Prior to performing a PROGRAM LOAD RANDOM DATA operation, a WRITE
ENABLE (06h) command must be issued to change the contents of the
memory array. Following a WRITE ENABLE (06) command, **first a PROGRAM
LOAD (02h or 32h) command must be issued to reset the cache**, then
issue a PROGRAM LOAD RANDOM DATA (84h or 34h) command
This is dirty fix provided to use by MediaTek engineer Sky Huang which
may resolve the "OpenWrt Kiss of Death" issue we've been seeing on the
Linksys E8450 aka. Belkin RT3200. However, it means that everything has
to be re-written with that patch already applied, ie. we need to rebuild
the installer once it is part of snapshot builds to have any effect.
Users already on FIP-in-UBI layout are advised to re-write 'fip' UBI
volume and 'bl2' MTD partition manually once from within Linux after
this fix has been applied.
A similar fix will also be required for U-Boot.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Buffalo WSR-2533DHPL2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MediaTek MT7621A.
Specification:
- SoC : MediaTek MT7621AT
- RAM : DDR3 128 MiB (Winbond W631GG6MB12J)
- Flash : RAW-NAND 128 MiB (Winbond W29N01HVSINF)
- WLAN : 2.4/5 GHz (2x MediaTek MT7615N)
- Ethernet : 10/100/1000 Mbps x4
- Switch : MediaTek MT7530 (SoC)
- LED/keys : 8x/6x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB (J4)
- arrangement : 3.3V, GND, TX, RX from triangle-mark
- settings : 57600n8
- Power : 12VDC 1.5A
Flash instruction using factory.bin image:
1. boot WSR-2533DHPL2 normally with "Router" mode
2. access to the WebI ("http://192.168.11.1/") on the device and open
firmware update page
("管理" -> "ファームウェア更新")
3. select the OpenWrt factory.bin image and click update ("更新実行")
button
Attention: do not use "factory-uboot.bin" image
4. Wait ~120 seconds to complete flashing
Flash instruction using initramfs image:
1. prepare the TFTP server with the initramfs image renamed to
"linux.trx-recovery" and IP address "192.168.11.2"
2. press the "AOSS" button while powering on the WSR-2533DHPL2
3. after 10 seconds, release the "AOSS" button, WSR-2533DHPL2 downloads
the initramfs image and boot with it automatically
4. on the initramfs image, download the factory-uboot.bin image to the
device and perform sysupgrade with it and "-F" option
5. wait ~120 seconds to complete flashing
Notes:
- There are 2x factory*.bin images for different purposes.
- factory.bin : for flashing on OEM WebUI
- factory-uboot.bin: for flashing on OEM bootloader or initramfs image
factory-uboot.bin is useful for recoverying the device, or refreshing
when the kernel partition is expanded in the future. sysupgrade on
this device accepts factory-uboot.bin with option "-F", but on that
situation, user configurations won't be kept, so it's not for normal
use.
MAC addresses:
LAN : 18:EC:E7:xx:xx:E0 (board_data, "mac" (text))
WAN : 18:EC:E7:xx:xx:E0 (board_data, "mac" (text))
2.4 GHz: 18:EC:E7:xx:xx:E1 (Factory, 0x4 (hex))
5 GHz : 18:EC:E7:xx:xx:E4 (Factory, 0x8004 (hex))
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Buffalo WSR-2533DHPLS is a 2.4/5 GHz band 11ac router, based on MediaTek
MT7621A.
Very similar to Buffalo WSR-2533DHPL, but with NAND, different GPIO
and TRX partitions.
Specification:
- SoC : MediaTek MT7621AT
- RAM : DDR3 256 MiB (Samsung K4B2G1646F-BYMA)
- Flash : RAW-NAND 128 MiB
(Winbond W29N01HV or KIOXIA TC58BVG0S3HTAI0)
- WLAN : 2.4/5 GHz (2x MediaTek MT7615N)
- Ethernet : 10/100/1000 Mbps
- Switch : MediaTek MT7530 (SoC) 4 ports
- LED/keys : 8x/6x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB (J4)
- arrangement : 3.3V, GND, TX, RX from triangle-mark
- settings : 115200n8
- Power : 12VDC 1.5A
Flash instruction using factory.bin image:
1. boot WSR-2533DHPLS normally with "Router" mode
2. access to the WebI ("http://192.168.11.1/") on the device and open
firmware update page
("管理" -> "ファームウェア更新")
3. select the OpenWrt factory.bin image and click update ("更新実行")
button
Attention: do not use "factory-uboot.bin" image
4. Wait ~120 seconds to complete flashing
Flash instruction using initramfs image:
1. prepare the TFTP server with the initramfs image renamed to
"linux.trx-recovery" and IP address "192.168.11.2"
2. press the "AOSS" button while powering on the WSR-2533DHPLS
3. after 10 seconds, release the "AOSS" button, WSR-2533DHPLS downloads
the initramfs image and boot with it automatically
4. on the initramfs image, download the factory-uboot.bin image to the
device and perform sysupgrade with it and "-F" option
5. wait ~120 seconds to complete flashing
Notes:
- The embedded addresses in eeprom data in Factory partition have
Buffalo's OUI, but they don't match with the actual addresses
assigned to wlan devices. So fixup addresses by the user-space
script.
root@localhost:/# hexdump -C /dev/mtdblock3 | grep "^0000[08]000\s"
00000000 15 76 a0 00 88 57 ee bc 01 a8 15 76 c3 14 00 80 |.v...W.....v....|
00008000 15 76 a0 00 88 57 ee bc 01 f8 15 76 c3 14 00 80 |.v...W.....v....|
See "MAC addresses" below for actual addresses.
- There are 2x factory*.bin images for different purposes.
- factory.bin : for flashing on OEM WebUI
- factory-uboot.bin: for flashing on OEM bootloader or initramfs image
factory-uboot.bin is useful for recoverying the device, or refreshing
when the kernel partition is expanded in the future. sysupgrade on
this device accepts factory-uboot.bin with option "-F", but on that
situation, user configurations won't be kept, so it's not for normal
use.
MAC addresses:
LAN : 90:96:F3:xx:xx:30 (board_data, "mac" (text))
WAN : 90:96:F3:xx:xx:30 (board_data, "mac" (text))
2.4 GHz: 90:96:F3:xx:xx:31
5 GHz : 90:96:F3:xx:xx:38
[original work]
Signed-off-by: Audun-Marius Gangstø <audun@gangsto.org>
[convert to ubi, fix/improve DT, add sysupgrade support]
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Switch trx parser to parser_trx of Linux Kernel from mtdsplit_trx to
split firmware partition using model-specific trx magic number on
some Buffalo devices.
This change is tested on Buffalo WSR-2533DHPL.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Move Build/buffalo-trx to image-commands.mk from image/mt7622.mk to use
that definition from ramips as well.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
This pull request ports Ruijie RG-X60 Pro router support to the main branch.
Parameters:
- SoC : MediaTek MT7986A Quad-core ARM Cortex-A53 2.0GHz
- RAM : DDR3 512MiB (W634GU6QB)
- Flash : SPI-NAND 128 MiB (W25N01GVZEIG)
- WLAN : MediaTek MT7986A integration dual-band WiFi 6
- 2.4 GHz : b/g/n/ax, MIMO 4x4
- 5 GHz : a/n/ac/ax, MIMO 4x4
- Ethernet : 10/100/1000 Mbps x4 (MediaTek MT7531AE)
2500Mbps x 1 (Realtek RTL8221B-VB-CG)
- UART : through-hole on PCB
- [J500] GND, TX, RX, 3.3V (115200n1)
- Buttons : Mesh, Reset
- LEDs : 1x Power (Blue)
1x Turbo (Purple)
- Power : 12 VDC, 3 A
How to Installation:
1. Remove the case and connect the TTL cable to the corresponding position.
2. Power on the device and quickly press "down" on the keyboard, then
U-Boot will stay in the menu.
