This commit adds support for two variants of the already supported router
Acer Predator Connect W6: The Acer Predator Connect W6d (W6 without 6 GHz
wifi) and the Acer Connect Vero W6m (W6 without 2.5G eth1 port, usb3 port,
and the 6 on-board gpio RGB LEDs, and with a KTD2026 RGB LED controller
instead of the KTD2061 LED controller of the W6/W6d).
The device tree for the W6m refers to the KTD202x driver suggested in
PR #16860.
Patching target/linux/mediatek/filogic/base-files/lib/upgrade/platform.sh
removes the code repetition in (old) lines 121 to 124 on the occasion.
This is the last of four commits into which the original commit was split
to make reviews easier and more targeted.
Signed-off-by: George Oldfort <openwrt@10099.de>
Link: https://github.com/openwrt/openwrt/pull/16861
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
(cherry picked from commit 2898d1d1269a841e5bb8673801bd2a04ad120031)
Link: https://github.com/openwrt/openwrt/pull/17097
Signed-off-by: Petr Štetiar <ynezz@true.cz>
In order to prepare OpenWrt support for other Acer W6 devices and to adapt
the procedure to read and set mac addresses which other devices of the same
target are using (instead of needing an additional script and creating an
additional structure in the file system), this commit
- reads device mac addresses from u-boot environment
- avoids the detour via the file system to set the mac addresses
- drops redundant file /lib/preinit/05_extract_factory_data.sh
The idea and the implementation were thankfully taken from PR #16410.
This is the second of four commits into which the original commit was split
to make reviews easier and more targeted.
Signed-off-by: George Oldfort <openwrt@10099.de>
Link: https://github.com/openwrt/openwrt/pull/16861
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
(cherry picked from commit e7aaba2587e57dbd157899f7a2215ec6b7af5f89)
Link: https://github.com/openwrt/openwrt/pull/17097
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The GatoNetworks GDSP is a re-branded version of the R5000 5G Industrial
router from Yinghua Technologies.
The re-branded device comes with OpenWrt preinstalled, and an OpenWrt-based
U-Boot bootloader version. While the flash layout has been kept compatible
with the OpenWrt version found on the stock device (see [5]), the image format
changed, making a bootloader upgrade necessary.
Specifications:
SoC: Mediatek MT7981BA
RAM: 256MB
Flash: SPI-NOR 32 MiB (Winbond W25Q256)
WLAN: MT7976CN DBDC AX Wi-Fi
Switch: MT7531AE (4x LAN Gigabit ports, 1x WAN Gigabit port)
5G: Quectel RM520N modem
Watchdog: an external WDT connected to GPIO 6 is present and always running;
the built-in Mediatek watchdog is also present and effective, but
not used at the moment.
This porting has been tested only with 1x 5G modems installed (the device
supports up to two).
Installation:
Installation is possible via sysupgrade both in the stock device and
re-branded version. However, in the former case, updating the bootloader is
required.
OpenWrt-based U-Boot Bootloader installation
--------------------------------------------
The firmware flashed in the re-branded device at manifacturing time will
flash an OpenWrt-based U-Boot bootloader with some extra recovery features
(see [1]) at first boot.
To update the bootloader, you need to install the mtd-rw module and
insmod it:
insmod mtd-rw i_want_a_brick=1
Then update relevant flash partitions:
mtd erase u-boot-env
mtd erase BL2
mtd erase FIP
mtd write openwrt-mediatek-filogic-gatonetworks_gdsp-preloader.bin BL2
mtd write openwrt-mediatek-filogic-gatonetworks_gdsp-bl31-uboot.fip FIP
And reboot, making sure all previous commands ran succesfully.
If something goes wrong, you can recover your device via the mtk_uartboot
tool.
In my testing, it was possible to start the process even without (un)-plugging
the device, may be handy for remote recovery.
Installation from stock device and firmware
-------------------------------------------
To install vanilla OpenWrt in the stock device (R5000 5G Industrial router
from Yinghua Technologies) running the stock vendor firmware, you will need
to update your bootloader as described in previous section. Remember to use
-F (force upgrade) and -n (not keeping settings).
U-Boot Recovery
---------------
This procedure has been tested only with the OpenWrt-based U-boot bootloader.
Assign your system static IP address 192.168.1.1 and start a TFTP server. The
device will look for an initramfs image named
openwrt-mediatek-filogic-gatonetworks_gdsp-initramfs-kernel.bin
(so you may use openwrt/bin/targets/mediatek/filogic as root dir for your
TFTP server).
Power on the device while keeping the reset button pressed, until you see
a TFTP request from 192.168.1.10. Your environment will be restored to it's
default state.
