The bootloader only writes the first 2MB of the image to the NOR flash
when installing the NAND factory image. The bootloader is capable of
booting larger kernels as it boots from the memory mapped SPI flash.
Disable the NAND factory image. The NAND can be bootstrapped by writing
the NAND initramfs image using the NOR upgrade method in the bootloader
web-recovery and sysupgrading from there. The NOR variant is not
affected.
Also refactor the partition definitions in the DTS to make them less
annoying to read.
Signed-off-by: David Bauer <mail@david-bauer.net>
The TL-WR841ND v8 feature a WiFi switch instead of a button.
This adds the corresponding input-type to prevent booting into
failsafe regularly.
This has been defined correctly in ar71xx, but was overlooked
when migrating to ath79. In contrast, the TL-WR842ND v2, which
has the key set up as switch in ar71xx, actually has a button.
The TL-MR3420 v2 has a button as well and is set up correctly
for both targets. (Information based on TP-Link user guide)
Note:
While looking into this, I found that support PR for TL-MR3420 v2
switched reset button to ACTIVE_HIGH. However, the other two
device still use ACTIVE_LOW. This seems strange, but I cannot
verify it lacking the affected devices.
Fixes: FS#2733
Fixes: 9601d94138 ("add support for TP-Link TL-WR841N/ND v8")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This harmonizes the model names for the ath79 Ubiquiti devices by
applying a few minor cosmetic adjustments:
- Removes hyphens where they are not found in the product names
(Ubiquiti uses hyphens only for the abbreviated version names
like UAP-AC-PRO which we don't use anyway.)
- Add (XM) suffix for DTS model strings to help with distinguishing
them from their XW counterparts.
- Remove DEVICE_VARIANT for LAP-120 which actually was an alternate
device name.
- Generally make DTS model names and those from generic-ubnt.mk
more consistent.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for the Ubiquiti PowerBridge M, which has the same
board/LEDs as the Bullet M XM, but different case and antennas.
Specifications:
- AR7241 SoC @ 400 MHz
- 64 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- Internal antenna: 25 dBi
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB
Flashing via WebUI:
Upload the factory image via the stock firmware web UI.
Attention: airOS firmware versions >= 5.6 have a new bootloader with
an incompatible partition table!
Please downgrade to <= 5.5 _before_ flashing OpenWrt!
Refer to the device's Wiki page for further information.
Flashing via TFTP:
Same procedure as other Bullet M (XM) boards.
- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_powerbridge-m-squashfs-factory.bin
Signed-off-by: Vieno Hakkerinen <vieno@hakkerinen.eu>
Since commit 6f2e1b7485 (ath79: disable delays on AT803X config init)
the incoming incoming traffic on the ubnt,lap-120 devices Ethernet
port was not making it through. Using rgmii-id instead of rgmii (same
configuration as ubnt,litebeam-ac-gen2) fixes it.
Fixes FS#2893.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
upstream changed dt-bindings for marvell 88e6060 to use mdio-device
and dropped support for legacy bindings.
fix it in our local dts.
Fixes: FS#2524
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Linux phy subsystem provides support for a phy regulator defined via
phy-supply property. Use it to turn on usb power only when usb is
probed.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Port device support for DAP-1330 from the ar71xx target to ath79.
Additionally, images are generated for the European through-socket
case variant DAP-1365. Both devices run the same vendor firmware, the
only difference being the DAP_SIGNATURE field in the factory header.
The vendor's Web UI will display a model string stored in the flash.
Specifications:
* QCA9533, 8 MiB Flash, 64 MiB RAM
* One Ethernet Port (10/100)
* Wall-plug style case (DAP-1365 with additional socket)
* LED bargraph RSSI indicator
Installation:
* Web UI: http://192.168.0.50 (or different address obtained via DHCP)
There is no password set by default
* Recovery Web UI: Keep reset button pressed during power-on
until LED starts flashing red, upgrade via http://192.168.0.50
* Some modern browsers may have problems flashing via the Web UI,
if this occurs consider booting to recovery mode and flashing via:
curl -F \
files=@openwrt-ath79-generic-dlink_dap-1330-a1-squashfs-factory.bin \
http://192.168.0.50/cgi/index
The device will use the same MAC address for both wired and wireless
interfaces, however it is stored at two different locations in the flash.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Arduino Yun is a microcontroller development board, based on Atmel
ATmega32u4 and Atheros AR9331.
Specifications:
- MCU: ATmega32U4
- SoC: AR9331
- RAM: DDR2 64MB
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: SoC internal
- Ethernet: 1x 10/100Mbps
- USB: 1x 2.0
- MicroSD: 1x SDHC
Notes:
- Stock firmware is based on OpenWrt AA.
- The SoC UART can be accessed only through the MCU.
YunSerialTerminal is recommended for access to serial console.
- Stock firmware uses non-standard 250000 baudrate by default.
- The MCU can be reprogrammed from the SoC with avrdude linuxgpio.
