
you may use the sysupgrade command line tool in lieu of the UI if
you prefer.
a. Choose System -> Backup/Flash Firmware.
b. Click "Flash Image..." under "Flash new firmware image"
c. Click "Browse..." and then select the sysupgrade file.
d. Click Upload to upload the sysupgrade file.
e. Important: uncheck "Keep settings and retain the current
configuration" for this initial installation.
f. Click "Continue" to flash the firmware.
g. The device will reboot and OpenWRT is installed.
Extender (ALLY-00X19K)
1) This device requires a TFTP recovery procedure to do an initial load
of OpenWRT. Start by configuring a computer as a TFTP client:
a. Install a TFTP client (server not necessary)
b. Configure an Ethernet interface to 192.168.1.x/24; don't use .1 or .6
c. Connect the Ethernet to the sole Ethernet port on the X19K.
2) Put the ALLY Extender in TFTP recovery mode.
a. Do this by pressing and holding the reset button on the bottom while
connecting the power.
b. As soon as the LED lights up green (roughly 2-3 seconds), release
the button.
3) Start the TFTP transfer of the Initramfs image from your setup machine.
For example, from Linux:
tftp -v -m binary 192.168.1.6 69 -c put initramfs.bin
4) The Extender will flash the OpenWrt initramfs image and reboot. After
booting, LuCI will be available on 192.168.1.1.
5) Log into LuCI as root; there is no password.
6) Optional (but recommended) is to backup the OEM firmware before
continuing; see process below.
7) Complete the Installation by flashing a full OpenWRT image. Note: you
may use the sysupgrade command line tool in lieu of the UI if you prefer.
a. Choose System -> Backup/Flash Firmware.
b. Click "Flash Image..." under "Flash new firmware image"
c. Click "Browse..." and then select the sysupgrade file.
d. Click Upload to upload the sysupgrade file.
e. Important: uncheck "Keep settings and retain the current
configuration" for this initial installation.
f. Click "Continue" to flash the firmware.
g. The device will reboot and OpenWRT is installed.
Backup the OEM Firmware:
-----------------------
There isn't any downloadable firmware for the ALLY devices on the Amped
Wireless web site. Reverting back to the OEM firmware is not possible
unless we have a backup of the original OEM firmware.
The OEM firmware may be stored on either /dev/mtd3 ("firmware") or
/dev/mtd6 ("oem"). We can't be sure which was overwritten with the
initramfs image, so backup both partitions to be safe.
1) Once logged into LuCI, navigate to System -> Backup/Flash Firmware.
2) Under "Save mtdblock contents," first select "firmware" and click
"Save mtdblock" to download the image.
3) Repeat the process, but select "oem" from the pull-down menu.
Revert to the OEM Firmware:
--------------------------
* U-boot TFTP:
Follow the TFTP recovery steps for the Extender, and use the
backup image.
* OpenWrt "Flash Firmware" interface:
Upload the backup image and select "Force update"
before continuing.
Signed-off-by: Jonathan Sturges <jsturges@redhat.com>
This adds support for the Netgear WAC510 Insight Managed Smart Cloud
Wireless Access Point, an indoor dual-band, dual-radio 802.11ac
business-class wireless AP with integrated omnidirectional antennae
and two 10/100/1000 Mbps Ethernet ports.
For more information see:
<https://www.netgear.com/business/wifi/access-points/wac510>
Specifications:
SoC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM: 256 MiB
Flash1: 2 MiB Winbond W25Q16JV SPI-NOR
Flash2: 128 MiB Winbond W25N01GVZEIG SPI-NAND
Ethernet: Built-in IPQ4018 (SoC, QCA8072 PHY), 2x 1000/100/10 port,
WAN port active IEEE 802.3af/at PoE in
Wireless1: Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 3 dBi antennae
Wireless2: Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 4 dBi antennae
Input: (Optional) Barrel 12 V 2.5 A Power, Reset button SW1
LEDs: Power, Insight, WAN PoE, LAN, 2.4G WLAN, 5G WLAN
Serial: Header J2
1 - 3.3 Volt (Do NOT connect!)
2 - TX
3 - RX
4 - Ground
WARNING: The serial port needs a TTL/RS-232 3.3 volt level converter!
The Serial settings are 115200-8-N-1.
Installation via Stock Web Interface:
BTW: The default factory console/web interface login user/password are
admin/password.
In the web interface navigating to Management - Maintenance - Upgrade -
'Firmware Upgrade' will show you what is currently installed e.g.:
Manage Firmware
Current Firmware Version: V5.0.10.2
Backup Firmware Version: V1.2.5.11
Under 'Upgrade Options' choose Local (alternatively SFTP would be
available) then click/select 'Browse File' on the right side, choose
openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.tar
and hit the Upgrade button below. After a minute or two your browser
should indicate completion printing 'Firmware update complete.' and
'Rebooting AP...'.
