Specification:
- MT7981 CPU using 2.4GHz and 5GHz WiFi (both AX)
- MT7531 switch
- 512MB RAM
- 128MB NAND flash with two UBI partitions with identical size
- 1 multi color LED (red, green, blue, white) connected via GCA230718
- 3 buttons (WPS, reset, LED on/off)
- 1 1Gbit WAN port
- 4 1Gbit LAN ports
Disassembly:
- There are four screws at the bottom: 2 under the rubber feets, 2 under the label.
- After removing the screws, the white plastic part can be shifted out of the blue part.
- Be careful because the antennas are mounted on the side and the top of the white part.
Serial Interface
- The serial interface can be connected to the 4 pin holes on the side of the board.
- Pins (from front to rear):
- 3.3V
- RX
- TX
- GND
- Settings: 115200, 8N1
MAC addresses:
- WAN MAC is stored in partition "Odm" at offset 0x81
- LAN (as printed on the device) is WAN MAC + 1
- WLAN MAC (2.4 GHz) is WAN MAC + 2
- WLAN MAC (5GHz) is WAN MAC + 3
Flashing via Recovery Web Interface:
- The recovery web interface always flashes to the currently active partition.
- If OpenWrt is flahsed to the second partition, it will not boot.
- Ensure that you have an OEM image available (encrypted and decrypted version). Decryption is described in the end.
- Set your IP address to 192.168.200.10, subnetmask 255.255.255.0
- Press the reset button while powering on the device
- Keep the reset button pressed until the LED blinks red
- Open a Chromium based and goto http://192.168.200.1 (recovery web interface)
- Download openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-squashfs-recovery.bin
- The recovery web interface always reports successful flashing, even if it fails
- After flashing, the recovery web interface will try to forward the browser to 192.168.0.1 (can be ignored)
- If OpenWrt was flashed to the first partition, OpenWrt will boot (The status LED will start blinking white and stay white in the end). In this case you're done and can use OpenWrt.
- If OpenWrt was flashed to the second partition, OpenWrt won't boot (The status LED will stay red forever). In this case, the following steps are reuqired:
- Start the web recovery interface again and flash the **decrypted OEM image**. This will be flashed to the second partition as well. The OEM firmware web interface is afterwards accessible via http://192.168.200.1.
- Now flash the **encrypted OEM image** via OEM firmware web interface. In this case, the new firmware is flashed to the first partition. After flashing and the following reboot, the OEM firmware web interface should still be accessible via http://192.168.200.1.
- Start the web recovery interface again and flash the OpenWrt recovery image. Now it will be flashed to the first partition, OpenWrt will boot correctly afterwards and is accessible via 192.168.1.1.
Flashing via U-Boot:
- Open the case, connect to the UART console
- Set your IP address to 192.168.200.2, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
- Run a tftp server which provides openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-initramfs-kernel.bin.
- Power on the device and select "7. Load image" in the U-Boot menu
- Enter image file, tftp server IP and device IP (if they differ from the default).
- TFTP download to RAM will start. After a few seconds OpenWrt initramfs should start
- The initramfs is accessible via 192.168.1.1, change your IP address accordingly (or use multiple IP addresses on your interface)
- Perform a sysupgrade using openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-squashfs-sysupgrade.bin
- Reboot the device. OpenWrt should start from flash now
Revert back to stock using the Recovery Web Interface:
- Set your IP address to 192.168.200.2, subnetmask 255.255.255.0
- Press the reset button while powering on the device
- Keep the reset button pressed until the LED blinks red
- Open a Chromium based and goto http://192.168.200.1 (recovery web interface)
- Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.
Decrypting a D-Link firmware image:
- Download https://github.com/RolandoMagico/firmware-utils/blob/M32/src/m32-firmware-util.c
- Compile a binary from the downloaded file, e.g. gcc m32-firmware-util.c -lcrypto -o m32-firmware-util
- Run ./m32-firmware-util M30 --DecryptFactoryImage <OriginalFirmware> <OutputFile>
- Example for firmware M30A1_FW101B05: ./m32-firmware-util M30 --DecryptFactoryImage M30A1_FW101B05\(0725091522\).bin M30A1_FW101B05\(0725091522\)_decrypted.bin
Flashing via OEM web interface is not possible, as it will change the active partition and OpenWrt is only running on the first UBI partition.