Installation:
1. Update U-Boot environment variables to adapt to new partition scheme.
> setenv bootcmd "run addboard; run addtty; run addparts; run addrootfs; bootm 0x9f050000 || bootm 0x9fea0000"
> setenv mtdparts "spi0.0:256k(u-boot)ro,64k(u-boot-env),15936k(firmware),64k(nvram),64k(art)ro"
> saveenv
2. Boot into stock firmware normally and perform sysupgrade with
sysupgrade image.
# sysupgrade -n -F /tmp/sysupgrade.bin
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
The DCH-G020 is a Smart Home Gateway for Z-Wave devices.
Specifications:
* QCA9531, 16 MiB Flash, 64 MiB RAM
* On-Board USB SD3503A Z-Wave dongle
* GL850 USB 2.0 Hub (one rear port, internal Z-Wave)
* Two Ethernet Ports (10/100)
Installation:
* Web UI: http://192.168.0.60 (or different address obtained via DHCP)
Login with 'admin' and the 6-digit PIN Code from the bottom label
* Recovery Web UI: Keep reset button pressed during power-on
until LED starts flashing red, upgrade via http://192.168.0.60
* Some modern browsers may have problems flashing via the Web UI,
if this occurs consider booting to recovery mode and flashing via:
curl -F \
files=@openwrt-ath79-generic-dlink_dch-g020-a1-squashfs-factory.bin \
http://192.168.0.60/cgi/index
Known issues:
* Real-Time-Clock is not working as there is currently no matching driver
It is still included in the dts as compatible = "pericom,pt7c43390";
* openzwave was tested on v19.07 (running MinOZW as a proof-of-concept),
but the package grew too big as lots of device pictures were included,
thus any use of Z-Wave is up to the user (e.g. extroot and domoticz)
The device will use the same MAC address for both wired and wireless
interfaces, however it is stored at two different locations in the flash.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specification:
• 650/600/216 MHz (CPU/DDR/AHB)
• 64 MB of RAM (DDR2)
• 32 MB of FLASH
• 2T2R 2.4 GHz
• 2x 10/100 Mbps Ethernet
• 1x USB 2.0 Host socket
• 1x miniPCIe slot
• UART for serial console
• 14x GPIO
Flash instructions:
Upgrading from ar71xx target:
• Upload image into the board:
scp openwrt-ath79-generic-8dev_lima-squashfs-sysupgrade.bin
root@192.168.1.1/tmp/
• Run sysupgrade
sysupgrade -F /tmp/openwrt-ath79-generic-8dev_lima-squashfs-sysupgrade.bin
Upgrading from u-boot:
• Set up tftp server with
openwrt-ath79-generic-8dev_lima-initramfs-kernel.bin
• Go to u-boot (reboot and press ESC when prompted)
• Set TFTP server IP
setenv serverip 192.168.1.254
• Set device ip from the same subnet
setenv ipaddr 192.168.1.1
• Copy new firmware to board
tftpboot 0x82000000 initramfs.bin
• Boot OpenWRT
bootm 0x82000000
• Upload image openwrt-ath79-generic-8dev_lima-squashfs-sysupgrade.bin into
the board
• Run sysupgrade.
Signed-off-by: Andrey Bondar <a.bondar@8devices.com>
Add support for the ar71xx supported GL.iNet GL-MiFi to ath79.
Specifications:
- Atheros AR9331
- 64 MB of RAM
- 16 MB of FLASH (SPI NOR)
- 2x 10/100/1000 Mbps Ethernet
- 2.4GHz (AR9330), 802.11b/g/n
- 1x USB 2.0 (vbus driven by GPIO)
- 4x LED, driven by GPIO
- 1x button (reset)
- 1x mini pci-e slot (vcc driven by GPIO)
Flash instructions:
Vendor software is based on openwrt so you can flash the sysupgrade
image via the vendor GUI or using command line sysupgrade utility.
Make sure to not save configuration over reflash as uci settings
differ between versions.
Note on MAC addresses:
Even though the platform is capable to providing separate MAC addresses
to the interfaces vendor firmware does not seem to take advantage of
that. It appears that there is only single unique pre-programmed
address in the art partition and vendor firmware uses that for
every interface (eth0/eth1/wlan0). Similar behaviour has also been
implemented in this patch.
Note on GPIOs:
In vendor firmware the gpio controlling mini pci-e slot is named
3gcontrol while it actually controls power supply to the entire mini
pci-e slot. Therefore a more descriptive name (minipcie) was chosen.
Also during development of this patch it became apparent that the
polarity of the signal is actually active low rather than active high
that can be found in vendor firmware.
Acknowledgements:
This patch is based on earlier work[1] done by Kyson Lok. Since the
initial mailing-list submission the patch has been modified to comply
with current openwrt naming schemes and dts conventions.
[1] http://lists.openwrt.org/pipermail/openwrt-devel/2018-September/019576.html
Signed-off-by: Antti Seppälä <a.seppala@gmail.com>
All definitions of gpio in SoC DTSI files do not set status, i.e.
have it enabled. This drops all remaining redundant "status = okay"
definitions in descendent files (mostly older ones).