3. Select "1. Upgrade Firmware", select "0. TFTP Client(Default)".
4. Input the IP address, input the Openwrt image file name to be
flashed, start the TFTP server, and press "Enter".
5. Wait for the flashing to complete.
How return to stock:
1. Remove the case and connect the TTL cable to the corresponding
position.
2. Power on the device and quickly press "down" on the keyboard, then
U-Boot will stay in the menu.
3. Select "1. Upgrade Firmware", select "0. TFTP Client(Default)".
4. Input the IP address, input the Stock “E-WEBOS” image file name to
be flashed, start the TFTP server, and press "Enter".
5. Wait for the flashing to complete.
About recovery:
Connect uart, use u-boot menu to flash stock firmware image or boot
OpenWrt initramfs image.
About MAC Address:
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| WAN | 10:82:3D:XX:XX:9E | label |
| LAN | 10:82:3D:XX:XX:9F | label+1 |
| WLAN 2g | 10:82:3D:XX:XX:A0 | label+2 |
| WLAN 5g | 10:82:3D:XX:XX:A1 | label+3 |
+---------+-------------------+-----------+
Signed-off-by: Ashley Lee <code@emtips.net>
The Yafut tool now has limited capabilities for working on filesystem
images stored in regular files. This enables preparing Yaffs2 images
for devices with NOR flash using upstream Yaffs2 filesystem code instead
of the custom kernel2minor tool.
Since minimizing the size of the resulting filesystem image size is
important and upstream Yaffs2 code requires two allocator reserve blocks
to be available when writing a file to the filesystem, a trick is
employed while preparing an OpenWRT image: the blank filesystem image
that Yafut operates on initially contains two extra erase blocks that
are chopped off after the kernel file is written. This is safe to do
because Yaffs2 has a true log structure and therefore only ever writes
sequentially (and the size of the kernel file is known beforehand).
While the two extra erase blocks are necessary for writes, Yaffs2 code
seems to be perfectly capable of reading back files from a "truncated"
filesystem that does not contain these extra erase blocks.
In terms of image size, this new approach is only marginally worse than
the current kernel2minor-based one: specifically, upstream Yaffs2 code
needs to write three object headers (each of which takes up an entire
data chunk) when the kernel file is written to the filesystem:
- an object header for the kernel file when it is created,
- an object header for the root directory when the kernel file is
created,
- an updated object header for the kernel file when the latter is
fully written (so that its new size can be recorded).
kernel2minor only writes two of these headers, which is the absolute
minimum required for reading the file back. This means that the
Yafut-based approach causes firmware images to be at most one erase
block (64 kB) larger than those created using kernel2minor, but only in
the very unfortunate scenario where the size of the kernel file is
really close to a multiple of the erase block size.
The rest of the calculations performed when the empty filesystem image
is first prepared stems from the Yaffs2 layout used by MikroTik NOR
devices: each 65,536-byte erase block contains 63 chunks, each of which
consists of 1024 bytes of data followed by 16-byte Yaffs tags without
ECC data; each such group of 63 chunks is then followed by 16 bytes of
padding, which translates to "-C 1040 -B 64k -E" in the Yafut
invocation. Yaffs2 checkpoints and summaries are disabled (using
Yafut's -P and -S switches, respectively) as they are merely performance
optimizations that require extra storage space. The -L and -M switches
are used to force little-endian or big-endian byte order (respectively)
in the resulting filesystem image, no matter what byte order the build
host uses. The tr invocation is used to ensure that the filesystem
image is initialized with 0xFF bytes (which are an indicator of unused
space for Yaffs2 code).
Signed-off-by: Michał Kępień <openwrt@kempniu.pl>
Link: https://github.com/openwrt/openwrt/pull/13453
Signed-off-by: Robert Marko <robimarko@gmail.com>
Instead of extracting WiFi precal as well as MAC addresses in userspace
use recently introduced NVMEM-on-UBI instead.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Tested-by: Christian Lamparter <chunkeey@gmail.com>
Hardware:
- SoC: MediaTek MT7628AN (MIPS 580MHz)
- Flash: 16 MiB XMC 25QH128CH10
- RAM: 128 MiB ESMT M14D1G1664A
- WLAN: 2.4 GHz (MT7628), 5 GHz (MT7613BEN 802.11ac)
- Ethernet: 1x 10/100 Mbps WAN, 1x 10/100 LAN (MT7628)
- USB 2.0 port
- Buttons: 1 Reset button, 1 slider button
- LEDs: 1x Red, 1x White
- Serial console: unpopulated header, 115200 8n1
- Power: 5 VDC, 2 A
MAC addresses:
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| WAN | 80:af:ca:xx:xx:x0 | label |
| LAN | 80:af:ca:xx:xx:x0 | label |
| WLAN 2g | 80:af:ca:xx:xx:x0 | label |
| WLAN 5g | 80:af:ca:xx:xx:x2 | label+2 |
+---------+-------------------+-----------+
Installation:
The installation must be done via TFTP by disassembling the router.
On other occasions Cudy has distributed intermediate firmware to make
installation easier, and so I recommend checking the Wiki for this
device if there is a more convenient solution than the one below.
To install using TFTP:
1. Upgrade to a beta firmware (signed by Cudy) that can be downloaded
from the wiki. This is required in order to use an unlocked u-boot.
2. Connect to UART.
3. While the router is turning on, press 1.
4. Connect to LAN and set your IP to 192.168.1.88/24. Configure a TFTP
server and an OpenWrt initramfs-kernel.bin firmware file as recovery.bin.
5. Press Enter three times. Verify the filename.
6. If you can reach LuCI or SSH now, just use the sysupgrade image with
the 'Keep settings' option turned off.
If you don't want to use the beta firmware nor the unlocked u-boot, you
can install the firmware writing the sysupgrade image on the firmware
partition of the SPI flash.
Signed-off-by: Luis Mita <luis@luismita.com>
For MT7620, we should always prevent main ethernet interface from
going down due to phy link changes. And the ralink net driver does
not support cable test function, so this patch won't change any
behavior.
Ref:
6fcba5eec3 ("ramips: port 0034-NET-multi-phy-support.patch to 5.4")
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Link: https://github.com/openwrt/openwrt/pull/15591
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
CI tells us that we need to, so lets refresh them.
Signed-off-by: Mieczyslaw Nalewaj <namiltd@yahoo.com>
Link: https://github.com/openwrt/openwrt/pull/15010
Signed-off-by: Robert Marko <robimarko@gmail.com>
Select 6.6 as testing kernel on bcm47xx.
Signed-off-by: Mieczyslaw Nalewaj <namiltd@yahoo.com>
Link: https://github.com/openwrt/openwrt/pull/15010
Signed-off-by: Robert Marko <robimarko@gmail.com>
Since 6.1 is now default, drop 5.15 support.
Signed-off-by: Mieczyslaw Nalewaj <namiltd@yahoo.com>
Link: https://github.com/openwrt/openwrt/pull/15010
Signed-off-by: Robert Marko <robimarko@gmail.com>
Default to kernel 6.1 on bcm47xx.