MAC addresses assignment
------------------------
MAC addresses are assigned slightly differently than in stock firmware. In
particular, the 5 GHz Wi-Fi uses 2.4 GHZ MAC + 1, rather than reusing it with
LA bit set as done in stock firmware. This MAC address is allocated to the
device, so it can be used.
The 2.4 GHz Wi-Fi MAC address is the label MAC. LAN MAC is used to set the
special U-Boot environment ethaddr variable.
device MAC address U-Boot env variable factory partition offset
2.4 GHz Wi-Fi :84 wifi_mac 0x4
5.8 GHz Wi-Fi :85 not present not present
WAN :86 wan_mac 0x24
LAN :87 lan_mac 0x2A
Notes
-----
[1]: the OpenWrt-based U-Boot bootloader you will find installed in the
re-branded device is configured to request for the initramfs image via
TFTP for $gdsp_tftp_tries times before trying normal boot from NOR flash.
Setting this U-Boot environment variable to 0x0 will disable the feature,
which is not implemented in this patch.
[2]: the exposed UART port is connected to ttyS1; the ttyS0 console port is
not exposed.
[3]: the provided bootloader environment has no provision for operating on
BL2 and the FIP partitions. This is an intentional choice to make it
(slightly) more difficult to brick the device.
[4]: it seems GPIO 6 is used both for the "SYS" LED and external WDT.
[5] BL2 expects to find FIP payload at a fixed offset, so some constraints
apply.
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
(cherry picked from commit b43194e041b17fbb574fb3721dafedcc30a20ab5)
Link: https://github.com/openwrt/openwrt/pull/17097
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Specification is similar to other devices of the MT Stuart series:
* Mediatek MT7988D (3x Cortex-A73, up to 1.8 GHz clock speed)
* 8 GiB eMMC
* 2 GiB DDR4 RAM
* 2500M/1000M/100M LAN port
* 10000M/5000M/2500M/1000M/100M/10M WAN port
* MT7992 Tri-band (2.4G, 5G, 6G) 2T2R+3T3R+3T3R 802.11be Wi-Fi
* Renesas DA14531MOD Bluetooth
* 2 buttons (Reset, Mesh/WPS)
* uC-controlled RGB LED via I2C
* 2x LED for the 2.5G port, 3x LED for the 10G port
* 3.3V-level 115200 baud UART console via 4-pin Dupont connector
exposed at the bottom of the device
* USB-C PD power input
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware specification:
SoC: MediaTek MT7986A 4x A53
Flash: ESMT F50L1G41LB 128MB
RAM: MT40A512M16TB-062ER 1GB
Ethernet: 2x 2.5G, 4x 1G Lan
WiFi1: MT7976GN 2.4GHz 4T4R
WiFi2: MT7976AN 5.2GHz 4T4R
WiFi3: MT7915AN 5.8GHz 4T4R
Button: Reset, WPS, Turbo
USB: 1 x USB 3.0
Power: DC 12V 5A
Flash instructions:
1. Execute the following operation to open nc shell:
https://openwrt.org/inbox/toh/tp-link/xdr-6086#rooting
2. Replace the stock bootloader to OpenWrt's:
dd bs=131072 conv=sync of=/dev/mtdblock9 if=/tmp/xxx-preloader.bin
dd bs=131072 conv=sync of=/dev/mtdblock9 seek=28 if=/tmp/xxx-bl31-uboot.fip
3. Connect to your PC via the Gigabit port of the router,
set a static ip on the ethernet interface of your PC.
4. Download the initramfs image, and restart the router,
waiting for tftp recovery to complete.
5. After openwrt boots up, perform sysupgrade.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Link: https://github.com/openwrt/openwrt/pull/15930
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 128 MB SPI-NAND
RAM: 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, Mesh
Power: DC 12V 1A
Gain telnet access:
1. Login into web interface, and download the configuration.
2. Decode and uncompress the configuration:
* Enter fakeroot if you are not login as root.
base64 -d e-xxxxxxxxxxxx-cfg.tar.gz | tar -zx
3. Edit 'etc/passwd', remove root password: 'root::1:0:99999:7:::'.
4. Edit 'etc/rc.local', insert telnetd command before 'exit 0':
( sleep 3s; /usr/sbin/telnetd; ) &
5. Repack the configuration:
tar -zc etc/ | base64 > e-xxxxxxxxxxxx-cfg.tar.gz
6. Upload new configuration via web interface, now you can connect to
ASR3000 via telnet.
