This drops the shebang from another bunch of files in various /lib
folders, as these are sourced and the shebang is useless.
Fix execute bit in one case, too.
This should cover almost all trivial cases now, i.e. where /lib is
actually used for library files.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Calling netdev_reset_queue() from _stop() functions is causing sporadic kernel
panics on bcm63xx, which happen mainly on BCM6318 and BCM6328.
This reverts to the previous behaviour, which called netdev_reset_queue() from
_open() functions.
Tested on Comtrend AR-5315u (BCM6318).
Fixes: 1d6f422e34 ("bcm63xx: sync ethernet driver with net-next")
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
This sets SUPPORTED_DEVICES to match the compatible in the DTS.
While at it, synchronize the capitalization in DEVICE_MODEL and
DTS model.
Signed-off-by: Marty Jones <mj8263788@gmail.com>
[commit title/message facelift, move variable in armv8.mk]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This sorts the Build recipes alphabetically, wraps some long lines
and moves the DEVICE_VARS to the top like common on several other
targets.
Cc: Rafał Miłecki <rafal@milecki.pl>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
We have support for reference boards available on this target, so
support for an additional generic profile does not make much sense.
Remove it to have one thing less to maintain.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Paul Spooren <mail@aparcar.org>
On a platform with many very different devices, like found on kirkwood,
the generic profile seems like a remnant of the past that does not
have a real use anymore.
Remove it to have one thing less to maintain.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Paul Spooren <mail@aparcar.org>
On a platform with many very different devices, like found on ipq806x,
the generic profile seems like a remnant of the past that does not
have a real use anymore.
Remove it to have one thing less to maintain.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Paul Spooren <mail@aparcar.org>
On a platform with many very different devices, like found on ipq40xx,
the generic profile seems like a remnant of the past that does not
have a real use anymore.
Remove it to have one thing less to maintain.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Paul Spooren <mail@aparcar.org>
On a platform with many very different devices, like found on ramips,
the generic profiles seem like remnants of the past that do not
have a real use anymore.
Remove them to have one thing less to maintain.
Actually, rt288x didn't have a default profile in the first place.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Paul Spooren <mail@aparcar.org>
On a platform with many very different devices, like found on ath79,
the generic profiles seem like remnants of the past that do not
have a real use anymore.
Remove them to have one thing less to maintain.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Paul Spooren <mail@aparcar.org>
Add a table API that has per accss register locking and uses
register description information to handle all table access
through a single set of api calls.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Adds support for the RTL9300 and RTL9310 series of switches
with 10GBit per port and up to 56 ports.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
This adds support for the internal SerDes of the RTL9300 SoC
and for the RTL8218D and RTL8226B phys found in combination
with this SoC in switches.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
This fixes the usage of the RTL8231 GPIO extender chip
when used with the RTL839X SoCs. Specifically,
the PHY addresses may be different from 0.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Makes sure the DSA trailer information on any L2 offloading done
by the switch is honoured by the bridge layer
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
This adds support for identifying QoS information in packets
and use this and rate control information to submit to multiple
egress queues. The ethernet driver is also made to support
2 egress and up to 32 egress queues.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
this adds support for the SoC timer of the RTL9300 chips, it
provides 6 independent timer/counters, of which the first one
is used as a clocksource and the second one as event timer.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
This adds support for the RTL8390 and RTL9300 SoCs
it also cleans up unnecessary definitions in mach-rtl83xx.h
and moves definitions relevant for irq routing to irq.h
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
This adds support to detect RTL930X based SoCs and the RTL9313 SoC.
Tested on Zyxel XGS1210-10 (RTL9302B SoC) and the
Zyxel XS1930-12 (RTL9313 SoC)
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Comment out some conflicting target configs that are set from subtarget
configs, which sometimes lead to kernel compile warnings:
scripts/kconfig/conf --syncconfig Kconfig
net/sched/Kconfig:45: warning: menuconfig statement without prompt
.config:1038:warning: override: CPU_MIPS32_R2 changes choice state
Signed-off-by: Tony Ambardar <itugrok@yahoo.com>
Append a device specific version trailer used by the stock
firmware upgrade application to validate firmwares.
The trailer contains a list of ZyXEL firmware version
numbers, which includes a four letter hardware identifier.
The stock web UI requires that the current hardware matches
one of the listed versions, and that the version number is
larger than a model specific minimum value. The minimum
version varies between V1.00 and V2.60 for the currently
known GS1900 models. The number is not used anywhere else
to our knowlege, and has no direct relation to the version
info in the u-image header. We can therefore use an
arbitrary value larger than V2.60.
The stock firmware upgrade application will only load and
flash the part of the file specified in the u-image header,
regardless of file size. It can therefore not be used to
flash images with an appended rootfs. There is therefore no
need to include the trailer in other images than the
initramfs. This prevents accidentally bricking by attempts
to flash other images from the stock web UI.
Stock images support all models in the series, listing
all of them in the version trailer. OpenWrt provide model
specific images. We therefore only list the single supported
hardware identifier for each image. This eliminates the risk
of flashing the wrong OpenWrt image from stock web UI.