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
All other SoC DTSI files have gpio enabled by default, only
ar9330/ar9331 disable it by default, only to have it enabled again
afterwards for each individual device.
So, do not disable it in the first place, and drop all device-specific
status statements afterwards.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
SoC: AR9344
DRAM: 128MB DDR2
Flash: 16MB SPI-NOR
2 Gigabit ethernet ports
2×2 2.4GHz on-board radio
miniPCIe slot that supports 5GHz radio
PoE 48V IEEE 802.3af/at - 24V passive optional
USB 2.0 header
Installation:
To install, either start tftp in bin/targets/ath79/generic/ and use
the u-boot prompt over UART:
tftpboot 0x80500000 openwrt-ath79-generic-compex_wpj344-16m-squashfs-sysupgrade.bin
erase 0x9f030000 +$filesize
erase 0x9f680000 +1
cp.b $fileaddr 0x9f030000 $filesize
boot
The cpximg file can be used with sysupgrade in the stock firmware (add
SSH key in luci for root access) or with the built-in cpximg loader.
The cpximg loader can be started either by holding the reset button
during power up or by entering the u-boot prompt and entering 'cpximg'.
Once it's running, a TFTP-server under 192.168.1.1 will accept the image
appropriate for the board revision that is etched on the board.
For example, if the board is labelled '6A08':
tftp -v -m binary 192.168.1.1 -c put openwrt-ath79-generic-compex_wpj344-16m-squashfs-cpximg-6a08.bin
MAC addresses:
<&uboot 0x2e010> *:99 (label)
<&uboot 0x2e018> *:9a
<&uboot 0x2e020> *:9b
<&uboot 0x2e028> *:9c
Only the first two are used (for ethernet), the WiFi modules have
separate (valid) addresses. The latter two addresses are not used.
Signed-off-by: Leon M. George <leon@georgemail.eu>
[minor commit message adjustments, drop gpio in DTS, DTS style fixes,
sorting, drop unused cpximg recipe]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
SoC: QCA9531
DRAM: 128MB DDR2
Flash: 16MB SPI-NOR
2 100MBit ethernet ports
2×2 2.4GHz on-board radio
miniPCIe slot that supports 5GHz radio
PoE 24V - 48V IEEE 802.3af optional
USB 2.0 header
Installation:
To install, start a tftp server in bin/targets/ath79/generic/ and use the
u-boot prompt over UART:
tftpboot 0x80500000 openwrt-ath79-generic-compex_wpj531-16m-squashfs-sysupgrade.bin
erase 0x9f030000 +$filesize
erase 0x9f680000 +1
cp.b $fileaddr 0x9f030000 $filesize
boot
The cpximg file can be used with sysupgrade in the stock firmware (add SSH key
in luci for root access).
Another way is to hold the reset button during power up or running 'cpximg' in
the u-boot prompt.
Once the last LED starts flashing regularly, a TFTP-server under 192.168.1.1
will accept the image appropriate for the board revision that is etched on the
board.
For example, if the board is labelled '7A04':
tftp -v -m binary 192.168.1.1 -c put openwrt-ath79-generic-compex_wpj531-16m-squashfs-cpximg-7A04.bin
MAC addresses:
<&uboot 0x2e010> *:cb (label)
<&uboot 0x2e018> *:cc
<&uboot 0x2e020> *:cd
<&uboot 0x2e028> *:ce
Only the first two are used (for ethernet), the WiFi modules have
separate (valid) addresses. The latter two addresses are not used.
Signed-off-by: Leon M. George <leon@georgemail.eu>
[commit title/message facelift, fix rssileds, add led aliases]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
In ath79, for several SoCs the console bootargs are defined to the
very same value in every device's DTS. Consolidate these definitions
in the SoC dtsi files and drop further redundant definitions elsewhere.
The only device without any bootargs set has been OpenMesh OM5P-AC V2.
This will now inherit the setting from qca955x.dtsi
Note that while this tidies up master a lot, it might develop into a
frequent pitfall for backports.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for the AVM FRITZ!WLAN Repeater DVB-C
SOC: Qualcomm Atheros QCA9556
RAM: 64 MiB
FLASH: 16 MB SPI-NOR
WLAN: QCA9556 3T3R 2.4 GHZ b/g/n and
QCA9880 3T3R 5 GHz n/ac
ETH: Atheros AR8033 1000 Base-T
DVB-C: EM28174 with MaxLinear MXL251 tuner
BTN: WPS Button
LED: Power, WLAN, TV, RSSI0-4
Tested and working:
- Ethernet (correct MAC, gigabit, iperf3 about 200 Mbit/s)
- 2.4 GHz Wi-Fi (correct MAC)
- 5 GHz Wi-Fi (correct MAC)
- WPS Button (tested using wifitoggle)
- LEDs
- Installation via EVA bootloader (FTP recovery)
- OpenWrt sysupgrade (both CLI and LuCI)
- Download of "urlader" (mtd0)
Not working:
- Internal USB
- DVB-C em28174+MxL251 (depends on internal USB)
Installation via EVA bootloader (FTP recovery):
Set NIC to 192.168.178.3/24 gateway 192.168.178.1 and power on the device,
connect to 192.168.178.1 through FTP and sign in with adam2/adam2:
ftp> quote USER adam2
ftp> quote PASS adam2
ftp> binary
ftp> debug
ftp> passive
ftp> quote MEDIA FLSH
ftp> put openwrt-sysupgrade.bin mtd1
Wait for "Transfer complete" together with the transfer details.