Flash instructions:
1. Connect to ASR3000, backup everything, especially 'Factory' part.
2. Write new BL2:
mtd write openwrt-mediatek-filogic-abt_asr3000-preloader.bin BL2
3. Write new FIP:
mtd write openwrt-mediatek-filogic-abt_asr3000-bl31-uboot.fip FIP
4. Set static IP on your PC:
IP 192.168.1.254/24, GW 192.168.1.1
5. Serve OpenWrt initramfs image using TFTP server.
6. Cut off the power and re-engage, wait for TFTP recovery to complete.
7. After OpenWrt has booted, perform sysupgrade.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/15887
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Also use env variables exported by export_fitblk_rootdev() in
platform_copy_config().
Fixes: 4448d6325f ("mediatek: make use of common uImage.FIT upgrade functions")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Add entry for the BananaPi R3 mini to the platform_check_image()
function where it has been missing.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This commit adds support for TP-LINK RE6000XD.
The device is quite similar to the Mercusys MR90X V1,
except only 3 LAN ports and more LEDs.
So thanks to csharper2005 for doing all the groundwork.
Device specification
--------------------
SoC Type: MediaTek MT7986BLA, Cortex-A53, 64-bit
RAM: MediaTek MT7986BLA (512MB)
Flash: SPI NAND GigaDevice (128 MB)
Ethernet: MediaTek MT7531AE + 2.5GbE MaxLinear GPY211C0VC (SLNW8)
Ethernet: 1x2.5Gbe (LAN3 2.5Gbps), 2xGbE (LAN 1Gbps, LAN1,
LAN2)
WLAN 2g: MediaTek MT7975N, b/g/n/ax, MIMO 4x4
WLAN 5g: MediaTek MT7975P(N), a/n/ac/ax, MIMO 4x4
LEDs: 8 LEDs, 1 status blue, 2x WIFI blue, 2x signal
blue/red, 3 LAN blue gpio-controlled
Button: 2 (Reset, WPS)
USB ports: No
Power: 12 VDC, 2 A
Connector: Barrel
Bootloader: Main U-Boot - U-Boot 2022.01-rc4. Additionally, ubi0
partition contain "seconduboot" (also U-Boot 2022.01-rc4)
Serial console (UART), unpopulated
---------------------
V
+-------+-------+-------+-------+
| +3.3V | GND | TX | RX |
+---+---+-------+-------+-------+
|
+--- Don't connect
Disassemble: rm the 2 screws at the bottom and the one at the backside.
un-clip the case starting at the edge above the LEDs.
Installation (UART)
-------------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot openwrt-mediatek-filogic-tplink_re6000xd-initramfs-kernel.bin bootm
4. Run 'sysupgrade -n' with the sysupgrade OpenWrt image
Notice: while I was successfull at activating ssh (as described
here:
https://www.lisenet.com/2023/gaining-ssh-access-to-tp-link-re200-wi-fi-range-extender/)
Unfortunately I haven't found the correct root password.
Looks like they are using a static password
(md5crypt, salt + 21 characters) that is not the web
interface admin password.
The TP-LINK RE900XD looks like the very same device,
according to the pictures and the firmware.
But I haven't checked if the OpenWrt firmware works as well
on that device.
The second ubi partition (ubi1) is empty and there is no known
dual-partition mechanism, neither in u-boot nor in the stock firmware.
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
For the first-time installation (mostly migrates from vendor firmware)
the ubiblock is not ready, but bootdev detection relies on it. This
means users must create ubiblock manually otherwise the sysupgrade
will not work.
Now a unique case is added for nand devices which use new fit format,
let's move to it.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 128 MB SPI-NAND
RAM: 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, WPS/Mesh
Power: DC 12V 1A
Gain SSH access:
1. Login into web interface, and download the configuration.
2. Download the configration utilities:
https://firmware.download.immortalwrt.eu.org/cnsztl/mediatek/filogic/openwrt-mediatek-mt7981-nokia-ea0326gmp-config-utils.tar.gz
These binaries are extraced from the factory firmware, which are
dynamically linked with aarch64 musl 1.1.24. To use them, you
must run them under the same runtime environment, otherwise the
binaries will not work properly!