Signed-off-by: Mieczyslaw Nalewaj <namiltd@yahoo.com>
Link: https://github.com/openwrt/openwrt/pull/15010
Signed-off-by: Robert Marko <robimarko@gmail.com>
Refresh kernel patches. Remove patches already included in the kernel.
Signed-off-by: Mieczyslaw Nalewaj <namiltd@yahoo.com>
Link: https://github.com/openwrt/openwrt/pull/15010
Signed-off-by: Robert Marko <robimarko@gmail.com>
This is an automatically generated commit.
When doing `git bisect`, consider `git bisect --skip`.
Signed-off-by: Mieczyslaw Nalewaj <namiltd@yahoo.com>
Link: https://github.com/openwrt/openwrt/pull/15010
Signed-off-by: Robert Marko <robimarko@gmail.com>
Use ath11k_patch_mac and ath11k_set_macflag functions
instead of fix_wifi_mac script.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Link: https://github.com/openwrt/openwrt/pull/15580
Signed-off-by: Robert Marko <robimarko@gmail.com>
Add support for D-Link DIR-2055 A1 based on similarities to DIR-1960 A1,
as well as various DIR-8xx A1 models. Existing DIR-1960 A1 openwrt
"factory" firmware installs without modifications via the D-Link Recovery
GUI and has no known incompatibilities with the DIR-2055 A1.
Changes to be committed:
new file: target/linux/ramips/dts/mt7621_dlink_dir-2055-a1.dts
modified: target/linux/ramips/image/mt7621.mk
modified: target/linux/ramips/mt7621/base-files/etc/board.d/01_leds
modified: target/linux/ramips/mt7621/base-files/lib/upgrade/platform.sh
Specifications:
Board: Not known
SoC: MediaTek MT7621 Family (MT7621AT)
RAM: 256 MB (Micron 9OK17 D9PTK, should be DDR3 MT41K128M16JT-125)
Flash: 128 MB (Winbond W29N01HVSINA)
WiFi: MediaTek MT7615 Family (MT7615N x2)
Switch: 1 WAN, 4 LAN (Gigabit)
Ports: 1 USB 3.0 (front)
Buttons: Reset, WiFi Toggle, WPS
LEDs: Power (white/orange), Internet (white/orange),
WiFi 2.4G (white), WiFi 5G (white)
Notes:
Only known difference vs. the DIR-1960 A1 is that the DIR-2055 A1
doesn't have a USB activity LED
Serial port:
Tested to be identical to various DIR-8xx A1 models with a similar
enclosure/pcb design:
Parameters: 57600, 8N1, 3.3V TTL no flow control
Location: J1 header (close to the Reset, WiFi and WPS buttons)
Pinout: 1 - VCC 2 - RXD 3 - TXD 4 - GND
Did not connect VCC when using
Installation:
D-Link Recovery GUI: power down the router, press and hold the reset
button, then re-plug it. Keep the reset button pressed until the power
LED starts flashing orange, manually assign a static IP address under
the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to
http://192.168.0.1
Some modern browsers may have problems flashing via the Recovery GUI,
if that occurs consider uploading the firmware through cURL:
curl -v -i -F "firmware=@file.bin" 192.168.0.1
Signed-off-by: Keith Harrison <keithh@protonmail.com>
The option CONFIG_SND_DRIVERS is activated by default in the generic
configuration, do not deactivate it for tegra. This fixes the build of
the kmod-sound-dummy package on tegra.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Split the kmod-video-dma into kmod-video-dma-sg and
kmod-video-dma-contig. The old one contained two kmods, but sometimes
only one of them is build which caused problems. The configuration
options are not manually selectable in the kernel and hidden in OpenWrt.
Currently this causes build failures on some targets.
Fixes: 4d7cbe0a55 ("kernel: video-dma: explicitly state packaged modules")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
We don't have any passive trip point hence we can set the polling delay
for passive trip to 0 effectively disabling this polling.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Split thermal zone for puzzle chassis. Thermal platform supports only
one sensor per thermal zone.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Fix missing property in puzzle thermal. The thing was never supposed to
work.
Property #thermal-sensor-cells was missing from the puzzle hwmon, making
the entire thermal platform referencing that fail to probe with -EINVAL.
The puzzle hwmon expose 2 termistor but they probably use an userspace
downstream utility to configure and handle thermal. For this reason we
really don't know what they use the sensor for or when it's attached.
We use them to sensor if the Chassis gets too hot due to ambient
temperature and generic components getting too warm.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
- Make step_wise thermal governor respect hysteresis
This is done by importing a downstream patch, backporting the same feature
now present in Linux v6.10+ would be too messy.
- Introduce thermal zone for the WT61P803 uC (chassis and board sensors)
- Introduce thermal zones for AQR NBase-T PHYs
- No longer modify existing SoC thermal zones (which are now only in charge
for emergency shutdown, and can be interrupt driven instead of polled)
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Hardware
--------
CPU: Freescale P1020 2xe500 PPC
RAM: 256M DDR3 (Micron MT41J64M16JT-15E:G "D9MNJ")
NAND: 128M (Micron 2CA1)
BTN: 1x Reset
LED: Power - ETH - Radio1 - Radio2
UART: RJ-45 Cisco Pinout - 115200 8N1
Installation
------------
NOTE: You can find a repo with up-to-date instructions as well as
the required files here:
https://github.com/blocktrron/msm460-flashing
Required files
==============
You need a command-files as well as a U-Boot image.
The command-file has the following content (padded to 131072 bytes).
If you copy paste these, remove the newlines!
```
U-BOOT setenv ethaddr 02:03:04:05:06:07; setenv ipaddr 192.168.1.1;
setenv serverip 192.168.1.66; tftpboot 0x3000000 msm460-uboot.bin;
nand device; nand erase 0 0xC0000; nand write 0x3000000 0x0 0xC0000; reset
```
You can download the required U-Boot from this repository:
https://github.com/blocktrron/u-boot-msm/releases
Preparation
===========
Prepare a TFTP server serving two files:
- U-Boot NAND image as `msm460-uboot.bin`.
- OpenWrt factory image as `msm460-factory.bin`
- Command-file names `commands.tftp`
You can start a TFTP server in the current directory using dnsmasq:
```bash
sudo dnsmasq --no-daemon --listen-address=0.0.0.0 \
--port=0 --enable-tftp=enxd0 --tftp-root="$(pwd)" \
--user=root --group=root
```
Replace `enxd0` with the name of your network interface.
Procedure
=========
1. Assign yourself the IP-Address 192.168.1.66/24.
3. Connect the Router to the PC while keeping the reset button
pressed.
4. The LEDs will eventually begin to flash.
They will start to flash faster after around 15 seconds.
5. Release the reset button.
6. Start a new shell
7. Make sure you are currently in the directory where the tftp server
is located.
8. Run the following command:
```bash
tftp 192.168.1.1 -m binary -c put commands.tftp nflashd.cccc9999
```
You get the message "Transfer timed out."
To find out if you have been successful, please check the
blinking LED Pattern.
Signed-off-by: David Bauer <mail@david-bauer.net>
Add a universal zImage which can be loaded by mpc85xx boards at
load address 0x3000000. This allows boards to boot kernels larger than
16MB even if the image is loaded temporarily from NAND at offset
0x1000000 which some bootloaders do by default.