OpenWrt can be installed from stock firmware in two steps:
1) flash OpenWrt initramfs image from stock web gui
2) boot OpenWrt and sysupgrade to a squasfs image
The OpenWrt squashfs image depends on a static partition
map in the DTS. It can only be installed to the "firmware"
partition. This partition is labeled "RUNTIME1" in u-boot
and in stock firmware, and is referred to as "image 0" in
the stock flash management tool. The OpenWrt initramfs
can be installed and run from either partitions. But if
you want to keep stock irmware in the spare system partition,
then you must make sure stock firmware is installed to the
"RUNTIME2" partition referred to as "image 1" in the stock
web UI. And the initial OpenWrt initramfs must be flashed
to "RUNTIME1"/"image 0".
The stock flash management application supports direct
selection of both which partition to flash and which
partition to boot next. This allows software controlled
"dual-boot" between OpenWrt and stock firmware, without
using console access to u-boot. u-boot use the "bootpartition"
variable stored in the second u-boot environment to select
which of the two system partitions to boot. This variable
is set by the stock flash management application, by direct
user input. It can also be set in OpenWrt using e.g
fw_setsys bootpartition 1
to select "RUNTIME2"/"image 1" as default, assuming a
stock firmware version is installed in that partition.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The stock firmware of the ZyXEL GS1900 series use a non-standard
u-image magic. This is not enforced by the stock u-boot, which is
why we could boot images with the default magic. The flash
management application of the stock firmware will however verify
the magic, and refuse any image with another value.
Convert to vendor-specific value to get flash management support
in stock firmware, including the ability to upgrade to OpenWrt
directly from stock web UI.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
x86 uses append-metadata, but only for signing and not for the
metadata itself.
Since recently SUPPORTED_DEVICES was assigned with a global value
and is not empty anymore, append-metadata will now actually put
metadata into x86 images. This breaks sysupgrade on x86.
To fix it for the moment, let's just empty SUPPORTED_DEVICES for
this target again.
In the long term, one should either not add metadata to the images
if it is not desired, and/or remove the unintended fwtool check.
Fixes: f52081bcf9 ("treewide: provide global default for SUPPORTED_DEVICES")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Since the new global SUPPORTED_DEVICES are now available in bcm53xx
as well, we do not need to specify an explicit value for the MR32
anymore.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
FCC ID: A8J-EAP1200H
Engenius EAP1200H is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
**Specification:**
- QCA9557 SOC
- QCA9882 WLAN PCI card, 5 GHz, 2x2, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16FG
- UART at J10 populated
- 4 internal antenna plates (5 dbi, omni-directional)
- 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset)
**MAC addresses:**
MAC addresses are labeled as ETH, 2.4G, and 5GHz
Only one Vendor MAC address in flash
eth0 ETH *:a2 art 0x0
phy1 2.4G *:a3 ---
phy0 5GHz *:a4 ---
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART RX pin at J10
**Installation:**
2 ways to flash factory.bin from OEM:
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware Upgrade" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will brick the device
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
**TFTP recovery:**
Requires serial console, reset button does nothing
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board, interrupt boot
execute tftpboot and bootm 0x81000000
NOTE: TFTP is not reliable due to bugged bootloader
set MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software of EAP1200H is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-ar71xx-generic-eap1200h-uImage-lzma.bin
openwrt-ar71xx-generic-eap1200h-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
Newer EnGenius software requires more checks but their script
includes a way to skip them, otherwise the tar must include
a text file with the version and md5sums in a deprecated format.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
Signed-off-by: Michael Pratt <mcpratt@pm.me>
The majority of our targets provide a default value for the variable
SUPPORTED_DEVICES, which is used in images to check against the
compatible on a running device:
SUPPORTED_DEVICES := $(subst _,$(comma),$(1))
At the moment, this is implemented in the Device/Default block of
the individual targets or even subtargets. However, since we
standardized device names and compatible in the recent past, almost
all targets are following the same scheme now:
device/image name: vendor_model
compatible: vendor,model
The equal redundant definitions are a symptom of this process.
Consequently, this patch moves the definition to image.mk making it
a global default. For the few targets not using the scheme above,
SUPPORTED_DEVICES will be defined to a different value in
Device/Default anyway, overwriting the default. In other words:
This change is supposed to be cosmetic.
This can be used as a global measure to get the current compatible
with: $(firstword $(SUPPORTED_DEVICES))
(Though this is not precisely an achievement of this commit.)
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The "edimax,uimage"" parser can be replaced by the generic
parser using device specific openwrt,partition-magic and
openwrt,offset properties.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Some devices prepend a standard U-Boot Image with a vendor specific
header, having its own magic. Adding two new properties will support
validation of such images, including the additional magic.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The "netgear,uimage" parser can be replaced by the generic
parser using device specific openwrt,ih-magic and
openwrt,ih-type properties.