3. Upload the configuration and utilities to a suitable environment.
4. Uncompress the utilities, move them to '/bin' and give them executable permisison:
tar -zxf openwrt-mediatek-mt7981-nokia-ea0326gmp-config-utils.tar.gz
mv mkconfig seama /bin
chmod +x /bin/mkconfig
chmod +x /bin/seama
5. Decrypt and uncompress the configuration:
Enter fakeroot if you are not login as root.
mkconfig -a de-enca -m EA0326GMP_3FE79221BAAA -i EA0326GMP_3FE79221BAAA-xxxxxxxx-backup.tar.gz -o backup.tar.gz
tar -zxf backup.tar.gz
6. Edit 'etc/config/dropbear', set 'enable' to '1'.
7. Edit 'etc/passwd', remove root password: 'root::1:0:99999:7:::'.
8. Repack the configuration:
tar -zcf backup.tar.gz etc/
mkconfig -a enca -m EA0326GMP_3FE79221BAAA -i backup.tar.gz -o EA0326GMP_3FE79221BAAA-xxxxxxxx-backup.tar.gz
9. Upload new configuration via web interface, now you can SSH to EA0326GMP.
A minimum configuration which enabled SSH access is also provided
to simplify the process:
https://firmware.download.immortalwrt.eu.org/cnsztl/mediatek/filogic/openwrt-mediatek-mt7981-nokia-ea0326gmp-enable-ssh.tar.gz
Flash instructions:
1. SSH to EA0326GMP, backup everything, especially 'Factory' part.
2. Write new BL2:
mtd write openwrt-mediatek-filogic-nokia_ea0326gmp-preloader.bin BL2
3. Write new FIP:
mtd write openwrt-mediatek-filogic-nokia_ea0326gmp-bl31-uboot.fip FIP
4. Set static IP on your PC:
IP 192.168.1.254/24, GW 192.168.1.1
5. Serve OpenWrt initramfs image using TFTP server.
6. Cut off the power and re-engage, wait for TFTP recovery to complete.
7. After OpenWrt has booted, perform sysupgrade.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Common specifications:
* Mediatek MT7988A (4x Cortex-A73, up to 1.8 GHz clock speed)
* 8 GiB eMMC
* 2 GiB DDR4 RAM
* 1x 10000M/1000M/100M + 3x 1000M/100M/10M LAN ports
* MT7996 Tri-band (2.4G, 5G, 6G) 4T4R 802.11be Wi-Fi
* Airoha AG3352 GPS
* Renesas DA14531MOD Bluetooth
* 2 buttons (Reset, Mesh/WPS)
* uC-controlled RGB LED via I2C
* 2x LED for each 1G port, 3x LED for each 10G port
* USB 3.0 type A port
* 3.3V-level 115200 baud UART console via 4-pin Dupont connector
exposed at the bottom of the device
* USB-C PD power input
SDG-8733: 1x 10000M/1000M/100M WAN port
SDG-8734: 1x USXGMII/10GBase-R/5GBase-R/2500Base-X/1000Base-X/SGMII SFP+
Both models are also available in versions including 2x FXS POTS interfaces
for analog phones. Those interfaces are not supported by OpenWrt.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Add missing call to emmc_copy_config which either writes the sysupgrade
tar.gz backup file or clears the existing rootfs_data overlay.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This reverts commit 797904b3cb4a5c575641c19e7f3989926e4c7902.
There is a stray line in the commit description
Signed-off-by: John Crispin <john@phrozen.org>
filogic: Add support for D-Link AQUILA PRO AI M30
Specification:
- MT7981 CPU using 2.4GHz and 5GHz WiFi (both AX)
- 1GB RAM
- 16MB NOR
- 128MB NAND
- 3 LEDs (red, green, blue, white)
- 2 buttons (reset, user defined)
- 1 2.5Gbit WAN port (Airoha EN8811h)
- 1 1Gbit LAN ports
- 1 single lane M.2 SSD slot
- 1 mikroBus socket
- externel HW WDT (25s refresh time)
- i2c RTC (with battery backup)
Serial Interface
- UBS-C CDC-ACM
- 3 Pins GND, RX, TX
- Settings: 115200, 8N1
MAC addresses are not populated on the early samples.
Signed-off-by: John Crispin <john@phrozen.org>
Add ubi volumes for mt7988a-rfb and support for using factory data
for Ethernet MAC addresses and MT7996 WLAN calibration data.
Also add rootdisk handle. Removes the need to keep using nmbm
Signed-off-by: Felix Fietkau <nbd@nbd.name>
This adds support for the bpi-r4 variant with internal 2.5G PHY and
additional ethernet port instead of second sfp.
Signed-off-by: Martin Schiller <ms@dev.tdt.de>
Hardware specification:
SoC: MediaTek MT7986A 4x A53
Flash: ESMT F50L1G41LB 128MB
RAM: W632GU6NB DDR3 256MB
Ethernet: 1x 2.5G + 4x 1G
WiFi1: MT7975N 2.4GHz 4T4R
WiFi2: MT7975PN 5GHz 4T4R
Button: Reset, WPS
Power: DC 12V 2A
Flash instructions:
1. Connect to the router using ssh or telnet,
username: useradmin, password is the web
login password of the router.