Signed-off-by: David Bauer <mail@david-bauer.net>
Dual-slot NAS based on Marvell Kirkwood.
Specifications:
- Marvell 88F6702 @1GHz
- 256Mb RAM
- 128Mb NAND
- 1x GbE LAN (Marvell 88E1318R)
- 1x USB 2.0
- 2x SATA
- Weltrend WT69P3 ("supervisor" MCU chip)
- Serial on J2 (115200,8n1)
- Newer bootROM so kwboot-ing via serial is possible
Notes:
- The Weltrend MCU is controlled by the package added in utils/dns320l-mcu.
- The original MAC address is stored in the "mini firmware" image's first
17 bytes.
- Compared to the original MTD layout, the uImage+rootfs are now stored in
a common ubi partition.
Installation:
1. Serial console
- Connect your levelshifter to the serial console
on J2 (refer to the wiki page for pinout)
2. Update u-boot
- Download the u-boot.kwb image for the device
- Powercycle the NAS
- Run "kwboot -b u-boot-dns320l/u-boot.kwb /dev/ttyUSB0 -p"
- Connect to the serial console with minicom
- tftp 0x0800000 u-boot-dns320l/u-boot.kwb
(Please note that "PHY reset timed out" seems to be customary
on kirkwood devices, the egiga0 interface works regardless.)
- nand erase 0x0 100000
- nand write 0x0800000 0x0 0x100000
- reset
3. Install OpenWrt
- Boot up the initramfs image
- tftpboot 0x800000 openwrt-kirkwood-generic-dlink_dns320l-initramfs-uImage; bootm 0x800000
- Download the sysupgrade image and perform sysupgrade
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
Reviewed-by: Pawel Dembicki <paweldembicki@gmail.com>
Upstream commit 83b7f0b8aeab ("ARM: tegra: Add OPP tables and power
domains to Tegra20 device-trees") added power domains to all devices
supporting power management and one of them is Video Decoder Engine.
Because of lacking driver for VDE, its power gate couldn't be driven
which inhibited reboot of the whole device.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Simple refresh to get rid of any fuzz and drop serial patch. With few
bug fixes around tegra serial driver the spurious IRQ didn't appear any
more during test. Let's see how long that'll last.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
This is an automatically generated commit which aids following Kernel patch
history, as git will see the move and copy as a rename thus defeating the
purpose.
For the original discussion see:
https://lists.openwrt.org/pipermail/openwrt-devel/2023-October/041673.html
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
This is an automatically generated commit.
When doing `git bisect`, consider `git bisect --skip`.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Use a simple Shell script like on filogic target to get rid of downstream
patch for the Ethernet driver which was rejected upstream long ago.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This adds the legacy /dev/fb* device file for kernel 6.6 again.
Linux upstream commit 701d2054fa31 ("fbdev: Make support for
userspace interfaces configurable") made this configurable and we
deactivated this option by default for kernel 6.6. On x86 we are not
space constrained and some users need this legacy interface.
Fixes: #15222
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Backport commit fixing detection of SFP modules which has been broken
since Linux 6.4 for some modules.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
In preparation to update to upcoming Linux 6.6.33 move accepted patches
from mediatek target to backport folder, so moving to newer Linux 6.6
releases becomes easier and also other patches on top can be applied
more easily.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Make sure all patches can again be applied using 'git am' on the
corresponding linux-stable git tree.
Fixes: a7ae4ed0a3 ("kernel: fix tools build breakage on macos with x86")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This is an automatically generated commit which aids following Kernel patch
history, as git will see the move and copy as a rename thus defeating the
purpose.
For the original discussion see:
https://lists.openwrt.org/pipermail/openwrt-devel/2023-October/041673.html
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
Fix compile error:
drivers/dma/ralink-gdma.c: In function 'gdma_dma_config':
drivers/dma/ralink-gdma.c:197:40: error: 'struct dma_slave_config' has no member named 'slave_id'
197 | chan->slave_id = config->slave_id;
| ^~
drivers/dma/ralink-gdma.c:206:40: error: 'struct dma_slave_config' has no member named 'slave_id'
206 | chan->slave_id = config->slave_id;
| ^~
make[8]: *** [scripts/Makefile.build:243: drivers/dma/ralink-gdma.o] Error 1
ref: https://lore.kernel.org/all/20211122222203.4103644-1-arnd@kernel.org/
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
The gdma driver has been removed from the upstream. Let's move it
to the local files. This patch also removed unsupported compatible
string and sub-target.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Add missing ';;' to the end of shell switch case statement.
Fixes: c71b68acdd ("mediatek: filogic: add Adtran SmartRG Mount Stuart series")
Reported-by: @gl-dude
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Disable image building for the board, since the kernel of the main branch
is to big to fit into the kernel partition.
Signed-off-by: Nick Hainke <vincent@systemli.org>
Dell/SonicWall APL26-0AE (marketed as SonicPoint ACe) is a dual band
wireless access point. End of life as of 2022-07-31.
Specification
SoC: QualcommAtheros QCA9550
RAM: 256 MB DDR2
Flash: 32 MB SPI NOR
WIFI: 2.4 GHz 3T3R integrated
5 GHz 3T3R QCA9890 oversized Mini PCIe card
Ethernet: 2x 10/100/1000 Mbps QCA8334
port labeled lan1 is PoE capable (802.3at)
USB: 1x 2.0
LEDs: LEDs: 6x which 5 are GPIO controlled and two of them are dual color
Buttons: 2x GPIO controlled
Serial: RJ-45 port, SonicWall pinout
baud: 115200, parity: none, flow control: none
Before flashing, be sure to have a copy of factory firmware, in case You
wish to revert to original firmware.
All described procedures were done in following environment:
ROM Version: SonicROM (U-Boot) 8.0.0.0-11o
SafeMode Firmware Version: SonicOS 8.0.0.0-14o
Firmware Version: SonicOS 9.0.1.0
In case of other versions, following installation instructions might be
ineffective.
Installation
1. Prepare TFTP server with OpenWrt sysupgrade image and rename that
image to "sp_fw.bin".
2. Connect to one of LAN ports.
3. Connect to serial port.
4. Hold the reset button (small through hole on side of the unit),
power on the device and when prompted to stop autoboot, hit any key.
The held button can now be released.
5. Alter U-Boot environment with following commands:
setenv bootcmd bootm 0x9F110000
saveenv
6. Adjust "ipaddr" (access point, default is 192.168.1.1) and "serverip"
(TFTP server, default is 192.168.1.10) addresses in U-Boot
environment, then run following commands:
tftp 0x80060000 sp_fw.bin
erase 0x9F110000 +0x1EF0000
cp.b 0x80060000 0x9F110000 $filesize
7. After successful flashing, execute:
boot
8. The access point will boot to OpenWrt. Wait few minutes, until the
wrench LED will stop blinking, then it's ready for configuration.
Known issues
Initramfs image can't be bigger than specified kernel size, otherwise
bootloader will throw LZMA decompressing error. Switching to lzma-loader
should workaround that.