Device tree properties for the following devices have not
been set, as they have been dropped from OpenWrt with the
removal of the ar71xx target:
FW_MAGIC_WNR2000V1 0x32303031
FW_MAGIC_WNR2000V4 0x32303034
FW_MAGIC_WNR1000V2_VC 0x31303030
FW_MAGIC_WPN824N 0x31313030
Tested-by: Sander Vanheule <sander@svanheule.net> # WNDR3700v2
Tested-by: Stijn Segers <foss@volatilesystems.org> # WNDR3700v1
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Convert users to the generic "openwrt,uimage" using device specific
"openwrt,ih-magic" properties, and remove "allnet,uimage".
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The only difference between the "openwrt,okli" and the generic
parser is the magic. Set this in device tree for all affected
devices and remove the "openwrt,okli" parser.
Tested-by: Michael Pratt <mcpratt@protonmail.com> # EAP300 v2, ENS202EXT and ENH202
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Convert users of the "fonfxc" and "sge" parsers to the generic
"openwrt,uimage", using device specific "openwrt,padding" properties.
Tested-by: Stijn Segers <foss@volatilesystems.org> [DIR-878 A1]
Signed-off-by: Bjørn Mork <bjorn@mork.no>
It's required for BCM4908. It cannot use "bcm-wfi-fw" parser because
that one requires *two* JFFS2 partitions which is untested / unsupported
on the BCM4908 architecture. With a single JFFS2 partition "bcm-wfi-fw"
parser will:
1. Fail to find "vmlinux.lz" as it doesn't follow "1-openwrt" file
2. Create partitions that don't precisely match bootfs layout
The new parser is described in details in the MTD_SPLIT_CFE_BOOTFS
symbol help message.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Sync ethernet driver code with upstream Linux kernel:
-Reduce xmit_more code changes.
-Combine rx cleanup code into a function.
-Convert to build_skb.
-Improve rx loop by optimizing loop tracking.
https://lore.kernel.org/netdev/20210106144208.1935-1-liew.s.piaw@gmail.com/
Signed-off-by: Sieng Piaw Liew <liew.s.piaw@gmail.com>
[Amend commit description, move patches to the top since they are going to be
upstreamed]
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Hamming ECC devices do not cover OOB data, as opposed to BCH ECC devices.
Therefore, disabling ECC for all devices is preventing BCH devices from
correctly reading and writing the OOB data.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The OEM assignment of LAN ports is swapped.
Fixes: c2a7bb520a ("ramips: mt7621: add support for Xiaomi Mi Router 4")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Xiaomi Mi Router 4 is the same as Xiaomi Mi Router 3G, except for
the RAM (256Mib→128Mib), LEDs and gpio (MiNet button).
Specifications:
Power: 12 VDC, 1 A
Connector type: barrel
CPU1: MediaTek MT7621A (880 MHz, 4 cores)
FLA1: 128 MiB (ESMT F59L1G81MA)
RAM1: 128 MiB (ESMT M15T1G1664A)
WI1 chip1: MediaTek MT7603EN
WI1 802dot11 protocols: bgn
WI1 MIMO config: 2x2:2
WI1 antenna connector: U.FL
WI2 chip1: MediaTek MT7612EN
WI2 802dot11 protocols: an+ac
WI2 MIMO config: 2x2:2
WI2 antenna connector: U.FL
ETH chip1: MediaTek MT7621A
Switch: MediaTek MT7621A
UART Serial
[o] TX
[o] GND
[o] RX
[ ] VCC - Do not connect it
MAC addresses as verified by OEM firmware:
use address source
LAN *:c2 factory 0xe000 (label)
WAN *:c3 factory 0xe006
2g *:c4 factory 0x0000
5g *:c5 factory 0x8000
Flashing instructions:
1.Create a simple http server (nginx etc)
2.set uart enable
To enable writing to the console, you must reset to factory settings
Then you see uboot boot, press the keyboard 4 button (enter uboot command line)
If it is not successful, repeat the above operation of restoring the factory settings.
After entering the uboot command line, type:
setenv uart_en 1
saveenv
boot
3.use shell in uart
cd /tmp
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin kernel1
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin rootfs0
nvram set flag_try_sys1_failed=1
nvram commit
reboot
4.login to the router http://192.168.1.1/
Installation via Software exploit
Find the instructions in the https://github.com/acecilia/OpenWRTInvasion
Signed-off-by: Dmytro Oz <sequentiality@gmail.com>
[commit message facelift, rebase onto shared DTSI/common device
definition, bump uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a DTSI for Xiaomi devices with 128M NAND.
This allows to consolidate the partitions and a few other nodes for
AC2100 family and Mi Router 3G.
Note that the Mi Router 3 Pro has 256M NAND and differently sized
partitions.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a shared device definition for Xiaomi devices with
NAND and "separate" images, i.e. kernel1.bin and rootfs0.bin.
This allows to consolidate similar/duplicate code for AC2100 family
and Mi Router 3G.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Since generic images have been split to their own
Makefile boards are showing up twice in menuconfig
as $(eval $(call BuildImage)) was not dropped from
the new generic.mk.