2. Use scp to upload bl31-uboot.fip and flash:
"mtd write xxx-preloader.bin spi0.0"
"mtd write xxx-bl31-uboot.fip FIP"
"mtd erase ubi"
3. Connect to the router via the Lan port,
set a static ip of your PC.
(ip 192.168.1.254, gateway 192.168.1.1)
4. Download initramfs image, reboot router,
waiting for tftp recovery to complete.
5. After openwrt boots up, perform sysupgrade.
Note:
1. Back up all mtd partitions before flashing.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 8GB eMMC or 128 MB SPI-NAND
RAM: 256MB
Ethernet: 5x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset
USB: M.2(B-key) for 4G/5G Module
Power: DC 12V 1A
UART: 3.3v, 115200n8
--------------------------
| Layout |
| ----------------- |
| 4 | VCC RX TX GND | <= |
| ----------------- |
--------------------------
The U-boot menu will automatically appear at startup, and then select
the required options through UP/DOWN Key.
NAND Flash and eMMC Flash instructions:
1. Set your computers IP adress to 192.168.1.2.
2. Run a TFTP server providing the sysupgrade.bin image.
3. Power on the router, into the U-Boot menu.
4. Select "2. Upgrade firmware"
5. Update sysupgrade.bin file name, input server IP and input device
IP (if they deviate from the defaults)
6. Wait for automatic startup after burning
Signed-off-by: Allen Zhao <allenzhao@unielecinc.com>
The GL.iNet X3000 and XE3000 are Wi-Fi 6 5G cellular routers, based on
MediaTek MT7981A SoC. The XE3000 is the same device as the X3000,
except for an additional battery.
Specifications:
- SoC: Filogic 820 MT7981A (1.3GHz)
- RAM: DDR4 512M
- Flash: eMMC 8G, MicroSD card slot
- WiFi: 2.4GHz and 5GHz with 6 antennas
- Ethernet:
- 1x LAN (10/100/1000M)
- 1x WAN (10/100/1000/2500M)
- 5G: Quectel RM520N-GL with two nano-SIM card slots
- USB: 1x USB 2.0 port
- UART:
- 3.3V, TX, RX, GND / 115200 8N1
MAC addresses as verified by OEM firmware:
vendor OpenWrt address source
WAN eth0 label factory 0x0a (label)
LAN eth1 label + 1
2g phy0-ap0 label + 2 factory 0x04
5g phy1-ap0 label + 3
Installation via U-Boot rescue:
1. Press and hold reset button while booting the device
2. Wait for the Internet led to blink 5 times
3. Release reset button
4. The rescue page is accessible via http://192.168.1.1
5. Select the OpenWrt sysupgrade image and start upgrade
6. Wait for the router to flash new firmware and reboot
Revert to stock firmware:
1. Download the stock firmware from GL.iNet website
2. Use the method explained above to flash the stock firmware
Switch the modem network port between PCIe and USB interfaces:
1. Connect to the AT commands (/dev/ttyUSB2) port using
e.g. minicom: minicom -D /dev/ttyUSB2
2. Check the current modem mode with 'AT+QCFG="data_interface"':
- 0,0 indicates that the network port uses the USB interface
- 1,0 indicates that the network port uses the PCIe interface
3. Switch the active interface with:
- 'AT+QCFG="data_interface",0,0' to use the USB interface
- 'AT+QCFG="data_interface",1,0' to use the PCIe interface
4. Reboot
Signed-off-by: Jean Thomas <jean.thomas@wifirst.fr>
MT7981B /256MB /16MB SPI (XM25QH128C)
AX 2.4Ghz
AX 5Ghz 160Mhz wide
1Gbit LAN
OEM:
root@RE3000:~# ifconfig |grep HWaddr
br-lan Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0 (label)
br-wan Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
eth0 Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
ra0 Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
ra2 Link encap:Ethernet HWaddr 82:XX:XX:28:XX:X0
rax0 Link encap:Ethernet HWaddr 82:XX:XX:38:XX:X0
rax2 Link encap:Ethernet HWaddr 82:XX:XX:58:XX:X0
OpenWrt
root@OpenWrt:/# ifconfig |grep HW
br-lan Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
eth0 Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
phy0-ap0 Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
phy1-ap0 Link encap:Ethernet HWaddr 82:XX:XX:08:XX:X1
tftp Installation via u-boot:
Connect TTL3.3V converter
connector is under the radiator Set speed 115200 8 N 1
Interrupt boot process by holding down-arrow key during boot then
>> 6. Load image
>> 0 - TFTP client (Default)
enter IP adresses and initramfs-kernel.bin
write to flash via sysupgrade or gui
Signed-off-by: Robert Senderek <robert.senderek@10g.pl>
Now that we got fitblk_get_bootdev in /lib/upgrade/common.sh we don't
need platform_get_bootdev in each of the subtargets any longer.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware specification
----------------------
SoC: MediaTek MT7986A 4x A53
Flash: 128MB SPI-NAND, 8GB eMMC
RAM: 2GB DDR4
Ethernet: 2x 2.5GbE (Airoha EN8811H)
WiFi: MediaTek MT7976C 2x2 2.4G + 3x3 5G
Interfaces:
* M.2 Key-M: PCIe 2.0 x2 for NVMe SSD
* M.2 Key-B: USB 3.0 with SIM slot
* front USB 2.0 port
LED: Power, Status, WLAN2G, WLAN5G, LTE, SSD
Button: Reset, internal boot switch
Fan: PWM-controlled 5V fan
Power: 12V Type-C PD
Installation instructions for eMMC
----------------------------------
0. Set boot switch to boot from SPI-NAND (assuming stock rom or immortalwrt
running there).