This device has Winbond 25Q256FVFG and doesn't have reliable reset, which
causes hang on reboot, thus broken-flash-reset needs to be added. This
property addition causes dispaly of "scary" warning on each boot, take
this warnig into consideration.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
After the spliting dts folder of ARM architecture in upstream,
layerscape routines need to be adjusted for new solution.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Mostly done by 'make kernel_oldconfig'.
armv8_64b has added one entry manually:
CONFIG_CRYPTO_CURVE25519=y
as workaround for error:
aarch64-openwrt-linux-musl-ld: crypto/crypto_engine.o: in function
`crypto_engine_register_kpp':
crypto_engine.c:687: undefined reference to `crypto_register_kpp'
crypto_engine.c:687:(.text+0x57c): relocation truncated to fit:
R_AARCH64_CALL26 against undefined symbol `crypto_register_kpp'
aarch64-openwrt-linux-musl-ld: crypto/crypto_engine.o: in function
`crypto_engine_unregister_kpp':
crypto/crypto_engine.c:693: undefined reference to `crypto_unregister_kpp'
crypto_engine.c:693:(.text+0x5a0): relocation truncated to fit:
R_AARCH64_CALL26 against undefined symbol `crypto_unregister_kpp'
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
This is an automatically generated commit which aids following Kernel patch history,
as git will see the move and copy as a rename thus defeating the purpose.
See: https://lists.openwrt.org/pipermail/openwrt-devel/2023-October/041673.html
for the original discussion.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
This is an automatically generated commit.
During a `git bisect` session, `git bisect --skip` is recommended.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Fortinet FortiWiFi 51E (FWF-51E) is a UTM with 1x WLAN and 1x SSD, based
on Armada 385 (88F6820).
Specification:
- SoC : Marvell Armada 385 88F6820
- RAM : DDR3 2 GiB (4x Micron MT41K512M8DA-107, "D9SGQ")
- Flash : SPI-NOR 128 MiB (Macronix MX66L1G45GMI-10G)
- SSD : mSATA SSD 32 GB (A-DATA XM21E (AXM21ES3-32GM-B))
- mode : SATA III 6Gbps
- power : 3.3 VDC, 3.1 W (Max.)
- Ethernet : 7x 10/100/1000 Mbps
- LAN 1-5 : Marvell 88E6176
- WAN 1, 2 : Marvell 88E1512 (2x)
- WLAN : Fortinet EMP7618-FT (Atheros AR9382 (2T2R))
- interface : MiniPCIe
- LEDs/Keys : 18x/1x
- UART : "CONSOLE" port (RJ-45, RS-232C level)
- port : ttyS0
- settings : 9600bps 8n1
- assignment : 1:NC , 2:NC , 3:TXD, 4:GND,
5:GND, 6:RXD, 7:NC , 8:NC
- note : compatible with Cisco console cable
- HW Monitoring: nuvoTon NCT7802Y
- Power : 12 VDC, 2 A
- plug : Molex 5557-02R
Flash instruction using initramfs image:
1. Power on FWF-51E and interrupt to show bootmenu
2. Call "[I]: System information." -> "[S]: Set serial port baudrate."
and set baudrate to 9600 bps
3. Call "[R]: Review TFTP parameters.", check TFTP parameters and
connect computer to "Image download port" in the parameters
4. Prepare TFTP server with the parameters obtained above
5. Rename OpenWrt initramfs image to "image.out" and put to TFTP
directory
6. Call "[T]: Initiate TFTP firmware transfer." to download initramfs
image from TFTP server
7. Type "R" key when the following message is showed, to boot initramfs
image without flashing to spi-nor flash
"Save as Default firmware/Backup firmware/Run image without saving:[D/B/R]?"
8. On initramfs image, backup mtd if needed
minimum:
- "firmware-info"
- "kernel"
- "rootfs"
9. On initramfs image, upload sysupgrade image to the device and perform
sysupgrade
10. Wait ~200 seconds to complete flashing and rebooting.
If the device is booted with stock firmware, login to bootmenu and
call "[B]: Boot with backup firmware and set as default." to set the
first OS image as default and boot it.
Notes:
- Both colors of Bi-color LEDs on the front panel cannot be turned on at
the same time.
- "PWR" and "Logo" LEDs are connected to power source directly.
- The following partitions are added for OpenWrt.
These partitions are contained in "uboot" partition (0x0-0x1fffff) on
stock firmware.
- "firmware-info"
- "dtb"
- "u-boot-env"
- "board-info"
Image header for bootmenu tftp:
0x0 - 0xf : ?
0x10 - 0x2f : Image Name
0x30 - 0x17f: ?
0x180 - 0x183: Kernel Offset*
0x184 - 0x187: Kernel Length*
0x188 - 0x18b: RootFS Offset (ext2)*
0x18c - 0x18f: RootFS Length (ext2)*
0x190 - 0x193: DTB Offset
0x194 - 0x197: DTB Length
0x198 - 0x19b: Data Offset (jffs2)
0x19c - 0x19f: Data Length (jffs2)
0x1a0 - 0x1ff: ?
*: required for initramfs image
MAC addresses:
(eth0): 90:6C:AC:xx:xx:98 (board-info (OpenWrt), 0xd880 (hex))
WAN 1 : 90:6C:AC:xx:xx:99
WAN 2 : 90:6C:AC:xx:xx:9A
LAN 1 : 90:6C:AC:xx:xx:9B
LAN 2 : 90:6C:AC:xx:xx:9C
LAN 3 : 90:6C:AC:xx:xx:9D
LAN 4 : 90:6C:AC:xx:xx:9E
LAN 5 : 90:6C:AC:xx:xx:9F
WLAN : 88:DC:96:xx:xx:xx (MiniPCIe Card)
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Tested-by: Raylynn Knight <rayknight@me.com>
Fortinet FortiWiFi 50E-2R (FWF-50E-2R) is a UTM with 2x WLAN, based on
Armada 385 (88F6820).
Specification:
- SoC : Marvell Armada 385 88F6820
- RAM : DDR3 2 GiB (4x Nanya NT5CC512M8EN-EK)
- Flash : SPI-NOR 128 MiB (Macronix MX66L1G45GMI-10G)
- Ethernet : 7x 10/100/1000 Mbps
- LAN 1-5 : Marvell 88E6176
- WAN 1, 2 : Marvell 88E1512 (2x)
- WLAN : Gemtek WMDQ-177ACN (Qualcomm Atheros QCA9892 (2T2R))
(2x)
- interface : MiniPCIe
- LEDs/Keys : 18x/1x
- UART : "CONSOLE" port (RJ-45, RS-232C level)
- port : ttyS0
- settings : 9600bps 8n1
- assignment : 1:NC , 2:NC , 3:TXD, 4:GND,
5:GND, 6:RXD, 7:NC , 8:NC
- note : compatible with Cisco console cable
- HW Monitoring: nuvoTon NCT7802Y
- Power : 12 VDC, 2.5 A
- plug : Molex 5557-02R
Flash instruction using initramfs image:
1. Power on FWF-50E-2R and interrupt to show bootmenu
2. Call "[I]: System information." -> "[S]: Set serial port baudrate."
and set baudrate to 9600 bps
3. Call "[R]: Review TFTP parameters.", check TFTP parameters and
connect computer to "Image download port" in the parameters
4. Prepare TFTP server with the parameters obtained above
5. Rename OpenWrt initramfs image to "image.out" and put to TFTP
directory
6. Call "[T]: Initiate TFTP firmware transfer." to download initramfs
image from TFTP server
7. Type "R" key when the following message is showed, to boot initramfs
image without flashing to spi-nor flash
"Save as Default firmware/Backup firmware/Run image without saving:[D/B/R]?"
