SPDX moved from GPL-2.0 to GPL-2.0-only and from GPL-2.0+ to
GPL-2.0-or-later. Reflect that in the SPDX license headers.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: maurerr <mariusd84@gmail.com>
AR8327 datasheet[1] calls the register at address 0x0010
"Power-on Strapping Register". As it has nothing to do with "strip",
let's rename it to "POWER_ON_STRAP" to make it easier to grasp.
[1] https://lafibre.info/images/doc/201106_spec_AR8327.pdf
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Hardware
--------
SoC: NXP P1020 (2x e500 @ 800MHz)
RAM: 256M DDR3 (Micron)
FLASH: 32M NOR (Spansion S29GL128S)
BTN: 1x Reset
WiFi: 1x Atheros AR9590 2.4 bgn 3x3
2x Atheros AR9590 5.0 an 3x3
ETH: 1x Gigabit Ethernet (Atheros AR8033)
LED: System (green/red) - Radio{0,1} (green)
LAN (connected to PHY)
- GE blue
- FE green
Serial is a Cisco-compatible RJ45 next to the ethernet port.
115200-N-8 are the settings for OS and U-Boot.
Installation
------------
1. Grab the OpenWrt initramfs, rename it to 01C8A8C0.img. Place it in
the root directory of a TFTP server and serve it at
192.168.200.200/24.
2. Connect to the serial port and boot the AP. Stop autoboot in U-Boot
by pressing Enter when prompted. Credentials are identical to the one
in the APs interface. By default it is admin / new2day.
3. Set the bootcmd so the AP can boot OpenWrt by executing
$ setenv boot_openwrt "setenv bootargs;
cp.b 0xee000000 0x1000000 0x1000000; bootm 0x1000000"
$ setenv bootcmd "run boot_openwrt"
$ saveenv
If you plan on going back to the vendor firmware - the bootcmd for it
is stored in the boot_flash variable.
4. Load the initramfs image to RAM and boot by executing
$ tftpboot 0x1000000 192.168.200.200:01C8A8C0.img; bootm
5. Make a backup of the "firmware" partition if you ever wish to go back
to the vendor firmware.
6. Upload the OpenWrt sysupgrade image via SCP to the devices /tmp
folder.
7. Flash OpenWrt using sysupgrade.
$ sysupgrade -n /tmp/openwrt-sysupgrade.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
This commit fixes TP-Link TL-WDR4900 v1 MAC address assignment.
Previously, the MAC addrss was read for the ethernet from the "config"
partition. However, the content of this partition is dependent on the
firmware which was previously installed on the device.
Switch the MAC address source to the U-Boot partition, where the MAC
address is always present at a fixed partition. The partition was
previously already used for the WiFi MAC-addresses.
Reviewed-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: David Bauer <mail@david-bauer.net>
WLAN0 and the unused LED are currently swapped. Fix this, so the LED
behavior matches the other OCEDo devices.
Signed-off-by: David Bauer <mail@david-bauer.net>
Converts the TP-Link WDR4900 v1 to use the simpleImage in the
hopes of prolonging the life of the device. While at it,
the patch makes the fdt.bin an ARTIFACT and sets the KERNEL_SIZE
to 2684 KiB as a precaution since the stock u-boot is using a
fixed kernel size.
Note: Give the image some time, it will take much longer to
extract and boot.
[tested for 4.14/4.19]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Co-authored-by: Pawel Dembicki <paweldembicki@gmail.com>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
CPU: FSL P1020 (2x 800MHz E500 PPC)
RAM: 1GB DDR3
FLASH: 256MiB NAND
WiFi: 2x Atheros AR9382 2x2:2 abgn
ETH: 2x BCM54616S - 1x BCM53128 8-port switch
LED: 5x LEDs (Power, WiFi1, WiFi2, N/D, SYS)
BTN: 1x RESET
Installation
------------
1. Download initrams kernel image, dtb binary and sysupgrade image.
2. Place initramfs kernel into tftp root directory. Rename to
"panda-uimage-factory".
3. Place dtb binary into tftp root directory. Rename to "panda.fdt".
4. Start tftp server on 192.168.100.8/24.
5. Power up the device with the reset button pressed. It will download
the initrams and dtb via tftp and boot into OpenWRT in RAM.