Wait two minutes to make sure flash is complete (just to be safe).
Then restart the device (power off and on) to boot into OpenWrt.
Revert your NIC settings to reach OpenWrt at 192.168.1.1
Signed-off-by: Natalie Kagelmacher <nataliek@pm.me>
[fixed sorting - removed change to other board -
prettified commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
Inputs assigned to "mode select" switch on the side of the device
were missing linux,input-type property.
This would cause them do incorrectly generate EV_KEY events.
Fix this by setting the linux,input-type = <EV_SW> property on them.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
TP-Link CPE610 v2 is an outdoor wireless CPE for 5 GHz with
one Ethernet port based on Atheros AR9344
Specifications:
- 560/450/225 MHz (CPU/DDR/AHB)
- 1x 10/100 Mbps Ethernet
- 64 MB of DDR2 RAM
- 8 MB of SPI-NOR Flash
- 23dBi high-gain directional 2×2 MIMO antenna and a
dedicated metal reflector
- Power, LAN, WLAN5G green LEDs
- 3x green RSSI LEDs
Flashing instructions:
Flash factory image through stock firmware WEB UI
or through TFTP
To get to TFTP recovery just hold reset button while powering on for
around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP adress:192.168.0.254
Signed-off-by: Andrew Cameron <apcameron@softhome.net>
This ports support for these devices from ar71xx.
Specification:
- System-On-Chip: Qualcomm Atheros QCA9533
- CPU/Speed: v3: 560 MHz, v4: 650 MHz
- Flash: 4096 KiB
- RAM: 32 MiB
- Ethernet: 1 port @ 100M
- Wireless: SoC-integrated: QCA9533 2.4GHz 802.11bgn
In contrast to the implementation in ar71xx (reset and WiFi button),
the device actually features reset and WPS buttons.
Flashing instructions:
Upload the ...-factory.bin file via OEM web interface.
TFTP Recovery:
1. Set PC to fixed IP address 192.168.0.66
2. Download *-factory.bin image and rename it to
wa801ndv3_tp_recovery.bin
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
TFTP recovery has only been tested with v3, and the Wiki states
that the procedure won't work for v4, which cannot be verified
or falsified at the moment.
Tested by Tim Ward (see forum):
https://forum.openwrt.org/t/ath79-support-for-tp-link-tl-wa901nd-v3-v4-v5/61246/13
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The status is set to "okay" for all devices on ar9344, so just move
this to the parent DTSI.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: Atheros AR9344
- RAM: 64MB
- Storage: 8 MB SPI NOR
- Wireless: 2.4GHz N based built into SoC
- Ethernet: 1x 10/100 Mbps with 24V POE IN, 1x 10/100 Mbps
Installation:
Flash factory image through stock firmware WEB UI
or through TFTP
To get to TFTP recovery just hold reset button while powering on for
around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP adress:192.168.0.254
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the MikroTik RouterBOARD RB493G, ported
from the ar71xx target.
See https://routerboard.com/RB493G for details
Specification:
- SoC Qualcomm Atheros AR7161
- RAM: 256 MiB
- Storage: 128MiB NAND
- Ethernet: 9x 1000/100/10 Mbps
- USB 1x 2.0 / 1.0 type A
- PCIe: 3x Mini slot
- MicroSD slot
Working:
- Board/system detection
- Ethernet
- SPI
- NAND
- LEDs
- USB
- Sysupgrade
Enabled (but untested due to lack of hardware):
- PCIe - ath79_pci_irq struct has the slot/pin/IRQ mappings if needed
Installation methods:
- tftp boot initramfs image, scp then flash via "sysupgrade -n"
- nand boot existing OpenWrt, scp then flash via "sysupgrade -n"
Notes:
- initramfs image will not work if uncompressed image size over ~8.5Mb
- The "rb4xx" drivers have been enabled
Signed-off-by: Christopher Hill <ch6574@gmail.com>
Hardware:
* SoC: Qualcomm Atheros QCA9558
* RAM: 256MB
* Flash: 16MB SPI NOR
* Ethernet: 2x 10/100/1000 (1x 802.3at PoE-PD)
* WiFi 2.4GHz: Qualcomm Atheros QCA9558
* WiFi 5GHz: Qualcomm Ahteros QCA9880-2R4E
* LEDS: 1x 5GHz, 1x 2.4GHz, 1x LAN1(POE), 1x LAN2, 1x POWER
* Buttons: 1x RESET
* UART: 1x RJ45 RS-232 Console port
Installation via stock firmware:
* Install the factory image via the stock firmware web interface
Installation via bootloader Emergency Web Server:
* Connect your PC to the LAN1(PoE) port
* Configure your PC with IP address 192.168.0.90
* Open a serial console to the Console port (115200,8n1)
* Press "q" within 2s when "press 'q' to stop autoboot" appears
* Open http://192.168.0.50 in a browser
* Upload either the factory or the sysupgrade image
* Once you see "write image into flash...OK,dest addr=0x9f070000" you
can power-cycle the device. Ignore "checksum bad" messages.