Hence $(eval $(call BuildImage)) was being called
twice.
So, lets simply drop it from generic.mk.
Fixes: 378c7ff282 ("ipq40xx: split generic images into own file")
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
There seems to be a problem with setting #WP. On the other hand ignoring
the #WP seems to work. rootfs_data UBI volume seems to persist changes.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
BCM4908 bootloader requires firmware with JFFS2 image containing:
1. cferam.000
2. 94908.dtb
3. vmlinux.lz
4. device custom files
cferam.000 can be obtained from the bcm63xx-cfe repository.
device custom files are stored in images dir.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
procd doesn't work with just serial specified in the DT (using chosen &
stdout-path). It requires tty device to be explicitly specified in the
cmdline.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
1. It's useful for developing & validating DTS files inside OpenWrt
2. This will allow backporting later changes that depend on it
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
All modification made by update_kernel.sh in a fresh clone without
existing toolchains.
Build system: x86_64
Build-tested: ipq806x/R7800, bcm27xx/bcm2711
Run-tested: ipq806x/R7800
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
Tested-by: Curtis Deptuck <curtdept@me.com> [x86/64]
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, apply shared DTSI/device node, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR900 and to-be-added MR1750 family are very similar.
Make the existing MR900 DTSI more general so it can be used for
the MR1750 devices as well.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The shared image definitions for OpenMesh devices are currently
organized based on device families. This introduces some duplicate
code, as the image creation code is mostly the same for those.
This patch thus derives two basic shared definitions that work for
all devices and only requires a few variables to be moved back to
the device definitions.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR900 is a modified version of the Exx900/Exx1750 family.
These devices are shipped with an AR803x PHY and had various problems with
the delay configuration in ar71xx. These problems are now in the past [1]
and parts of the delay configuration should now be done in the PHY only.
Just switch to the configuration of the ECB1750 to have an already well
tested configuration for ath79 with the newer kernel versions.
[1] https://github.com/openwrt/openwrt/pull/3505#issuecomment-716050292
Reported-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR600 is a modified version of the EAP600 family. These
devices are shipped with an AR803x PHY and had various problems with the
delay configuration in ar71xx. These problems are now in the past [1] and
parts of the delay configuration should now be done in the PHY only.
Just switch to the configuration of the EAP600 to have an already well
tested configuration for ath79 with the newer kernel versions.
[1] https://github.com/openwrt/openwrt/pull/3505#issuecomment-716050292
Reported-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 8x GPIO-LEDs (6x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 4x GPIO-LEDs (2x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, make WLAN LEDs consistent, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
All modification made by update_kernel.sh in a fresh clone without
existing toolchains.
Build system: x86_64
Build-tested: ipq806x/R7800, bcm27xx/bcm2711
Run-tested: ipq806x/R7800
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
Tested-by: Curtis Deptuck <curtdept@me.com> [x86/64]
These devices do not run Ubiquiti AirOS. Rename the partition to the
name used by other UniFi devices with vendor dualboot support.
Signed-off-by: David Bauer <mail@david-bauer.net>
The NanoPi R2S does not have a board specific MAC address written inside
e.g. an EEPROM, hence why it is randomly generated on first boot.
The issue with that however is the lack of a driver for the PRNG.
It often results to the same MAC address used on multiple boards by
default, as urngd is not active at this early stage resulting in low
available entropy.
There is however a semi-unique identifier available to us, which is the
CID of the used SD card. It is unique to each SD card, hence we can use
it to generate the MAC address used for LAN and WAN.
Signed-off-by: David Bauer <mail@david-bauer.net>
This enables the MikroTik platform driver, it enables us to parse
valuable info from hard_config including WLAN calibration data
extraction from sysfs.
Signed-off-by: Robert Marko <robimarko@gmail.com>
This enables the new MikroTik specific partition parser.
This avoids manually specifying the MikroTik specific partitions as they
can be detected by their magic values.
Signed-off-by: Robert Marko <robimarko@gmail.com>
MikroTik devices require the use of raw vmlinux out of the self
extracting compressed kernels.
They also require 4K sectors, kernel2minor, partition parser as well as
RouterBoard platform drivers.
So in order to not add unnecessary code to the generic sub target lets
introduce a MikroTik sub target.
Signed-off-by: Robert Marko <robimarko@gmail.com>
If the watchdog is enabled, set the timeout to 30 seconds before
decompress is started.
Mikrotik ipq40xx devices running with RouterBoot have the SoC watchdog
enabled and running with a timeout that does not allow time for the
kernel to decompress and manage the watchdog.
On ipq40xx RouterBoot TFTP boot the watchdog countdown is reset before:
Jumping to kernel
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
This adds a appended_dtb section to the ARM decompressor
linker script.
This allows using the existing ARM zImage appended DTB support for
appending a DTB to the raw ELF kernel.
Its size is set to 1MB max to match the zImage appended DTB size limit.