Controlling the LEDs:
- The LEDs are controlled by a chip called "GCA230718" which is connected to the main CPU via I2C (address 0x40)
- I didn't find any documentation or driver for it, so the information below is purely based on my investigations
- If there is already I driver for it, please tell me. Maybe I didn't search enough
- I implemented a kernel module (leds-gca230718) to access the LEDs via DTS
- The LED controller supports PWM for brightness control and ramp control for smooth blinking. This is not implemented in the driver
- The LED controller supports toggling (on -> off -> on -> off) where the brightness of the LEDs can be set individually for each on cycle
- Until now, only simple active/inactive control is implemented (like when the LEDs would have been connected via GPIO)
- Controlling the LEDs requires three sequences sent to the chip. Each sequence consists of
- A reset command (0x81 0xE4) written to register 0x00
- A control command (for example 0x0C 0x02 0x01 0x00 0x00 0x00 0xFF 0x01 0x00 0x00 0x00 0xFF 0x87 written to register 0x03)
- The reset command is always the same
- In the control command
- byte 0 is always the same
- byte 1 (0x02 in the example above) must be changed in every sequence: 0x02 -> 0x01 -> 0x03)
- byte 2 is set to 0x01 which disables toggling. 0x02 would be LED toggling without ramp control, 0x03 would be toggling with ramp control
- byte 3 to 6 define the brightness values for the LEDs (R,G,B,W) for the first on cycle when toggling
- byte 7 defines the toggling frequency (if toggling enabled)
- byte 8 to 11 define the brightness values for the LEDs (R,G,B,W) for the second on cycle when toggling
- byte 12 is constant 0x87
Comparison to M32/R32:
- The algorithms for decrypting the OEM firmware are the same for M30/M32/R32, only the keys differ
- The keys are available in the GPL sources for the M32
- The M32/R32 contained raw data in the firmware images (kernel, rootfs), the R30 uses a sysupgrade tar instead
- Creation of the recovery image is quite similar, only the header start string changes. So mostly takeover from M32/R32 for that.
- Turned out that the bytes at offset 0x0E and 0x0F in the recovery image header are the checksum over the data area
- This checksum was not checked in the recovery web interface of M32/R32 devices, but is now active in R30
- I adapted the recovery image creation to also calculate the checksum over the data area
- The recovery image header for M30 contains addresses which don't match the memory layout in the DTS. The same addresses are also present in the OEM images
- The recovery web interface either calculates the correct addresses from it or has it's own logic to determine where which information must be written
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
The recovery image is reqired for D-Link M30 as well. So I moved it to include/image-commands.mk to be able to use it for MT7622 and filogic devices.
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
Huawei AP5030DN is a dual-band, dual-radio 802.11ac Wave 1 3x3 MIMO
enterprise access point with two Gigabit Ethernet ports and PoE
support.
Hardware highlights:
- CPU: QCA9550 SoC at 720MHz
- RAM: 256MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: QCA9550-internal radio
- Wi-Fi 5GHz: QCA9880 PCIe WLAN SoC
- Ethernet 1: 10/100/1000 Mbps Ethernet through Broadcom B50612E PHY
- Ethernet 2: 10/100/1000 Mbps Ethernet through Marvell 88E1510 PHY
- PoE: input through Ethernet 1 port
- Standalone 12V/2A power input
- Serial console externally available through RJ45 port
- External watchdog: SGM706 (1.6s timeout)
Serial console:
9600n8 (9600 baud, no stop bits, no parity, 8 data bits)
MAC addresses:
Each device has 32 consecutive MAC addresses allocated by
the vendor, which don't overlap between devices.
This was confirmed with multiple devices with consecutive
serial numbers.
The MAC address range starts with the address on the label.
To be able to distinguish between the interfaces,
the following MAC address scheme is used:
- eth0 = label MAC
- eth1 = label MAC + 1
- radio0 (Wi-Fi 5GHz) = label MAC + 2
- radio1 (Wi-Fi 2.4GHz) = label MAC + 3
Installation:
0. Connect some sort of RJ45-to-USB adapter to "Console" port of the AP
1. Power up the AP
2. At prompt "Press f or F to stop Auto-Boot in 3 seconds",
do what they say.