Setting the MAC addresses for the ethernet interfaces via
/etc/board.d/02_network adds the following snippets to
/etc/config/network:
config device 'lan_eth0_1_dev'
option name 'eth0.1'
option macaddr 'xx:xx:xx:xx:xx:xx'
config device 'wan_eth1_2_dev'
option name 'eth1.2'
option macaddr 'xx:xx:xx:xx:xx:xx'
This would result in the proper MAC addresses being set for the VLAN
subinterfaces, but the parent interfaces would still have a random MAC
address. Using untagged VLANs could solve this, but would still leave
those extra snippets in /etc/config/network, and then the device VLAN
setup would differ from the one used in ar71xx. Therefore, the MAC
addresses of the ethernet interfaces are being set via preinit instead.
The bdcfg partition contains 4 MAC address labels:
- lanmac
- wanmac
- wlanmac
- wlanmac_a
The first 3 all contain the same MAC address, which is also the one on
the label.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Reviewed-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Netgear WNDRMAC v1 is a hardware variant of the Netgear WNDR3700 v2
Specifications
==============
* SoC: Atheros AR7161
* RAM: 64mb
* Flash on board: 16mb
* WiFi: Atheros AR9220 (a/n), Atheros AR9223 (b/g/n)
* Ethernet: RealTek RTL8366SR (1xWAN, 4xLAN, Gigabit)
* Power: 12 VDC, 2.5 A
* Full specs on [openwrt.org](https://openwrt.org/toh/hwdata/netgear/netgear_wndrmac_v1)
Flash Instructions
==================
It is possible to use the OEM Upgrade page to install the `factory`
variant of the firmware.
After the initial upgrade, you will need to telnet into the router
(default IP 192.168.1.1) to install anything. You may install LuCI
this way. At this point, you will have a web interface to configure
OpenWRT on the WNDRMAC v1.
Please use the `sysupgrade` variant for subsequent flashes.
Recovery Instructions
=====================
A TFTP-based recovery flash is possible if the need arises. Please refer
to the WNDR3700 page on openwrt.org for details.
https://openwrt.org/toh/netgear/wndr3700#troubleshooting_and_recovery
Signed-off-by: Renaud Lepage <root@cybikbase.com>
[update DTSI include name]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Netgear WNDRMAC v2 is a hardware variant of the Netgear WNDR3800
Specifications
==============
* SoC: Atheros AR7161
* RAM: 128mb
* Flash on board: 16mb
* WiFi: Atheros AR9220 (a/n), Atheros AR9223 (b/g/n)
* Ethernet: RealTek RTL8366SR (1xWAN, 4xLAN, Gigabit)
* Serial console: Yes, 115200 / 8N1 (JTAG)
* USB: 1x2.0
* Power: 12 VDC, 2.5 A
* Full specs on [openwrt.org](https://openwrt.org/toh/hwdata/netgear/netgear_wndrmac_v2)
Flash Instructions
==================
It is possible to use the OEM Upgrade page to install the `factory`
variant of the firmware.
After the initial upgrade, you will need to telnet into the router
(default IP 192.168.1.1) to install anything. You may install LuCI
this way. At this point, you will have a web interface to configure
OpenWRT on the WNDRMAC v2.
Please use the `sysupgrade` variant for subsequent flashes.
Recovery Instructions
=====================
A TFTP-based recovery flash is possible if the need arises. Please refer
to the WNDR3800 page on openwrt.org for details.
https://openwrt.org/toh/netgear/wndr3800#recovery_flash_in_failsafe_mode
Signed-off-by: Renaud Lepage <root@cybikbase.com>
[do not add device to uboot-envtools, update DTSI name]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This renames the DTSI for Netgear WNDR devices based on ar7161 to
indicate that the file is not limited to WNDR3700 models.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds ar71xx's GPIO setup for the 2.4GHz and 5GHz antennae
demultiplexer:
| 158 /* 2.4 GHz uses the first fixed antenna group (1, 0, 1, 0) */
| 159 ap9x_pci_setup_wmac_gpio(0, (0xf << 6), (0xa << 6));
| 160
| 161 /* 5 GHz uses the second fixed antenna group (0, 1, 1, 0) */
| 162 ap9x_pci_setup_wmac_gpio(1, (0xf << 6), (0x6 << 6));
This should restore the range and throughput of the 2.4GHz radio
on all the derived wndr3700 variants and versions with the AR7161 SoC.