To use it to pass the DTB to the kernel, objcopy is used:
objcopy --set-section-flags=.appended_dtb=alloc,contents \
--update-section=.appended_dtb=<target>.dtb vmlinux
This is based off the following patch:
c063e27e02
Signed-off-by: Robert Marko <robimarko@gmail.com>
The removed config symbols are already enabled by the generic kernel
configuration (or by default), while the added ones are forcefully
enabled by the specific architecture.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
The USB port definition is only needed when it is linked to a USB
LED. Since there is none for this device, we might as well remove
the port definition.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
CPU: Atheros AR9342 rev 3 SoC
RAM: 64 MB DDR2
Flash: 16 MB NOR SPI
WLAN 2.4GHz: Atheros AR9342 v3 (ath9k)
WLAN 5.0GHz: QCA988X
Ports: 1x GbE
Flashing procedure is identical to other ubnt devices.
https://openwrt.org/toh/ubiquiti/common
Flashing through factory firmware
1. Ensure firmware version v8.7.0 is installed.
Up/downgrade to this exact version.
2. Patch fwupdate.real binary using
`hexdump -Cv /bin/ubntbox | sed 's/14 40 fe 27/00 00 00 00/g' | \
hexdump -R > /tmp/fwupdate.real`
3. Make the patched fwupdate.real binary executable using
`chmod +x /tmp/fwupdate.real`
4. Copy the squashfs factory image to /tmp on the device
5. Flash OpenWrt using `/tmp/fwupdate.real -m <squashfs-factory image>`
6. Wait for the device to reboot
(copied from Ubiquiti NanoBeam AC and modified)
Flashing from serial console
1. Connect serial console (115200 baud)
2. Connect ethernet to a network with a TFTP server, through a
passive PoE injector.
3. Press a key to obtain a u-boot prompt
4. Set your TFTP server's ip address, with:
setenv serverip <tftp-server-address>
5. Set the Bullet AC's ip address, with:
setenv ipaddr <bullet-ac-address>
6. Set the boot file, with:
setenv bootfile <name-of-initramfs-binary-on-tftp-server>
7. Fetch the binary with tftp:
tftpboot
8. Boot the initramfs binary:
bootm
9. From the initramfs, fetch the sysupgrade binary, and flash it with
sysupgrade.
The Bullet AC is identified as a 2WA board by Ubiquiti. As such, the UBNT_TYPE
must match from the "Flashing through factory firmware" install instructions
to work.
Phy0 is QCA988X which can tune either band (2.4 or 5GHz). Phy1 is AR9342,
on which 5GHz is disabled. It isn't currently known whether phy1 is
routed to the N connector at all.
Signed-off-by: Russell Senior <russell@personaltelco.net>
The following four led triggers are enabled in generic config.
* kmod-ledtrig-default-on
* kmod-ledtrig-heartbeat
* kmod-ledtrig-netdev
* kmod-ledtrig-timer
Drop the packages and remove them from DEVICE_PACKAGES.
There's no other package depending on them in this repo.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Those targets have already enabled some other LED triggers, so enabling
a few more won't be a big problem.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
The heartbeat trigger is used by luci-mod-system, which is installed
as a part of the standard luci package set. It seems the LED trigger
will be required quite often, so let's enable it by default.
This increases uncompressed kernel size by about 100 bytes on ath79/generic.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This fixes a typo in the previously committed partition map that led to
the extension of the read-only mtd partition "SSD" into the following
partitions.
Fixes: 4e46beb313 ("ipq806x: add support for Ubiquiti UniFi AC HD")
Signed-off-by: Jan Alexander <jan@nalx.net>
All modification made by update_kernel.sh in a fresh clone without
existing toolchains.
Build system: x86_64
Build-tested: ipq806x/R7800, bcm27xx/bcm2711
Run-tested: ipq806x/R7800
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
Tested-by: Curtis Deptuck <curtdept@me.com> [x86/64]
This allows libnetfilter_queue to access connection tracking information
by requesting NFQA_CFG_F_CONNTRACK. Connection tracking information is
provided in the NFQA_CT attribute.
CONFIG_NETFILTER_NETLINK_GLUE_CT enables the interaction between
nf_queue and nf_conntrack_netlink. Without this option, trying to access
connection tracking information results in "Operation not supported".
Signed-off-by: Etan Kissling <etan_kissling@apple.com>
Both devices use u-boot env variables to boot OpenWrt from its flash
partition. Using u-boot envtools, it is possible to change the bootcmd
back to the stock firmware partition directly from OpenWrt without
attaching a serial cable or even physically accessing the device.
Signed-off-by: Jan Alexander <jan@nalx.net>
Hardware
--------
SoC: Qualcomm IPQ8064
RAM: 512MB DDR3
Flash: 256MB NAND (Micron MT29F2G08ABBEAH4)
32MB SPI-NOR (Macronix MX25U25635F)
WLAN: Qualcomm Atheros QCA9994 4T4R b/g/n
Qualcomm Atheros QCA9994 4T4R a/n/ac
ETH: eth0 - SECONDARY (Atheros AR8033)
eth1 - MAIN (Atheros AR8033)
USB: USB-C
LED: Dome (white / blue)
BTN: Reset
Installation
------------
Copy the OpenWrt sysupgrade image to the /tmp directory of the device
using scp. Default IP address is 192.168.1.20 and default username and
password are "ubnt".