1. Write GPT partition table to eMMC
Move openwrt-mediatek-filogic-bananapi_bpi-r3-mini-emmc-gpt.bin to
the device /tmp using scp and write it to /dev/mmcblk0:
dd if=/tmp/openwrt-*-r3-mini-emmc-gpt.bin of=/dev/mmcblk0
2. Reboot (to reload partition table)
3. Write bootloader and OpenWrt images
Move files to the device /tmp using scp:
- openwrt-*-bananapi_bpi-r3-mini-emmc-preloader.bin
- openwrt-*-bananapi_bpi-r3-mini-emmc-bl31-uboot.fip
- openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb
- openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb
Write them to the appropriate partitions:
echo 0 > /sys/block/mmcblk0boot0/force_ro
dd if=/tmp/openwrt-*-bananapi_bpi-r3-mini-emmc-preloader.bin of=/dev/mmcblk0boot0
dd if=/tmp/openwrt-*-bananapi_bpi-r3-mini-emmc-bl31-uboot.fip of=/dev/mmcblk0p3
dd if=/tmp/openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb of=/dev/mmcblk0p4
dd if=/tmp/openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb of=/dev/mmcblk0p5
sync
4. Remove the device from power, set boot switch to eMMC and boot into
OpenWrt. The device will come up with IP 192.168.1.1 and assume the
Ethernet port closer to the USB-C power connector as LAN port.
5. If you like to have Ethernet support inside U-Boot (eg. to boot via
TFTP) you also need to write the PHY firmware to /dev/mmcblk0boot1:
echo 0 > /sys/block/mmcblk0boot1/force_ro
dd if=/lib/firmware/airoha/EthMD32.dm.bin of=/dev/mmcblk0boot1
dd if=/lib/firmware/airoha/EthMD32.DSP.bin bs=16384 seek=1 of=/dev/mmcblk0boot1
Installation instructions for NAND
----------------------------------
0. Set boot switch to boot from eMMC (assuming OpenWrt is installed there
by instructions above. Using stock rom or immortalwrt does NOT work!)
1. Write things to NAND
Move files to the device /tmp using scp:
- openwrt-*-bananapi_bpi-r3-mini-snand-preloader.bin
- openwrt-*-bananapi_bpi-r3-mini-snand-bl31-uboot.fip
- openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb
- openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb
Write them to the appropriate locations:
mtd write /tmp/openwrt-*-bananapi_bpi-r3-mini-snand-preloader.bin /dev/mtd0
ubidetach -m 1
ubiformat /dev/mtd1
ubiattach -m 1
volsize=$(wc -c < /tmp/openwrt-*-bananapi_bpi-r3-mini-snand-bl31-uboot.fip)
ubimkvol /dev/ubi0 -N fip -n 0 -s $volsize -t static
ubiupdatevol /dev/ubi0_0 /tmp/openwrt-*-bananapi_bpi-r3-mini-snand-bl31-uboot.fip
cd /lib/firmware/airoha
cat EthMD32.dm.bin EthMD32.DSP.bin > /tmp/en8811h-fw.bin
ubimkvol /dev/ubi0 -N en8811h-firmware -n 1 -s 147456 -t static
ubiupdatevol /dev/ubi0_1 /tmp/en8811h-fw.bin
ubimkvol /dev/ubi0 -n 2 -N ubootenv -s 126976
ubimkvol /dev/ubi0 -n 3 -N ubootenv2 -s 126976
volsize=$(wc -c < /tmp/openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb)
ubimkvol /dev/ubi0 -n 4 -N recovery -s $volsize
ubiupdatevol /dev/ubi0_4 /tmp/openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb
volsize=$(wc -c < /tmp/openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb)
ubimkvol /dev/ubi0 -n 4 -N recovery -s $volsize
ubiupdatevol /dev/ubi0_4 /tmp/openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb
3. Remove the device from power, set boot switch to NAND, power up and
boot into OpenWrt.