A special case is the 5GHz radio. The original wndr3700(v1) will
benefit from this change. However the wndr3700v2 and later revisions
were unaffected by the missing bits, as there is no demultiplexer
present in the later designs.
This patch uses gpio-hogs within the device-tree for all
wndr3700/wndr3800/wndrmac variants.
Notes:
Based on the PCB pictures, the WNDR3700(v1) really had eight
independent antennae. Four antennae for each radio and all of
those were printed on the circut board.
The WNDR3700v2 and later have just six antennae. Four of those
are printed on the circuit board and serve the 2.4GHz radio.
Whereas the remaining two are special 5GHz Rayspan Patch Antennae
which are directly connected to the 5GHz radio.
Hannu Nyman dug pretty deep and unearthed a treasure of information
regarding the history of how these values came to be in the OpenWrt
archives: <https://dev.archive.openwrt.org/ticket/6533.html>.
Mark Mentovai came across the fixed antenna group when he was looking
into the driver:
fixed_antenna_group 1, (0, 1, 0, 1)
fixed_antenna_group 2, (0, 1, 1, 0)
fixed_antenna_group 3, (1, 0, 0, 1)
fixed_antenna_group 4, (1, 0, 1, 0)
Fixes: FS#3088
Reported-by: Luca Bensi
Reported-by: Maciej Mazur
Reported-by: Hannu Nyman <hannu.nyman@iki.fi>
Debugged-by: Hannu Nyman <hannu.nyman@iki.fi>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
TP-Link RE450 v3 is a dual band router/range-extender based on
Qualcomm/Atheros QCA9563 + QCA9880.
This device is nearly identical to RE450 v2 besides a modified flash
layout (hence I think force-flashing a RE450v2 image will lead to at
least loss of MAC address).
Specification:
- 775 MHz CPU
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 3T3R 5 GHz
- 1x 10/100/1000 Mbps Ethernet (AR8033 PHY)
- 7x LED, 4x button-
- possible UART header on PCB¹
Flash instruction:
Apply factory image in OEM firmware web-gui.
¹ Didn't check to connect as I didn't even manage to connect on
RE450v2 (AFAIU it requires disconnecting some resistors, which I was
too much of a coward to do). But given the similarities to v2 I
think it's the same or very similar procedure (and most likely also
the only way to debrick).
Signed-off-by: Andreas Wiese <aw-openwrt@meterriblecrew.net>
[remove dts-v1 and compatible in DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specification:
- SoC: Qualcomm Atheros QCA9533 (560 MHz, MIPS 24Kc)
- RAM: 32 MiB
- Storage: 4 MiB of Flash on board
- Wireless: Built into QCA9533 (Honey Bee), PHY modes b/g/n
- Ethernet: 1x100M (port0)
Installation through OEM Web Interface:
- Connect to TL-WR802N by Ethernet or Wi-Fi
- Go to web interface:
[V1] http://192.168.0.1
[V2] http://192.168.0.254
Default user is "admin" & password is "admin".
On V2, there is no DHCP server running by default, so remember to set
IP manually.
- Go to "System Tools -> Firmware Upgrade"
- Browse for firmware:
[V1] "*.factory.bin"
[V2] "*.factory-us.bin" or "*.factory-eu.bin" for eu model
Web interface may complain if filename is too long. In such case,
rename .bin to something shorter.
- Click upgrade
Installation through tftp:
Note: T_OUT, T_IN and GND on the board must be connected to USB TTL
Serial Configuration 115200 8n1
- Boot the TL-WR802N
- When "Autobooting in 1 seconds" appears type "tpl" followed by enter
- Connect to the board Ethernet port
(IPADDR: 192.168.1.1, ServerIP: 192.168.1.10)
- tftpboot 0x80000000 <Firmware Image Name>
- Record the result of "printenv bootcmd"
- Enter "erase <Result of 'printenv bootcmd'> +0x3c0000"
(e.g erase 0x9f020000 +0x3c0000)
- Enter "cp.b 0x80000000 <Result of 'printenv bootcmd'> 0x3c0000"
(e.g cp.b 0x80000000 0x9f020000 0x3c0000)
- Enter "bootm <Result of 'printenv bootcmd'>"
(e.g bootm 0x9f020000)
Notes:
When porting from ar71xx target to ath79, I found out that on V2,
reset button is on GPIO12 and active low, instead of GPIO11 and
active high. By cross-flashing V1 firmware to V2, I confirmed
the same is true for V1.
Also according to manual of V1, this one also has green
LED instead of blue - both of those issues were fixed accordingly.
The MAC address assignment has been checked with OEM firmware.
Installation manual based on ar71xx support by Thomas Roberts
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[slightly adjust commit message, add MAC address comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Since the wireless LED was used for boot and set up with a DT
trigger, the WiFi indication hasn't worked on ath79 at all.