8. On initramfs image, backup mtd if needed
minimum:
- "firmware-info"
- "kernel"
- "rootfs"
9. On initramfs image, upload sysupgrade image to the device and perform
sysupgrade
10. Wait ~200 seconds to complete flashing and rebooting.
If the device is booted with stock firmware, login to bootmenu and
call "[B]: Boot with backup firmware and set as default." to set the
first OS image as default and boot it.
Notes:
- Both colors of Bi-color LEDs on the front panel cannot be turned on at
the same time.
- "PWR" and "Logo" LEDs are connected to power source directly.
- The following partitions are added for OpenWrt.
These partitions are contained in "uboot" partition (0x0-0x1fffff) on
stock firmware.
- "firmware-info"
- "dtb"
- "u-boot-env"
- "board-info"
Image header for bootmenu tftp:
0x0 - 0xf : ?
0x10 - 0x2f : Image Name
0x30 - 0x17f: ?
0x180 - 0x183: Kernel Offset*
0x184 - 0x187: Kernel Length*
0x188 - 0x18b: RootFS Offset (ext2)*
0x18c - 0x18f: RootFS Length (ext2)*
0x190 - 0x193: DTB Offset
0x194 - 0x197: DTB Length
0x198 - 0x19b: Data Offset (jffs2)
0x19c - 0x19f: Data Length (jffs2)
0x1a0 - 0x1ff: ?
*: required for initramfs image
MAC addresses:
(eth0): 90:6C:AC:xx:xx:98 (board-info (OpenWrt), 0xd880 (hex))
WAN 1 : 90:6C:AC:xx:xx:99
WAN 2 : 90:6C:AC:xx:xx:9A
LAN 1 : 90:6C:AC:xx:xx:9B
LAN 2 : 90:6C:AC:xx:xx:9C
LAN 3 : 90:6C:AC:xx:xx:9D
LAN 4 : 90:6C:AC:xx:xx:9E
LAN 5 : 90:6C:AC:xx:xx:9F
WLAN 1: 1C:49:7B:xx:xx:xx (MiniPCIe Card)
WLAN 2: 1C:49:7B:xx:xx:xx (MiniPCIe Card)
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Tested-by: Raylynn Knight <rayknight@me.com>
Fortinet FortiGate 52E (FG-52E) is a UTM, based on Armada 385 (88F6820).
Specification:
- SoC : Marvell Armada 385 88F6820
- RAM : DDR3 2 GiB (4x Micron MT41K512M8DA-107, "D9SGQ")
- Flash : SPI-NOR 128 MiB (Macronix MX66L1G45GMI-10G)
- SSD : mSATA SSD 64 GB (2x A-DATA XM21E (AXM21ES3-32GM-B))
- mode : SATA III 6Gbps
- power : 3.3 VDC, 3.1 W (Max.)
- Ethernet : 7x 10/100/1000 Mbps
- LAN 1-5 : Marvell 88E6176
- WAN 1, 2 : Marvell 88E1512 (2x)
- LEDs/Keys : 18x/1x
- UART : "CONSOLE" port (RJ-45, RS-232C level)
- port : ttyS0
- settings : 9600bps 8n1
- assignment : 1:NC , 2:NC , 3:TXD, 4:GND,
5:GND, 6:RXD, 7:NC , 8:NC
- note : compatible with Cisco console cable
- HW Monitoring: nuvoTon NCT7802Y
- Power : 12 VDC, 2.5 A
- plug : Molex 5557-02R
Flash instruction using initramfs image:
1. Power on FG-52E and interrupt to show bootmenu
2. Call "[I]: System information." -> "[S]: Set serial port baudrate."
and set baudrate to 9600 bps
3. Call "[R]: Review TFTP parameters.", check TFTP parameters and
connect computer to "Image download port" in the parameters
4. Prepare TFTP server with the parameters obtained above
5. Rename OpenWrt initramfs image to "image.out" and put to TFTP
directory
6. Call "[T]: Initiate TFTP firmware transfer." to download initramfs
image from TFTP server
7. Type "R" key when the following message is showed, to boot initramfs
image without flashing to spi-nor flash
"Save as Default firmware/Backup firmware/Run image without saving:[D/B/R]?"
8. On initramfs image, backup mtd if needed
minimum:
- "firmware-info"
- "kernel"
- "rootfs"
9. On initramfs image, upload sysupgrade image to the device and perform
sysupgrade
10. Wait ~200 seconds to complete flashing and rebooting.
If the device is booted with stock firmware, login to bootmenu and
call "[B]: Boot with backup firmware and set as default." to set the
first OS image as default and boot it.
Notes:
- Both colors of Bi-color LEDs on the front panel cannot be turned on at
the same time.
- "PWR" and "Logo" LEDs are connected to power source directly.
- The following partitions are added for OpenWrt.
These partitions are contained in "uboot" partition (0x0-0x1fffff) on
stock firmware.
- "firmware-info"
- "dtb"
- "u-boot-env"
- "board-info"
Image header for bootmenu tftp:
0x0 - 0xf : ?
0x10 - 0x2f : Image Name
0x30 - 0x17f: ?
0x180 - 0x183: Kernel Offset*
0x184 - 0x187: Kernel Length*
0x188 - 0x18b: RootFS Offset (ext2)*
0x18c - 0x18f: RootFS Length (ext2)*
0x190 - 0x193: DTB Offset
0x194 - 0x197: DTB Length
0x198 - 0x19b: Data Offset (jffs2)
0x19c - 0x19f: Data Length (jffs2)
0x1a0 - 0x1ff: ?
*: required for initramfs image
MAC addresses:
(eth0): 90:6C:AC:xx:xx:98 (board-info (OpenWrt), 0xd880 (hex))
WAN 1 : 90:6C:AC:xx:xx:99
WAN 2 : 90:6C:AC:xx:xx:9A
LAN 1 : 90:6C:AC:xx:xx:9B
LAN 2 : 90:6C:AC:xx:xx:9C
LAN 3 : 90:6C:AC:xx:xx:9D
LAN 4 : 90:6C:AC:xx:xx:9E
LAN 5 : 90:6C:AC:xx:xx:9F
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Fortinet FortiGate 51E (FG-51E) is a UTM, based on Armada 385 (88F6820).
Specification:
- SoC : Marvell Armada 385 88F6820
- RAM : DDR3 2 GiB (4x Micron MT41K512M8DA-107, "D9SGQ")
- Flash : SPI-NOR 128 MiB (Macronix MX66L1G45GMI-10G)
- SSD : mSATA SSD 32 GB (A-DATA XM21E (AXM21ES3-32GM-B))
- mode : SATA III 6Gbps
- power : 3.3 VDC, 3.1 W (Max.)
- Ethernet : 7x 10/100/1000 Mbps
- LAN 1-5 : Marvell 88E6176
- WAN 1, 2 : Marvell 88E1512 (2x)
- LEDs/Keys : 18x/1x
- UART : "CONSOLE" port (RJ-45, RS-232C level)
- port : ttyS0
- settings : 9600bps 8n1
- assignment : 1:NC , 2:NC , 3:TXD, 4:GND,
5:GND, 6:RXD, 7:NC , 8:NC
- note : compatible with Cisco console cable
- HW Monitoring: nuvoTon NCT7802Y
- Power : 12 VDC, 2.5 A
- plug : Molex 5557-02R
Flash instruction using initramfs image:
1. Power on FG-51E and interrupt to show bootmenu
2. Call "[I]: System information." -> "[S]: Set serial port baudrate."
and set baudrate to 9600 bps
3. Call "[R]: Review TFTP parameters.", check TFTP parameters and
connect computer to "Image download port" in the parameters
4. Prepare TFTP server with the parameters obtained above
5. Rename OpenWrt initramfs image to "image.out" and put to TFTP
directory
6. Call "[T]: Initiate TFTP firmware transfer." to download initramfs
image from TFTP server
7. Type "R" key when the following message is showed, to boot initramfs
image without flashing to spi-nor flash
"Save as Default firmware/Backup firmware/Run image without saving:[D/B/R]?"