Log in with default admin password "admin@huawei.com".
3. Boot the OpenWrt initramfs from TFTP using the hidden script
"run ramboot". Replace IP address as needed:
> setenv serverip 192.168.1.10
> setenv ipaddr 192.168.1.1
> setenv rambootfile
openwrt-ath79-generic-huawei_ap5030dn-initramfs-kernel.bin
> saveenv
> run ramboot
4. Optional but recommended as the factory firmware cannot
be downloaded publicly:
Back up contents of "firmware" partition using the web interface or ssh:
$ ssh root@192.168.1.1 cat /dev/mtd11 > huawei_ap5030dn_fw_backup.bin
5. Run sysupgrade using sysupgrade image. OpenWrt
shall boot from flash afterwards.
Return to factory firmware (using firmware upgrade package downloaded from
non-public Huawei website):
1. Start a TFTP server in the directory where
the firmware upgrade package is located
2. Boot to u-boot as described above
3. Install firmware upgrade package and format the config partitions:
> update system FatAP5X30XN_SOMEVERSION.bin
> format_fs
Return to factory firmware (from previously created backup):
1. Copy over the firmware partition backup to /tmp,
for example using scp
2. Use sysupgrade with force to restore the backup:
sysupgrade -F huawei_ap5030dn_fw_backup.bin
3. Boot AP to U-Boot as described above
Quirks and known issues
-----------------------
- On initial power-up, the Huawei-modified bootloader suspends both
ethernet PHYs (it sets the "Power Down" bit in the MII control
register). Unfortunately, at the time of the initial port, the kernel
driver for the B50612E/BCM54612E PHY behind eth0 doesn't have a resume
callback defined which would clear this bit. This makes the PHY unusable
since it remains suspended forever. This is why the backported kernel
patches in this commit are required which add this callback and for
completeness also a suspend callback.
- The stock firmware has a semi dual boot concept where the primary
kernel uses a squashfs as root partition and the secondary kernel uses
an initramfs. This dual boot concept is circumvented on purpose to gain
more flash space and since the stock firmware's flash layout isn't
compatible with mtdsplit.
- The external watchdog's timeout of 1.6s is very hard to satisfy
during bootup. This is why the GPIO15 pin connected to the watchdog input
is configured directly in the LZMA loader to output the CPU_CLK/4 signal
which keeps the watchdog happy until the wdt-gpio kernel driver takes
over. Because it would also take too long to read the whole kernel image
from flash, the uImage header only includes the loader which then reads
the kernel image from flash after GPIO15 is configured.
Signed-off-by: Marco von Rosenberg <marcovr@selfnet.de>
[fixed 6.6 backport patch naming]
Signed-off-by: David Bauer <mail@david-bauer.net>
On x86, the build failed while trying to compile tools/lib/string.c because
of a clash with the system provided implementation for strlcpy
Add ifdefs to prevent the conflict.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
This device only has 64 MiB RAM and ath10k wireless driver will
consume a lot of memory. Let's move it to the tiny sub-target to
get extra 7 MiB of free space. In this way, we can extend their
lifetime to receive support for the next OpenWrt LTS version. This
patch also trims the duplicate "recovery.bin" image as it's the
same as the "factory.bin".
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
These devices only have 64 MiB RAM and ath10k wireless driver will
consume a lot of memory. Let's move them to the tiny sub-target to
get extra 7 MiB of free space. In this way, we can extend their
lifetime to receive support for the next OpenWrt LTS version. This
patch also trims the USB package for the non-existent USB port.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
The upcoming D-Link devices to the tiny sub-target require it to
parse the u-env MAC address. The kernel size will increase by
about 1 KiB.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Move seama image recipe to the common Makefile in order for some
tiny sub-target D-Link devices can share it.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Hardware specification:
SoC: MediaTek MT7986A 4x A53
Flash: ESMT F50L1G41LB 128MB
RAM: W632GU6NB DDR3 256MB
Ethernet: 1x 2.5G + 4x 1G
WiFi1: MT7975N 2.4GHz 4T4R
WiFi2: MT7975PN 5GHz 4T4R
Button: Reset, WPS
Power: DC 12V 2A
Flash instructions:
1. Connect to the router using ssh or telnet,
username: useradmin, password is the web
login password of the router.