SSH to the device and write the bootselect flag to ensure it is booting
from the mtd partition the OpenWrt image will be written to. Verify the
output device below matches mtd partition "bootselect" using /proc/mtd.
> dd if=/dev/zero bs=1 count=1 seek=7 conv=notrunc of=/dev/mtd11
Write the OpenWrt sysupgrade image to the mtd partition labeled
"kernel0". Also verify the used partition device using /proc/mtd.
> dd if=/tmp/sysupgrade.bin of=/dev/mtdblock12
Reboot the device.
Back to stock
-------------
Use the TFTP recovery procedure with the Ubiquiti firmware image to
restore the vendor firmware.
Signed-off-by: Jan Alexander <jan@nalx.net>
BCM4906, BCM4908 and BCM49408 are SoCs with 64 bit ARMv8 B53 CPUs.
Upstream Linux is slowly getting support for that SoCs family so it
makes sense to add target for it.
This prepares initial support for:
1. Asus GT-AC5300
BCM4908 based device (4 CPUs) with 1024 MiB RAM, NAND, 8 LAN ports.
2. Netgear R8000P
BCM4906 based device (2 CPUs) with 512 MiB RAM, NAND, 4 LAN ports.
Flashing info will come later as we learn how to generate proper images.
It isn't usable yet (it only produces a bootable kernel) so "source-only"
is used.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Enable the ability to use segment routing based on IPv6. It allows the
packet to specify a path that the packet should take through the
network.
Lwtunnel allow an easy encapsulation of a package. You can just install
ip-full package and use it:
ip -6 route add 2003::/64 dev eth0 encap seg6 mode encap \
segs 2001::1,2002::2
An IPv6 package looks like this:
[IPv6 HDR][IPv6 RH][IPv6 HDR][Data...]
Netifd support:
https://git.openwrt.org/?p=project/netifd.git;
a=commit;h=458b1a7e9473c150a40cae5d8be174f4bb03bd39
Increases imagesize by 24.125 KiB. Therefore, only enable for devices
with enough flash.
Signed-off-by: Nick Hainke <vincent@systemli.org>
When compiling with CONFIG_ALL_KMODS enabled, compilation might stall
due to unset rockchip-specific config symbols. Disable these to avoid
stalling this step.
Signed-off-by: David Bauer <mail@david-bauer.net>
The ZyXEL GS1900-8HP is an 8 port gigabit switch with PoE+ support.
There are two versions on the market (v1 & v2) which share similar
specs (same flash size and flash layout, same RAM size, same PoE+ power
envelope) but have a different case and board layout that they each
share with other GS1900 siblings.
The v1 seems to share its PCB and case with non-PoE GS1900-8; as such,
adding support for the GS1900-8 would probably be trivial. The v2 seems
to share its casing and platform with its already supported bigger
brother, the GS1900-10HP - its board looks the same, except for two
holes where the GS1900-10 has its SFP ports.
Like their 10 port sibling, both devices have a dual firmware layout.
Both GS1900-8HP boards have the same 70W PoE+ power budget. In order to
manipulate the PoE+, one needs the rtl83xx-poe package [1].
After careful consideration it was decided to go with separate images
for each version.
Specifications (v1)
-------------------
* SoC: Realtek RTL8380M 500 MHz MIPS 4KEc
* Flash: Macronix MX25L12835F 16 MiB
* RAM: Nanya NT5TU128M8HE-AC 128 MiB DDR2 SDRAM
* Ethernet: 8x 10/100/1000 Mbit
* PoE+: Broadcom BCM59111KMLG (IEEE 802.3at-2009 compliant, 2x)
* UART: 1 serial header with populated standard pin connector on the
left side of the PCB, towards the bottom. Pins are labeled:
+ VCC (3.3V)
+ TX
+ RX
+ GND
Specifications (v2)
-------------------
* SoC: Realtek RTL8380M 500 MHz MIPS 4KEc
* Flash: Macronix MX25L12835F 16 MiB
* RAM: Samsung K4B1G0846G 128 MiB DDR3 SDRAM
* Ethernet: 8x 10/100/1000 Mbit
* PoE+: Broadcom BCM59121B0KMLG (IEEE 802.3at-2009 compliant)
* UART: 1 angled serial header with populated standard pin connector
accessible from outside through the ventilation slits on the
side. Pins from top to bottom are clearly marked on the PCB:
+ VCC (3.3V)
+ TX
+ RX
+ GND
Serial connection parameters for both devices: 115200 8N1.
Installation
------------
Instructions are identical to those for the GS1900-10HP and apply both
to the GS1900-8HP v1 and v2 as well.
* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs
image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
space bar, and enable the network:
> rtk network on
* Since the GS1900-10HP is a dual-partition device, you want to keep the
OEM firmware on the backup partition for the time being. OpenWrt can
only boot off the first partition anyway (hardcoded in the DTS). To
make sure we are manipulating the first partition, issue the following
commands:
> setsys bootpartition 0
> savesys
* Download the image onto the device and boot from it:
> tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-generic-zyxel_gs1900-8hp-v{1,2}-initramfs-kernel.bin
> bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
> sysupgrade /tmp//tmp/openwrt-realtek-generic-zyxel_gs1900-8hp-v{1,2}-squashfs-sysupgrade.bin
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
[merge PoE case, keep device definitions separate, change all those
hashes in the commit message to something else so they don't get
removed when changing the commit ...]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The ZyXEL GS1900-8HP v1, v2 and GS1900-10HP are all built on a similar
Realtek RTL8380M platform. Create a common DTSI in preparation for
GS1900-8HP support, and switch to the macros defined in rtl838x.dtsi.
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
[drop redundant includes, use &mdio directly, do not replace SFP
ports]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Remove trailing whitespaces in two *.mk files.
Signed-off-by: Leon M. George <leon@georgemail.eu>
[fix title, add message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ZyXEL spells its own name all uppercase with just the Y lowercase. Adapt
the realtek target to follow this (other OpenWrt targets already do so).
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
Move the memory out of the rtl838x.dtsi and into the device family DTSI
or device DTS if applicable. This aligns with upstream practice.
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
[add missing block for dgs-1210-10p, move block below chosen node]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The identifier is already present in rtl838x.dtsi, and adding it
twice is not only redundant but actually wrong.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
For:
- ENH202 v1
- ENS202EXT v1
These boards were committed before it was discovered
that for all Engenius boards with a "failsafe" image,
forcing the failsafe image to load next boot
can be achieved by editing the u-boot environment like:
`fw_setenv rootfs_checksum 0`
So it's not necessary to delete a partition to boot to failsafe image.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
This moves some of the Engenius boards from generic to tiny:
- EAP350 v1
- ECB350 v1
- ENH202 v1
For these, factory.bin builds are already failing on master
branch because of the unique situation for these boards:
- 8 MB flash
- an extra "failsafe" image for recovery
- TFTP does not work (barely possible with 600 MTU)
- bootloader loads image from a longer flash offset
- 1 eraseblock each needed for OKLI kernel loader and fake rootfs
- using mtd-concat to make use of remaining space...
The manual alternative would be removing the failsafe partition.
However this comes with the risk of extremely difficult recovery
if a flash ever fails because TFTP on the bootloader is bugged.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[improve commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
imx6 has it's own pcie host driver so we do
not need the one from DW.
This fixes following boot error:
[ 0.156913] dw-pcie 1ffc000.pcie: IRQ index 1 not found
Fixes: 6d5291ff72 ("imx6: add support for kernel 5.4")
Signed-off-by: Tim Harvey <tharvey@gateworks.com>
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
2 regulator descriptions carry identical naming.
This leads to following boot warning:
[ 0.173138] debugfs: Directory 'vdd1p8' with parent 'regulator' already present!
Fix this by renaming the one used for audio.
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
Strictly, an SPDX identifier requires a space between the comment
marker and the identifier itself. This has been addressed in
b69c21738e ("treewide: add space before SPDX identifier"), but
some new malformatted identifiers were merged recently.
This could have been prevented by using checkpatch.pl earlier.
Fixes: 1a775a4fd0 ("ipq806x: add support for TP-Link Talon AD7200")
Fixes: 8ddaeaf642 ("ipq806x: create DTSI for TP-Link AD7200 and C2600")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The TP-Link AD7200 appears with and without the "Talon" model name
prefix. Let's use both variants for 'make menuconfig' so everybody
can locate the device.
Concerning the revision, the TP-Link page lists v1 and v2 with the
device currently marked as "End of Life". However, the v2 and latest
v1 firmware are byte-identical. Thus, we only need one image for
this device and do not need to include the revision in the image name.
While at it, remove the useless BOARD_NAME variable which only makes
sense in combination with upgrade from legacy stable versions or when
custom upgrade scripts are involved.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Both devices share most of their setup except buttons and LEDs,
so having a common DTSI removes a lot of duplicate code.
In order to have a shared partitioning scheme, device-id and
product-info from AD7200 have been merged into a single
product-info partition like for C2600.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This does several cosmetic adjustments for AD7200's DTS:
- Make node name, DT label and label property consistent
- Drop wrong and unused spi4 label
- Use generic flash@0 node name
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The MT7915 radio currently advertises 2.4GHz channels while the antenna
path only supports 5 GHz. Limit the radio to 5GHz channels to prevent
users from configuring non-supported channels.
Signed-off-by: David Bauer <mail@david-bauer.net>
This fixes the build problems for the REALTEK target by adding a proper
configuration option for the phy module.
Signed-off-by: Birger Koblitz <mail@birger-koblitz.de>
While the underscore in the name of the USB LEDs was removed from DTS,
/etc/board.d/01_leds also has to reflect that change.