6. SSH into the device and remove the factory partitions.
> ubirmvol /dev/ubi0 --name=kernel1
> ubirmvol /dev/ubi0 --name=rootfs1
> ubirmvol /dev/ubi0 --name=devicetree1
You will have around 60 MiB of free space with that.
You can also delete "kernel2", "devicetree2", "rootfs2" and "storage"
respectively in case you do not want to go back to the vendor firmware.
7. Modify the U-Boot bootcmd to allow for booting OpenWRT
> fw_setenv bootcmd_owrt "ubi part ubi && ubi read 0x1000000 kernel
&& bootm 0x1000000"
> fw_setenv bootargs_owrt "setenv bootargs console=ttyS0,115200
ubi.mtd=3,2048"
> fw_setenv bootcmd "run bootargs_owrt; run bootcmd_owrt"
8. Transfer the sysupgrade image via scp into the /tmp directory.
9. Upgrade the device
> sysupgrade -n /tmp/<imagename>
Signed-off-by: David Bauer <mail@david-bauer.net>
This commit removes the target-specific diag.sh script. This way, the
generic one is used for the target, which uses DT-aliases to specify the
LEDs used.
This way, we are also able to use different LEDs to indicate different
states. We use green status LEDs for indicating boot and a running
system. Where possible, the red status LED is used to indicate failsafe
mode and a running upgrade.
Signed-off-by: David Bauer <mail@david-bauer.net>
Hardware
========
CPU: Freescale P1010 PowerPC
RAM: 128M DDR3
NAND: 128MiB
ETH: RTL8211F SGMII PHY
RTL8367B 5-port RGMII switch
(not connected to SoC - unmanaged)
WiFi: SparkLan WPEA-121N
- Atheros AR9382 2T2R abgn
USB: 1x USB 2.0
LED: System, Router, Internet, Tunnel controllable
LAN1-4, WAN, Power non-controllable
BTN: None
Installation
============
1. Power on the device while attached to the Console port.
2. Halt the U-Boot by pressing Enter when prompted.
3. Set the correct bootcmd for booting OpenWRT:
> setenv bootargs_owrt "setenv bootargs console=ttyS0,115200"
> setenv bootcmd "run bootargs_owrt;
nand read 0x1000000 0x300000 0x800000;
bootm 0x1000000;"
> saveenv
5. Rename OpenWRT initramfs image to 'kernel.bin' and place it in a
TFTP server root-directory served on 192.168.1.2/24. Connect your
computer to one of the LAN-ports.
4. Boot OpenWRT initramfs image with
> run bootargs_owrt; tftpboot 0x1000000 192.168.1.2:kernel.bin;
bootm 0x1000000;
6. (Optional)
Make a Backup of 'sophos-os1', 'sophos-os2' and 'sophos-data' in case
you ever want to go back to the vendor firmware.
7. Create Ubi Volume on mtd4 by executing
> ubiformat /dev/mtd4 -y
8. Transfer OpenWRT sysupgrade image to the device via SCP and install it
with
> sysupgrade -n <openwrt-image-file>
Back to Stock
=============
If you want to go back to the stock firmware, here is the bootcmd of the
vendor firmware:
> setenv bootargs console=ttyS0,115200 root=/dev/mtdblock5;
nand read 0xc00000 0x00300000 0x100000;
nand read 0x1000000 0x00400000 0x00800000;
bootm 0x1000000 - 0xc00000
Set it via 'setenv' from the U-Boot shell and don't forget to save it
using 'saveenv'!
After this, boot the OpenWRT initramfs image just like you would for
installation. Write back the three vendor partitions using mtd. Reboot
the device afterwards.
Signed-off-by: David Bauer <mail@david-bauer.net>
[refresh and reorder patches]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Currently, the image creation process for the TP-Link tl-wdr4900-v1
needs a fixed sized kernel and places the rootfs partition at a
fixed offset. With the upcoming move to 4.19 the kernel will no
longer fit into the existing allocated space for the kernel
partition.