2. Use scp to upload bl31-uboot.fip and flash:
"mtd write xxx-preloader.bin spi0.0"
"mtd write xxx-bl31-uboot.fip FIP"
"mtd erase ubi"
3. Connect to the router via the Lan port,
set a static ip of your PC.
(ip 192.168.1.254, gateway 192.168.1.1)
4. Download initramfs image, reboot router,
waiting for tftp recovery to complete.
5. After openwrt boots up, perform sysupgrade.
Note:
1. Back up all mtd partitions before flashing.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
ttyS2 is the default console used for all rockchip boards.
The redundant 'console=tty1' parameter now breaks the console due to
recent procd update.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
We have hardware IOMMU support and this is totally unnecessary.
The given value is also unreasonable, it's too small and causes
kernel panic in some cases:
[ 5706.856473] sdhci-dwcmshc fe310000.mmc: swiotlb buffer is full (sz: 28672 bytes), total 512 (slots), used 498 (slots)
[ 5706.864451] sdhci-dwcmshc fe310000.mmc: swiotlb buffer is full (sz: 65536 bytes), total 512 (slots), used 464 (slots)
This parameter seems to be added by mistake, so remove it.
Fixes: e35c7ab51fd1 ("rockchip: merge bootscript")
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
6.6 has been in testing on qualcommax for a while so it should be in a
good shape, but lets default to it to get a wider audience.
Signed-off-by: Robert Marko <robimarko@gmail.com>
It's required to support NAND controllers with WP pin on boards that
don't have it connected to NAND chip.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Key features:
Allwinner H618 SoC (Quad core Cortex-A53)
1/1.5/2/4 GiB LPDDR4 DRAM
1 USB 2.0 type C port (Power + OTG)
1 USB 2.0 host port
1Gbps Ethernet port
Micro-HDMI port
MicroSD slot
Installation:
Write the image to SD Card with dd.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Backport AXP15060, AXP313a and AXP192 support.
The AXP15060 PMIC is used for starfive boards,
and the AXP313a PMIC is used for sunxi boards.
Remove conflicting patches from starfive target.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Fix issue of transmitting abnormal data which leads to link problems
in 1G and 2.5G SerDes modes (SGMII, 1000Base-X, 2500Base-X) on the
MediaTek MT7988 SoC.
Link: b72d6cba92
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The Zyxel GS1900-8 v2 or Rev.B1 is a newer variant of the GS1900-8, but
otherwise similar to the other GS1900 switches.
Differences
------------
* Front Button labeled RESTORE
* NO Power Switch on rear
* Serial Header next to the barrel power connector
* Part Number ends 0102F
Signed-off-by: Goetz Goerisch <ggoerisch@gmail.com>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 8GB eMMC or 128 MB SPI-NAND
RAM: 256MB
Ethernet: 5x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset
USB: M.2(B-key) for 4G/5G Module
Power: DC 12V 1A
UART: 3.3v, 115200n8
--------------------------
| Layout |
| ----------------- |
| 4 | VCC RX TX GND | <= |
| ----------------- |
--------------------------
The U-boot menu will automatically appear at startup, and then select
the required options through UP/DOWN Key.
NAND Flash and eMMC Flash instructions:
1. Set your computers IP adress to 192.168.1.2.
2. Run a TFTP server providing the sysupgrade.bin image.
3. Power on the router, into the U-Boot menu.
4. Select "2. Upgrade firmware"
5. Update sysupgrade.bin file name, input server IP and input device
IP (if they deviate from the defaults)
6. Wait for automatic startup after burning
Signed-off-by: Allen Zhao <allenzhao@unielecinc.com>
This is an automatically generated commit which aids following Kernel patch history,
as git will see the move and copy as a rename thus defeating the purpose.
See: https://lists.openwrt.org/pipermail/openwrt-devel/2023-October/041673.html
for the original discussion.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
This is an automatically generated commit.
During a `git bisect` session, `git bisect --skip` is recommended.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>