In addition, a look into the manual revealed that the OEM
configuration is as follows:
LED 1 (green): power
LED 2 (green): configurable
LED 3 (red): wireless
So, let's just keep the WiFi trigger and convert the rest to its
"intended" use.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the COMFAST CF-E130N v2, an outdoor wireless
CPE with a single Ethernet port and a 802.11bgn radio.
Specifications:
- QCA9531 SoC
- 1x 10/100 Mbps Ethernet with PoE-in support
- 64 MB of RAM (DDR2)
- 16 MB of FLASH
- 5 dBi built-in antenna
- POWER/LAN/WLAN green LEDs
- 4x RSSI LEDs (2x red, 2x green)
- UART (115200 8N1) and GPIO (J9) headers on PCB
Flashing instructions:
The original firmware is based on OpenWrt so a sysupgrade image can be
installed via the stock web GUI.
The U-boot bootloader also contains a backup TFTP client to upload the
firmware from. Upon boot, it checks its ethernet network for the IP
192.168.1.10. Host a TFTP server and provide the image to be flashed as
file firmware_auto.bin.
MAC address setup:
The art partition contains four consecutive MAC addresses:
0x0 aa:bb:cc:xx:xx:c4
0x6 aa:bb:cc:xx:xx:c6
0x1002 aa:bb:cc:xx:xx:c5
0x5006 aa:bb:cc:xx:xx:c7
However, the manufacturer in its infinite wisdom decided that one address
is enough and both eth0 and WiFi get the MAC address from 0x0 (yes, that's
overwriting the existing and valid address in 0x1002). This is obviously
also the address on the device's label.
Signed-off-by: Pavel Balan <admin@kryma.net>
[fix configs partition, fix IMAGE_SIZE, add MAC address comment, rename
ATH_SOC to SOC]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
AHB is 258 MHz for this device (CPU_PLL / 3), but there is no difference
between 64 MHz and 50 MHz for spi-max-frequency, thus increase to 50 MHz.
Tested on revisions C1 and C3.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
GPIO 11 needs to be pulled high for the external gigabit switch to work,
this is currently solved via gpio-hog. Replace with phy0 reset-gpios.
Tested on revisions C1 and C3. Reset button is still working for reboot,
to enter failsafe, and to enter bootloader http recovery.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The device has a total of 8 LEDs, 5 of which are controlled by the switch
(LAN 1-4, WAN). Only power, wifi and wps are controlled by the SoC.
* led_power is on GPIO 5 (not 15), boot flashing sequence is now visible
* remove led 'internet', since it is only connected to the switch
* remove ucidef_set_led_switch for WAN from 01_leds, as it has no effect
Tested on revisions C1 and C3.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
[adjust commit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the WNDR4300SW, marketed by California ISP
SureWest (hence the 'SW' suffix). Hardware wise, it's identical to the
WNDR4300 v1.
Specifications:
* SoC: Atheros AR9344
* RAM: 128 MB
* Flash: 128 MB NAND flash
* WiFi: Atheros AR9580 (5 GHz) and AR9344 (2,4 GHz)
* Ethernet: 5x 1000Base-T
* LED: Power, WAN, LAN, WiFi, USB, WPS
* UART: on board, to the right of the RF shield at the top of the board
Installation:
* Flashing through the OEM web interface:
+ Connect your computer to the router with an ethernet cable and browse
to http://192.168.1.1/
+ Log in with the default credentials are admin:password
+ Browse to Advanced > Administration > Firmware Upgrade in the Netgear
interface
+ Upload the Openwrt firmware: openwrt-ath79-nand-netgear_wndr4300sw-squashfs-factory.img
+ Proceed with the firmware installation and give the device a few
minutes to finish and reboot.
* Flashing through TFTP:
+ Configure your wired client with a static IP in the 192.168.1.x range,
e.g. 192.168.1.10 and netmask 255.255.255.0.
+ Power off the router.
+ Press and hold the RESET button (the factory reset button on the bottom
of the device, with the red circle around it) and turn the router on
while keeping the button pressed.
+ The power LED will start flashing orange. You can release the button
once it switches to flashing green.
+ Transfer the image over TFTP:
$ tftp 192.168.1.1 -m binary -c put openwrt-ath79-nand-netgear_wndr4300sw-squashfs-factory.img
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
Hardware
--------
SoC: Atheros AR9344
RAM: 128M DDR2
FLASH: 2x Macronix MX25L12845EM
2x 16MiB SPI-NOR
WLAN2: Atheros AR9344 2x2 2T2R
WLAN5: Atheros AR9580 2x2 2T2R
SERIAL: Cisco-RJ45 on the back (115200 8n1)
Installation
------------
The U-Boot CLI is password protected (using the same credentials as the
OS). Default is admin/new2day.
1. Download the OpenWrt initramfs-image. Place it into a TFTP server
root directory and rename it to 1401A8C0.img. Configure the TFTP
server to listen at 192.168.1.66/24.