Partially based on immortalwrt support for the R3 mini, big thanks for
doing the ground work!
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* Switch to all-UBI layout on SPI-NAND
* use fitblk driver instead of uImage.FIT partition parser
* adapt sysupgrade
* bump COMPAT_VERSION
Remove BROKEN mark now that all needed changes are done.
Boards running images generated before this commit will require
full reflash of the bootloader, re-install from SD card is the
easiest way to achieve that.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware
--------
SOC: MediaTek MT7988A (4x Cortex-A73)
RAM: 4 GiB DDR4
Flash: 128 MiB Winbond SPI-NAND
MMC: 8 GiB eMMC *or* microSD (cannot be used both)
ETH: 4x 1GE (1x WAN, 3x LAN)
2x SFP+ (10G, 5G, 2.5G, 1G)
USB: on-board USB 3.2 4-port hub
1x USB 3.2 port (type A connector)
1x M.2 for 4G/5G modem
2x mPCIe for additional modems
WiFi: optional MediaTek MT7996 Wi-Fi 7 module
(using 2x PCIe gen3 x2 on the mPCIe slots and 12V power)
Installation
------------
1. Decompress and write the sdcard image to a micro SD card and use that
to boot the R4 (both dip switches in upper position).
2. Use the bootloader menu accessible via the serial console to install
to SPI-NAND.
3. Switch to boot from SPI-NAND and install to eMMC.
Known issues
------------
- The RST button is hard-wired to the SoC reset and can't be read
from software. This can be changed by modifying the board (ie.
moving a 0-ohm resistor). However, in order to maintain compatibility
with the board as it comes from factory the button isn't used by
OpenWrt and the WPS button is used as factory/reset button instead.
- various small things still need to be fixed in DT
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 16MB NOR
RAM: 256MB
Ethernet: 2x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset
Power: DC 12V 1A, PoE 802.3af 48V
Flash instructions:
Option #1 - SSH
I was able to SSH into the stock firmware of my device.
1. Attach the router to the network
2. Use scp (-O) to copy the sysupgrade image
3. Connect using SSH and run `sysupgrade -n`
Option #2 - U-Boot
One way to use the bootloader for flashing is using TFTP:
1. Connect to the router using an ethernet cable
2 Spin up a TFTP server serving the sysupgrade file
3. Open the case and attach a UART
4. Attach power to the router and interrupt the countdown by pressing
any key
5. Select option #2 (Upgrade firmware)
6. Enter IP address information and image name
7. Wait patiently
Co-Authored-By: Enrique Rodríguez Valencia <enrique.rodriguez@galgus.net>
Co-Authored-By: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: Leon M. Busch-George <leon@georgemail.eu>
(based on support for ASUS RT-AX59U by liushiyou006)
SOC: MediaTek MT7986
RAM: 512MB DDR4
FLASH: 128MB SPI-NAND (Winbond W25N01GV)
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH: MediaTek MT7531 Switch
UART: 3V3 115200 8N1 (Pinout silkscreened / Do not connect VCC)
Upgrade from AsusWRT to OpenWRT using UART
Download the OpenWrt initramfs image.
Copy the image to a TFTP server reachable at 192.168.1.70/24. Rename the image to rtax59u.bin.
Connect the PC with TFTP server to the RT-AX59U.
Set a static ip on the ethernet interface of your PC.
(ip address: 192.168.1.70, subnet mask:255.255.255.0)
Conect to the serial console, interrupt the autoboot process by pressing '4' when prompted.
Download & Boot the OpenWrt initramfs image.
$ setenv ipaddr 192.168.1.1
$ setenv serverip 192.168.1.70
$ tftpboot 0x46000000 rtax59u.bin
$ bootm 0x46000000
Wait for OpenWrt to boot. Transfer the sysupgrade image to the device using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Upgrade from AsusWRT to OpenWRT using WebUI
Download transit TRX file from https://drive.google.com/drive/folders/1A20QdjK7Udagu31FSszpWAk8-cGlCwsq
Upgrade firmware from WebUI (192.168.50.1) using downloaded TRX file
Wait for OpenWRT to boot (192.168.1.1).