Note that OpenWrt will use the WAN PoE port as actual WAN port
defaulting to DHCP client but NOT allowing LuCI access, use LAN port
defaulting to 192.168.1.1/24 to access LuCI.
Installation via TFTP Requiring Serial U-Boot Access:
Connect to the device's serial port and hit any key to stop autoboot.
Upload and boot the initramfs based OpenWrt image as follows:
(IPQ40xx) # setenv serverip 192.168.1.1
(IPQ40xx) # setenv ipaddr 192.168.1.2
(IPQ40xx) # tftpboot openwrt-ipq40xx-generic-netgear_wac510-initramfs-fit-uImage.itb
(IPQ40xx) # bootm
Note: This only runs OpenWrt from RAM and has not installed anything
to flash as of yet. One may permanently install OpenWrt as follows:
Check the MTD device number of the active partition:
root@OpenWrt:/# dmesg | grep 'set to be root filesystem'
[ 1.010084] mtd: device 9 (rootfs) set to be root filesystem
Upload the factory image ending with .ubi to /tmp (e.g. using scp or
tftp). Then flash the image as follows (substituting the 9 in mtd9
below with whatever number reported above):
root@OpenWrt:/# ubiformat /dev/mtd9 -f /tmp/openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.ubi
And reboot.
Dual Image Configuration:
The default U-Boot boot command bootipq uses the U-Boot environment
variables primary/secondary to decide which image to boot. E.g.
primary=0, secondary=3800000 uses rootfs while primary=3800000,
secondary=0 uses rootfs_1.
Switching their values changes the active partition. E.g. from within
U-Boot:
(IPQ40xx) # setenv primary 0
(IPQ40xx) # setenv secondary 3800000
(IPQ40xx) # saveenv
Or from a OpenWrt userspace serial/SSH console:
fw_setenv primary 0
fw_setenv secondary 3800000
Note that if you install two copies of OpenWrt then each will have its
independent configuration not like when switching partitions on the
stock firmware.
BTW: The kernel log shows which boot partition is active:
[ 2.439050] ubi0: attached mtd9 (name "rootfs", size 56 MiB)
vs.
[ 2.978785] ubi0: attached mtd10 (name "rootfs_1", size 56 MiB)
Note: After 3 failed boot attempts it automatically switches partition.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Marcel Ziswiler <marcel@ziswiler.com>
[squashed netgear-tar commit into main and rename netgear-tar for
now, until it is made generic.]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
In setups using VLAN bridge filtering, hostapd may need to communicate using
a VLAN interface on top of the bridge, instead of using the bridge directly
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x ethernet
- eth0
+ Label: Ethernet 1
+ AR8035 ethernet PHY (RGMII)
+ 10/100/1000 Mbps Ethernet
+ 802.3af POE
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ AR8035 ethernet PHY (SGMII)
+ 10/100/1000 Mbps Ethernet
+ used as LAN interface
* 1x USB
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x ethernet
- eth0
+ Label: Ethernet 1
+ AR8035 ethernet PHY (RGMII)
+ 10/100/1000 Mbps Ethernet
+ 802.3af POE
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ AR8031 ethernet PHY (SGMII)
+ 10/100/1000 Mbps Ethernet
+ used as LAN interface
* 1x USB
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
The ath patch number is already large and adding other patch for ath11k
will add more confusion with the patch numbering.
Since the support of ath11k based device is imminent, prepare the mac80211
ath patch dir and split it in the dedicated ath5k, ath9k, ath10k and ath11k
(empty for now).