2. Connect the TFTP server to the access point.
3. Connect to the serial console of the access point. Attach power and
interrupt the boot procedure when prompted (bootdelay is 1 second).
4. Configure the U-Boot environment for booting OpenWrt from Ram and
flash:
$ setenv boot_openwrt 'setenv bootargs; bootm 0xbf230000'
$ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
tftpboot 0x85000000; bootm'
$ setenv bootcmd 'run boot_openwrt'
$ saveenv
5. Load OpenWrt into memory:
$ run ramboot_openwrt
Wait for the image to boot.
6. Transfer the OpenWrt sysupgrade image to the device. Write the image
to flash using sysupgrade:
$ sysupgrade -n /path/to/openwrt-sysuograde.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
This ports support for the TL-WA901ND v4 and v5 from ar71xx to ath79.
They are similar to the TP9343-based TL-WR940N v3/v4 and TL-WR941ND v6.
Specifications:
SoC: TP9343
Flash/RAM: 4/32 MiB
CPU: 750 MHz
WiFi: 2.4 GHz b/g/n
Ethernet: 1 port (100M)
Flashing instructions:
Upload the factory image via the vendor firmware upgrade option.
Flash instruction (TFTP):
1. Set PC to fixed ip address 192.168.0.66
2. Download *-factory.bin image and rename it to * (see below)
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
* The image name for TFTP recovery is wa901ndv4_tp_recovery.bin for
both variants.
In ar71xx, a MAC address with offset 1 was used for ethernet port.
That's probably wrong, but this commit sticks to it until we know
the correct value.
Like in ar71xx, this builds the default factory.bin with EU country
code.
Thanks to Leonardo Weiss for testing on the v5.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Increase SPI frequency to 33.333 MHz. It's maximum frequency supported
by SPI Flash memory chip without Fast read opcode.
Before:
$ time dd if=/dev/mtd1 of=/dev/null bs=8M
0+1 records in
0+1 records out
real 0m 3.21s
user 0m 0.00s
sys 0m 3.21s
After:
$ time dd if=/dev/mtd1 of=/dev/null bs=8M
0+1 records in
0+1 records out
real 0m 2.52s
user 0m 0.00s
sys 0m 2.52s
Tested on TP-Link TL-WR1043ND V2.
Signed-off-by: Aleksander Jan Bajkowski <A.Bajkowski@stud.elka.pw.edu.pl>
Out of all devices currently supported based on AR9331 chipset,
this one had the 'serial0' alias missing. Add it to fix setting of
/dev/console and login shell on the onboard UART.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
As evidenced here[1] the device MAC address can be stored at a random
offset in the hard_config partition. Rely on sysfs to update the MAC
address correctly.
To match sticker and vendor OS behavior, WAN MAC is set to the device
base MAC and LAN MAC is incremented from that.
Note: this will trigger a harmless kernel message during boot:
ag71xx 19000000.eth: invalid MAC address, using random address
There is no clean workaround to prevent this message from being emitted.
[1] https://github.com/openwrt/openwrt/pull/2850#issuecomment-610809021
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
This board was previously supported in ar71xx as 'RUT9XX'. The
difference between that and the other RUT955 board already supported in
ath79 is that instead of the SPI shift registers driving the LEDs and
digital outputs that model got an I2C GPIO expander instead.
To support LEDs during early boot and interrupt-driven digital inputs,
I2C support as well as support for PCA953x has to be built-in and
cannot be kernel modules, hence select those symbols for ath79/generic.
Specification:
- 550/400/200 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 4x 10/100 Mbps Ethernet, with passive PoE support on LAN1
- 2T2R 2,4 GHz (AR9344)
- built-in 4G/3G module (example: Quectel EC-25EU)
- internal microSD slot (spi-mmc, buggy and disabled for now)
- RS232 on D-Sub9 port (Cypress ACM via USB, /dev/ttyACM0)
- RS422/RS485 (AR934x high speed UART, /dev/ttyATH1)
- analog 0-24V input (MCP3221)
- various digital inputs and outputs incl. a relay
- 11x LED (4 are driven by AR9344, 7 by PCA9539)
- 2x miniSIM slot (can be swapped via GPIO)
- 2x RP-SMA/F (Wi-Fi), 3x SMA/F (2x WWAN, GPS)
- 1x button (reset)
- DC jack for main power input (9-30 V)
- debugging UART available on PCB edge connector
Serial console (/dev/ttyS0) pinout:
- RX: pin1 (square) on top side of the main PCB (AR9344 is on top)
- TX: pin1 (square) on bottom side
Flash instruction:
Vendor firmware is based on OpenWrt CC release. Use the "factory" image
directly in GUI (make sure to uncheck "keep settings") or in U-Boot web
based recovery. To avoid any problems, make sure to first update vendor
firmware to latest version - "factory" image was successfully tested on
device running "RUT9XX_R_00.06.051" firmware and U-Boot "3.0.1".
Signed-off-by: Daniel Golle <daniel@makrotopia.org>