Upgrade system with sysupgrade image using luci or uploading it through scp and executing sysupgrade command
MAC Address for WLAN 5g is not following the same algorithm as in AsusWRT.
We have increased by one the WLAN 5g to avoid collisions with other networks from WLAN 2g
when bit 28 is already set.
: Stock : OpenWrt
WLAN 2g (1) : C8:xx:xx:0D:xx:D4 : C8:xx:xx:0D:xx:D4
WLAN 2g (2) : : CA:xx:xx:0D:xx:D4
WLAN 2g (3) : : CE:xx:xx:0D:xx:D4
WLAN 5g (1) : CA:xx:xx:1D:xx:D4 : CA:xx:xx:1D:xx:D5
WLAN 5g (2) : : CE:xx:xx:1D:xx:D5
WLAN 5g (3) : : C2:xx:xx:1D:xx:D5
WLAN 2g (1) : 08:xx:xx:76:xx:BE : 08:xx:xx:76:xx:BE
WLAN 2g (2) : : 0A:xx:xx:76:xx:BE
WLAN 2g (3) : : 0E:xx:xx:76:xx:BE
WLAN 5g (1) : 0A:xx:xx:76:xx:BE : 0A:xx:xx:76:xx:BF
WLAN 5g (2) : : 0E:xx:xx:76:xx:BF
WLAN 5g (3) : : 02:xx:xx:76:xx:BF
Signed-off-by: Xavier Franquet <xavier@franquet.es>
The Bonanza Peak series are a couple of MT7986-powered 2.5 GBit/s
Wi-Fi 6 residential gateway, access point and mesh router products.
All of them come with an eMMC to boot from, are powered via USB-C and
got a USB 3.0 type-A port. All of them got a Dialog (Renesas) DA14531
Bluetooth module connected via UART. If the device was previously
running stock firmware, the BT chip's internal flash has been loaded
with firmware and it can be attached using hciattach when using
OpenWrt.
SOC: MediaTek MT7986A
RAM: 2 GiB DDR4
eMMC: 8 GiB
Bluetooth: BLE5 (DA14531)
Serial: 3.3V level, 115200 8n1 on 4-pin connector
* SDG-8612 - Dual-band RJ-45 gateway
2x 2.5G MaxLinear PHY for WAN port
3x 1GE LAN ports via MT7531 switch
* SDG-8614 - Dual-band SFP gateway
1x SFP cage with up to 2.5G speed
1x 2.5G MaxLinear PHY for LAN port
3x 1GE LAN ports via MT7531 switch
* SDG-8622 - Tri-band mesh router
2x 2.5G MaxLinear PHY
The MT7986 2G and 5G are used as 2G and 5G high band.
There’s a MT7915 PCIe card for 5G low band.
* SDG-8632 - Tri-band mesh router with 6 GHz
2x 2.5G MaxLinear PHY
The MT7986 serves the 2G and 6G bands.
There’s a MT7915 PCIe card for 5G.
Installation via U-Boot serial console:
0. setup TFTP server with IP 192.168.1.10/24, place initramfs image
renamed to openwrt.XXX where XXX is the internal product number:
SDG-8612: XXX = 412
SDG-8614: XXX = 414
SDG-8622: XXX = 422
SDG-8632: XXX = 432
1. connect to the serial console and power on the device.
Interrupt the bootloader by pressing 'st'
2. setenv boot_mode openwrt ; saveenv
3. run boot1
Load firmware via TFTP and write to flash
4. run boot2
Now OpenWrt initramfs should boot
5. upload sysupgrade.bin via scp to /tmp
6. sysupgrade
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware
--------
SoC: MediaTek MT7981BA
RAM: 1GB DDR4 (NANYA NT5AD512M16C4-JR)
MMC: 8GB eMMC (Samsung 8GTF4R)
ETH: 1000Base-T LAN (ePHY)
2500Base-T WAN (MaxLinear GPY211C)
BTN: 1x Reset Button
LED: System (blue/white)
VPN (white)
USB: 1x USB-A (USB 3.0)
UART: 115200 8N1 - Pinout on board next to LAN port
Don't connect 3.3V!
Known Issues
------------
U-Boot vendor recovery does not seem to accept any images, neither
GL.iNet images nor OpenWrt images. Recovery requires serial access!
Installation
------------
Upload the OpenWrt sysupgrade image to the Gl.iNet Web-UI. Make sure to
not retain existing settings.
Signed-off-by: David Bauer <mail@david-bauer.net>