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
61a71e5e49c3 bridge: dynamically create vlans for hotplug members
cb6ee9608e10 bridge: fix dynamic delete of hotplug vlans
7f199050f395 wireless: pass the real network ifname to the setup script
50381d0a2998 bridge: allow adding/removing VLANs to configured member ports via hotplug
Signed-off-by: Felix Fietkau <nbd@nbd.name>
bddc1db76d0f mt76: mt7915: drop the use of repeater entries for station interfaces
3c90f35dddac mt76: mt7915: add thermal sensor device support
afab0e8202ff mt76: mt7915: add thermal cooling device support
41cf02184699 mt76: mt7615: add thermal sensor device support
2ac6b8762565 mt76: connac: update BA win size in Rx direction
ddb301127291 mt76: mt7921: fix reset under the deep sleep is enabled
e4cbefd1d69a mt76: mt7921: avoid unnecessary consecutive WiFi resets
393eea2034d7 mt76: mt7921: fix invalid register access in wake_work
a15d46407ffa mt76: mt7921: fix OMAC idx usage
e4d267d8e900 mt76: mt7921: enable runtime pm by default
50fd8ce2412a mt76: connac: add bss color support for sta mode
e29058c3c860 mt76: mt7921: return proper error value in mt7921_mac_init
c89c8c347b1e mt76: mt7921: do not schedule hw reset if the device is not running
9f7bb428e587 mt76: mt7921: reset wfsys during hw probe
22ea365913b5 mt76: mt7915: add .offset_tsf callback
ad91f8e8e494 mt76: mt7615: add .offset_tsf callback
6f871f35e3c1 mt76: mt7915: use mt7915_mcu_get_txpower_sku() to get per-rate txpower
597b68b7daa3 mt76: mt7615: remove useless if condition in mt7615_add_interface()
3945264468eb mt76: testmode: fix memory leak in mt76_testmode_alloc_skb
bdcc57a11606 mt76: testmode: remove unnecessary function calls in mt76_testmode_free_skb
a9763452601d mt76: testmode: remove undefined behaviour in mt76_testmode_alloc_skb
4aef2a2be464 mt76: mt7615: fix potential overflow on large shift
d9dd7635b055 mt76: mt7915: use mt7915_mcu_get_mib_info() to get survey data
d740e921758a mt76: mt7921: introduce mac tx done handling
259ddfc7cb73 mt76: mt7921: update statistic in active mode only
757b93f4b179 mt76: mt7921: remove leftover 80+80 HE capability
1fcff599b2e1 mt76: allow hw driver code to overwrite wiphy interface_modes
c55c22e39b7d mt7915: update firmware to 2020110522
10548aef1f45 mt76: mt7915: improve error recovery reliability
ed6b0c79820c mt76: mt7921: set MT76_RESET during mac reset
321443258bea mt76: move mt76_rates in mt76 module
d1652e8af9e1 Revert "mt76: connac: do not schedule wake_work if the runtime-pm is disabled"
4f4cab39ed9f mt76: mt7915: read all eeprom fields from fw in efuse mode
71450535f164 mt76: mt7921: enable hw offloading for wep keys
833d577e430c mt76: mt7921: remove mt7921_get_wtbl_info routine
67b7a22d2b99 mt76: mt7921: enable random mac address during sched_scan
cf1ff7bf4f1b mt76: mt7915: setup drr group for peers
ef2f7aa8745f mt76: mt7615: update radar parameters
b9f09f530223 mt76: mt7915: fix MT_EE_CAL_GROUP_SIZE
Signed-off-by: Felix Fietkau <nbd@nbd.name>
This makes it possible to avoid using a RADIUS server for WPA enterprise authentication
Signed-off-by: John Crispin <john@phrozen.org>
Signed-off-by: Felix Fietkau <nbd@nbd.name>
This allows WPA enterprise roaming in the same mobility domain without any
manual key configuration (aside from radius credentials)
Signed-off-by: Felix Fietkau <nbd@nbd.name>
It allows enforcing a limit on associated stations to be enforced for the
full device, e.g. in order to deal with hardware/driver limitations
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Some drivers advertise it, but it's not supported at the moment
Reported-by: John Thomson <git@johnthomson.fastmail.com.au>
Signed-off-by: Felix Fietkau <nbd@nbd.name>
The colon does not directly follow the "VHT Capabilities" string
Reported-by: John Thomson <git@johnthomson.fastmail.com.au>
Signed-off-by: Felix Fietkau <nbd@nbd.name>
This update only adds one commit:
b102f19bcc53 tests: Opportunistic Wireless Encryption - SA Query
The main reason for the bump is to have a newer PKG_SOURCE_DATE,
so we can reset PKG_RELEASE to 1 (this has not been done for the
most recent bump), and replace it with AUTORELEASE.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
1. Move code above interface generation
It results in more logical order. Device gets its config section
above interface section.
2. Drop the loop
We have separated code handling bridges now so $device should be
guaranteed to contain a single device name.
3. Drop section name
It's not required by netifd or LuCI & it's not needed by this script
as $device contains a single device name now.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
The underlying logread process uses usock() to handle remote connections
which is able to handle both hostnames and IP addresses.
Ref: https://github.com/openwrt/luci/issues/5077
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
Replace "ifname" with "device" as netifd has been recently patches to
used the later one. It's more clear and accurate.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Channel 100 is a valid channel to choose for 80MHz operation. However,
it's assigned to 5500 MHz, not 5550MHz. In fact, there is no channel
assigned to this frequency.
Fix this obbvious typo to allow ACS to select channel 100 for 80 MHz
operation again.
Signed-off-by: David Bauer <mail@david-bauer.net>
The name of the module is 'uleds', not 'leds-uleds'.
Signed-off-by: Evgeny Kolesnikov <evgenyz@gmail.com>
[improve commit title]
Signed-off-by: David Bauer <mail@david-bauer.net>