This patch converts the device to utilize the established
tplink,firmware mtdsplitter, which can deal with a dynamic
kernel/rootfs size.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [reworded commit]
This follows a similar upstream patch by Rob Herring:
|commit 78e5dfea84dc15d69940831b3981b3014d17222e
|Author: Rob Herring <robh@kernel.org>
|Date: Wed Feb 28 16:44:06 2018 -0600
| powerpc: dts: replace 'linux,stdout-path' with 'stdout-path'
|
| 'linux,stdout-path' has been deprecated for some time in favor of
| 'stdout-path'. Now dtc will warn on occurrences of 'linux,stdout-path'.
| Search and replace all the of occurrences with 'stdout-path'.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The WDR4900v1 uses the P1040 SoC, so the device tree pulls in the
definition for the related P1010 SoC. However, the P1040 lacks the
CAAM/SEC4 hardware crypto accelerator which the P1010 device tree
defines. If left defined, this causes the CAAM drivers (if present) to
attempt to use the non-existent device, making various crypto-related
operations (e.g. macsec and ipsec) fail.
This commit overrides the incorrect dt node definition in the included
file.
See also:
- https://bugs.openwrt.org/index.php?do=details&task_id=1262
- https://community.nxp.com/thread/338432#comment-474107
Signed-off-by: Tim Small <tim@seoss.co.uk>
initramfs is not the proper name for this, as it stores a boot ramdisk
and not a filesystem. Update the name to reflect it's usage correctly.
If CMDLINE_OVERRIDE is enabled, the chosen bootargs aren't used at all.
Drop them from the device tree source file to not cause confusion.
Remove the noinitrd bootarg. Due to the empty ramdisk this parameter
isn't required any longer:
[ 0.000000] Initrd not found or empty - disabling initrd
Use the LEDE mtd-mac-address* device tree properties to set the interfaces
MAC-Addresses.
Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
Signed-off-by: Mathias Kresin <dev@kresin.me>
The following adds the Aerohive HiveAP-330 Access Point to LEDE under
the mpc85xx/p1020 subtarget.
Hardware:
- SoC: Freescale P1020NSE2DFB
- NAND: Intel JS28F512M29EWH 64MB
- Memory: 2x ProMOS V59C1G01168QBJ3 128MB (Total of 256MB)
- 2.4GHz WiFi: Atheros AR9390-AL1A
- 5.0GHz WiFi: Atheros AR9390-AL1A
- Eth1: Atheros AR8035-A PoE
- Eth2: Atheros AR8035-A
- TPM: Atmel AT97SC3204
- LED Driver: TI LP5521
Flashing:
1. Hook into UART (9600 baud) and enter U-Boot. You may need to enter a
password of administrator or AhNf?d@ta06 if prompted.
2. Once in U-Boot, tftp boot the initramfs image:
dhcp;
tftpboot 0x1000000 192.168.1.101:lede-
mpc85xx-p1020-hiveap-330-initramfs.zImage;
tftpboot 0x6000000 192.168.1.101:lede-mpc85xx-p1020-hiveap-330.fdt;
bootm 0x1000000 - 0x6000000;
3. Once booted, scp over the sysupgrade file and sysupgrade the device
to flash LEDE to the NAND.
sysupgrade /tmp/lede-mpc85xx-p1020-hiveap-330-sysupgrade.img
Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
Since commit:
7120438e5d
Seems that fsl_rstcr_restart() has been converted
to a reset handler and dropped as hook/callback.
Apply the same to the `tl_wdr4900_v1` target.
Signed-off-by: Alexandru Ardelean <ardeleanalex@gmail.com>
PTP requires at least one timer to be 1PPS so describe it.
For testing, load kernel module gianfar_ptp and use ptp4l
from linuxptp.
Copied from FSL P1010RDB reference design.
Signed-off-by: Wojciech Dubowik <Wojciech.Dubowik@neratec.com>
SVN-Revision: 48275
This patch adds the RFKill GPIO control switch and enables another GPIO to
control power supply to USB Ports by emulating an LED GPIO for WDR4900v1.
Signed-off-by: Guo Wei Lim <alphasparc@gmail.com>
SVN-Revision: 46279
Currently port 6 is shown as up 10MBit/half in LUCI and swconfig.
Reason is that all bits in the port 6 config are zero.
This means that also the aneg flag is not set and in this case
ar8216_read_port_link hardcodes the link to be up.
This is no real problem but a little annoying.
To fix this initialize port 6 with the aneg bit enabled.
This causes ar8216_read_port_link to evaluate the link status bit which is
always zero for port 6 as no PHY is connected to this port.
And it doesn't hurt as port 6 isn't connected to anything on TL-WDR4900.
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
SVN-Revision: 45749
This also changes the MAC address to one of the adresses actually used by the
stock firmware on one of the ethernet interfaces.
Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
SVN-Revision: 45599