8. On initramfs image, backup mtd if needed
minimum:
- "firmware-info"
- "kernel"
- "rootfs"
9. On initramfs image, upload sysupgrade image to the device and perform
sysupgrade
10. Wait ~200 seconds to complete flashing and rebooting.
If the device is booted with stock firmware, login to bootmenu and
call "[B]: Boot with backup firmware and set as default." to set the
first OS image as default and boot it.
Notes:
- Both colors of Bi-color LEDs on the front panel cannot be turned on at
the same time.
- "PWR" and "Logo" LEDs are connected to power source directly.
- The following partitions are added for OpenWrt.
These partitions are contained in "uboot" partition (0x0-0x1fffff) on
stock firmware.
- "firmware-info"
- "dtb"
- "u-boot-env"
- "board-info"
Image header for bootmenu tftp:
0x0 - 0xf : ?
0x10 - 0x2f : Image Name
0x30 - 0x17f: ?
0x180 - 0x183: Kernel Offset*
0x184 - 0x187: Kernel Length*
0x188 - 0x18b: RootFS Offset (ext2)*
0x18c - 0x18f: RootFS Length (ext2)*
0x190 - 0x193: DTB Offset
0x194 - 0x197: DTB Length
0x198 - 0x19b: Data Offset (jffs2)
0x19c - 0x19f: Data Length (jffs2)
0x1a0 - 0x1ff: ?
*: required for initramfs image
MAC addresses:
(eth0): 70:4C:A5:xx:xx:98 (board-info (OpenWrt), 0xd880 (hex))
WAN 1 : 70:4C:A5:xx:xx:99
WAN 2 : 70:4C:A5:xx:xx:9A
LAN 1 : 70:4C:A5:xx:xx:9B
LAN 2 : 70:4C:A5:xx:xx:9C
LAN 3 : 70:4C:A5:xx:xx:9D
LAN 4 : 70:4C:A5:xx:xx:9E
LAN 5 : 70:4C:A5:xx:xx:9F
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Tested-by: Raylynn Knight <rayknight@me.com>
Add a new dtsi which contains the common parts of Fortinet
FortiGate/FortiWiFi 5xE series devices.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Add a new dtsi which contains the common parts of Fortinet
FortiGate/FortiWiFi 3xE series devices.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Rename the common dtsi of Fortinet FortiGate 30E/50E for the preparation
of adding support for the other FortiGate/FortiWiFi 3xE/5xE devices.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Add a common definition of Fortinet FortiGate devices to
image/cortexa9.mk for a preparation of adding support for
other FortiGate 3xE/5xE devices.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Hardware:
SoC: Qualcomm Atheros QCA956X ver 1 rev 0
CPU clock: 775.000 MHz
Memory: 128 MB DDR2
Flash: 32 MB SPI NOR mx25l25635e
Switch: Atheros AR8327 rev. 4
Ethernet: 5x 10/100/1000 Mbps (1 WAN + 4 LAN)
Buttons: 1x Reset
Serial: TX, RX, GND, VCC
Baudrate: 115200
Wifi: Qualcomm Atheros qca988x 802.11ac/n - 3x3
Qualcomm Atheros AR9561 802.11b/g/n - 3x3
Not working:
Leds: 1x via a SPI controller
Display: ST7789V or ILI9341V
controlled by stm32f205.
Note:
DSA changes are ready, but we have an issue with
ports not working after 20-30 minutes. So for now
we use swconfig.
Installation: serial connection only
There is a J11 four pin connector. You need to connect TX, RX and GND.
You can find very good information about the device here
https://github.com/alexanderhenne/AFi-R?tab=readme-ov-file#finding-j11
Upgrading via serial port:
1. Download the kernel initramfs image. Copy the image to a TFTP server
2. Connect to console on the AP, and connect the LAN1 port to your PC LAN
3. Stop autoboot to get to U-boot shell
Interrupt the autoboot process by pressing any key when prompted
4. Transfer the kernel image with TFTP
Set your ip address on your TFTP server to 192.168.1.254
# tftpboot 0x81000000 amplifi-router-hd-initramfs-kernel.bin
5. Load the image
# bootm 0x81000000
6. SCP sysupgrade image from your PC to the Amplifi HD
(If you use a newer mac use scp -O)
# scp openwrt-ath79-generic-ubnt_amplifi-router-hd-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/
7. Write sysupgrade to the firmware partition
# mtd write /tmp/openwrt-ath79-generic-ubnt_amplifi-router-hd-squashfs-sysupgrade.bin firmware
8. Reboot your device
# reboot
Credit to alexanderhenne for all the information.
Signed-off-by: Kristian Skramstad <kristian+github@83.no>
ELECOM WRC-X1800GS is a 2.4/5 GHz band 11ax (Wi-Fi 6) router, based on
MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 256 MiB
- Flash : RAW-NAND 128 MiB (Macronix MX30LF1G28AD-TI)
- WLAN : 2.4/5 GHz 2T2R (MediaTek MT7915D)
- Ethernet : 5x 10/100/1000 Mbps
- switch : MediaTek MT7530 (SoC)
- LEDs/Keys (GPIO) : 7x/4x
- UART : pin-header on PCB ("J5")
- arrangement : 3.3V, TX, RX, NC, GND from tri-angle marking
- settings : 115200n8
- Power : 12 VDC, 1 A
Flash instruction using initramfs-factory image:
1. Boot WRC-X1800GS normally with "Router" mode
2. Access to "http://192.168.2.1/" and open firmware update page
("ファームウェア更新")
3. Select the OpenWrt initramfs-factory image and click apply ("適用")
button
4. After flashing initramfs-factory image and reboot, upload the
sysupgrade image and perform sysupgrade with it
5. Wait ~120 seconds to complete flashing
Notes:
- WRC-X1800GS has 2x os images. Those are switched on every firmware
updating on stock firmware, but dual-boot feature on this device
cannot be handled on OpenWrt. So the 1st image is always used on
OpenWrt.
This is controlled by "bootnum" variable embedded in "persist"
partition (addr: 0x4).
- WRC-X1800GS has 2x HW revisions. There are some small changes, but the
same DeviceTree in stock firmware is used for both revisions.
On this support of WRC-X1800GS, 2x green:wlan-2g-N LEDs are defined
for each revision and the same default triggers are set.
MAC addresses:
LAN : 38:97:A4:xx:xx:38 (Factory, 0x1fdfa (hex) / Ubootenv, ethaddr (text))
WAN : 38:97:A4:xx:xx:3B (Factory, 0x1fdf4 (hex))
2.4 GHz: 38:97:A4:xx:xx:39
5 GHz : 38:97:A4:xx:xx:3A
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
The EnGenius EAP1300 and EAP1300EXT use identical boards and firmware
(as flashed) from the vendor.
As with the EAP1300, the EAP1300EXT requires a specific firmware version
to flash OpenWRT. Unfortunately, the required firmware is truncated on
the vendor's website.
A working file can be created as follows:
```
curl \
https://www.engeniustech.com/wp_firmware/eap1300-all-v3.5.3.5_c1.9.04.bin \
| perl -pe 's/\x09EAP1300_A/\x0cEAP1300EXT_A/' \
> eap1300ext-all-v3.5.3.5_c1.9.04.bin
```
The file should have sha256:
`58a1197a426139a12b03fd432334e677124cbe3384349bd7337f2ee71f1dcfd4`.
Please see commit 2b4ac79 for further
details.
The vendor firmware must be decrypted before it can be flashed from
OpenWRT. A tool able to do that is available from:
https://github.com/ryancdotorg/enfringement/blob/main/decrypt.py
Signed-off-by: Ryan Castellucci <code@ryanc.org>
The vendor U-Boot on the Cudy M3000 and the Yuncore AX835 assign random
mac addresses on boot and set the 'local-mac-address' property which
prevents Openwrt from assigning the correct address from evmem.
This patch removes the alias for ethernet0 so that U-Boot doesn't add the
property, removes the workaround from 02_network, and adds back the nvmem
definition for the M3000.
Signed-off-by: Leon M. Busch-George <leon@georgemail.eu>
OpenWrt supported the D-Link DSM G600 A in the past. It has
64 MB of RAM and 16 MB of flash so it will run just fine,
and should be quite usable with a rootfs on an external
harddrive.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
OpenWrt supported the Freecom FSG-3 in the past. It has
64 MB of RAM so will run fine, but the bare 4 MB of flash
makes it a non-default target. The generated compressed
image is currently below 4MB (just 3.3 MB) though, so it
should be possible to flash just fine with a rootfs on
a harddrive or USB stick, which is what the FSG-3 used
in the past as well.
The device has a WAN port on eth0 and three LAN ports on
eth1. The LAN ports are probably a DSA switch but the
old OpenWrt base never activated that, instead it relies
on boot defaults.
Due to questionable usablity without tweaking and further
work this image is not built by default, but made available
for developers who know what they are doing.
The TAR+CRC image generation is a rewritten version of the
earlier support code.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
OpenWrt supported the Iomega NAS100D in the past and it has
64 MB of RAM so if booted from a harddrive it will probably
work just fine. The APEX boot loader already has a build
variant for this machine that we can just pick up and use.
This device has a single ethernet port so bring this online
with DHCP as expected for a NAS device.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Several of the IXP4xx machines mount root on external harddrives
so add EXT4 and rootfs-part to the featureset so the right
features are always selected.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Common specifications:
* Mediatek MT7988A (4x Cortex-A73, up to 1.8 GHz clock speed)
* 8 GiB eMMC
* 2 GiB DDR4 RAM
* 1x 10000M/1000M/100M + 3x 1000M/100M/10M LAN ports
* MT7996 Tri-band (2.4G, 5G, 6G) 4T4R 802.11be Wi-Fi
* Airoha AG3352 GPS
* Renesas DA14531MOD Bluetooth
* 2 buttons (Reset, Mesh/WPS)
* uC-controlled RGB LED via I2C
* 2x LED for each 1G port, 3x LED for each 10G port
* USB 3.0 type A port
* 3.3V-level 115200 baud UART console via 4-pin Dupont connector
exposed at the bottom of the device
* USB-C PD power input
SDG-8733: 1x 10000M/1000M/100M WAN port
SDG-8734: 1x USXGMII/10GBase-R/5GBase-R/2500Base-X/1000Base-X/SGMII SFP+
Both models are also available in versions including 2x FXS POTS interfaces
for analog phones. Those interfaces are not supported by OpenWrt.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Add missing call to emmc_copy_config which either writes the sysupgrade
tar.gz backup file or clears the existing rootfs_data overlay.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Backport patch adding support for the AQR114C PHY and add support for
PHY LEDs and polarity setting of Aquantia 3rd and 4th generation PHYs.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Carambola3 is a WiFi module based on Qualcomm/Atheros QCA4531
http://wiki.8devices.com/carambola3
Specification:
- 650/600/216 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 32 MB of FLASH
- 2T2R 2.4 GHz
- 2x 10/100 Mbps Ethernet
- 1x USB 2.0 Host socket
- UART for serial console
- 12x GPIO
Flash instructions:
Upgrading from ar71xx target:
- Upload image into the board:
scp openwrt-ath79-generic-8dev_carambola3-squashfs-sysupgrade.bin \
root@192.168.1.1/tmp/
- Run sysupgrade
sysupgrade -F /tmp/openwrt-ath79-generic-8dev_carambola3-squashfs-sysupgrade.bin
Upgrading from u-boot:
- Set up tftp server with openwrt-ath79-generic-8dev_carambola3-initramfs-kernel.bin
- Go to u-boot (reboot and press ESC when prompted)
- Set TFTP server IP
setenv serverip 192.168.1.254
- Set device ip from the same subnet
setenv ipaddr 192.168.1.1
- Copy new firmware to board
tftpboot 0x82000000 initramfs.bin
- Boot OpenWRT
bootm 0x82000000
- Upload image openwrt-ath79-generic-8dev_carambola3-squashfs-sysupgrade.bin into the board
- Run sysupgrade.
Signed-off-by: Andrey Bondar <a.bondar@8devices.com>
Link: https://github.com/openwrt/openwrt/pull/15514
Signed-off-by: Robert Marko <robimarko@gmail.com>
Specifications:
CPU: MT7628AN 580MHz
RAM: 64MB DDR2
FLASH: 8MB EN25QH64 NOR SPI
WIFI: 2.4GHz 2x2 MT7628 b/g/n internal
WIFI: 5GHz 1x1 MT7610E ac/n PCI
LTE: Qualcomm MDM9207
ETH: 4xLAN 100base-T integrated
SWITCH: RT3050-ESW Port 0,1,2,3: LAN, Port 6: CPU
LEDS: LAN, WAN, Power, 3x signal strength, WiFi
BTNS: Reset, WiFi toggle
UART: Near ETH ports, Vcc-GND-RX-TX, 115200, 8N1
Installation:
1. Update using recovery mode
- set your IP to 192.168.0.225, subnet mask: 255.255.255.0
- start tftp server, rename tftp-recovery.bin to
tp_recovery.bin and place it into the server's directory
- while holdig the "reset" button, power on the device
- keep holding "reset" until the file is being transferred
Notes:
This board has only one MAC address programmed
in the "romfile" partition:
- MAC for phy0 (2.4GHz) at romfile 0xf100 (0)
- MAC for phy1 (5GHz) at romfile 0xf100 (-1)
- stock firmware re-uses phy0 MAC for ethernet
- stock firmware uses romfile 0xf100 (1) for WWAN;
not used since QMI interface is raw IP
Signed-off-by: Lea Teuberth <lea.teuberth@outlook.com>
mt7915e driver supports MT7915 & MT7916 devices and MT7981 & MT7986
on-SoC wireless controllers. Devices based on MT7988 and possibly other
next chipsets are quite unlikely to need it (MT7988 was designed to be
used with MT7996).
Move kmod-mt7915e to DEVICE_PACKAGES of relevant devices.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Currently, in case that PSGMII calibration fails it will panic the kernel
which is not ideal and is preventing any debugging to be done.
So, since PGMII calibration failing only means that wired networking wont
work lets convet the panic() call to dev_error.
Link: https://github.com/openwrt/openwrt/pull/15542
Signed-off-by: Robert Marko <robimarko@gmail.com>