Fixes: 28fd279e5d ("ipq806x: some corrections for TP-Link Talon AD7200")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware
--------
MediaTek MT7621AT
256M DDR3
32M SPI-NOR
MediaTek MT7603 2T2R 802.11n 2.4GHz
MediaTek MT7915 2T2R 802.11ax 5GHz
Not Working
-----------
- Bluetooth (connected to UART3)
UART
----
UART is located in the lower left corner of the board. Pinout is
0 - 3V3 (don't connect)
1 - RX
2 - TX
3 - GND
Console is 115200 8N1.
Boot
----
1. Connect to the serial console and connect power.
2. Double-press ESC when prompted
3. Set the fdt address
$ fdt addr $(fdtcontroladdr)
4. Remove the signature node from the control FDT
$ fdt rm /signature
5. Transfer and boot the OpenWrt initramfs image to the device.
Make sure to name the file C0A80114.img and have it reachable at
192.168.1.1/24
$ tftpboot; bootm
Installation
------------
1. Connect to the booted device at 192.168.1.20 using username/password
"ubnt".
2. Update the bootloader environment.
$ fw_setenv devmode TRUE
$ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr);
fdt rm /signature; bootubnt"
$ fw_setenv bootcmd "run boot_openwrt"
3. Transfer the OpenWrt sysupgrade image to the device using SCP.
4. Check the mtd partition number for bs / kernel0 / kernel1
$ cat /proc/mtd
5. Set the bootselect flag to boot from kernel0
$ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4
6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1
$ dd if=openwrt.bin of=/dev/mtdblock6
$ dd if=openwrt.bin of=/dev/mtdblock7
7. Reboot the device. It should boot into OpenWrt.
Below are the original installation instructions prior to the discovery
of "devmode=TRUE". They are not required for installation and are
documentation only.
The bootloader employs signature verification on the FIT image
configurations. This way, booting unauthorized image without patching
the bootloader is not possible. Manually configuring the bootcmd in the
U-Boot envronment won't work, as this is restored to the default value
if modified.
The bootloader is made up of three different parts.
1. The SPL performing early board initialization and providing a XModem
recovery in case the PBL is missing
2. The PBL being the primary U-Boot application and containing the
control FDT. It is LZMA packed with a uImage header.
3. A Ubiquiti standalone U-Boot application providing the main boot
routine as well as their recovery mechanism.
In a perfect world, we would only replace the PBL, as the SPL does not
perform checks on the PBLs integrity. However, as the PBL is in the same
eraseblock as the SPL, we need to at least rewrite both.
The bootloader will only verify integrity in case it has a "signature"
node in it's control device-tree. Renaming the signature node to
something else will prevent this from happening.
Warning: These instructions are based on the firmware intially
shipped with the device and potentially brick your device in a way it
can only be recovered using a SPI flasher.
Only (!) proceed if you understand this!
1. Extract the bootloader from the U-Boot partition using the OpenWrt
initramfs image.
2. Split the bootloader into it's 3 components:
$ dd if=bootloader.bin of=spl.bin bs=1 skip=0 count=45056
$ dd if=bootloader.bin of=pbl.uimage bs=1 skip=45056 count=143360
$ dd if=bootloader.bin of=ubnt.uimage bs=1 skip=188416
3. Strip the uImage header from the PBL
$ dd if=pbl.uimage of=pbl.lzma bs=64 skip=1
4. Decompress the PBL
$ lzma -d pbl.lzma --single-stream
The decompressed PBL sha256sum should be
d8b406c65240d260cf15be5f97f40c1d6d1b6e61ec3abed37bb841c90fcc1235
5. Open the decompressed PBL using your favorite hexeditor. Locate the
control FDT at offset 0x4CED0 (0xD00DFEED). At offset 0x4D5BC, the
label for the signature node is located. Rename the "signature"
string at this offset to "signaturr".
The patched PBL sha256sum should be
d028e374cdb40ba44b6e3cef2e4e8a8c16a3b85eb15d9544d24fdd10eed64c97
6. Compress the patched PBL
$ lzma -z pbl --lzma1=dict=67108864
The resulting pbl.lzma file should have the sha256sum
7ae6118928fa0d0b3fe4ff81abd80ecfd9ba2944cb0f0a462b6ae65913088b42
7. Create the PBL uimage
$ SOURCE_DATE_EPOCH=1607909492 mkimage -A mips -O u-boot -C lzma
-n "U-Boot 2018.03 [UniFi,v1.1.40.71]" -a 84000000 -e 84000000
-T firmware -d pbl.lzma patched_pbl.uimage
The resulting patched_pbl.uimage should have the sha256sum
b90d7fa2dcc6814180d3943530d8d6b0d6a03636113c94e99af34f196d3cf2ce
8. Reassemble the complete bootloader
$ dd if=patched_pbl.uimage of=aligned_pbl.uimage bs=143360 count=1
conv=sync
$ cat spl.bin > patched_uboot.bin
$ cat aligned_pbl.uimage >> patched_uboot.bin
$ cat ubnt.uimage >> patched_uboot.bin
The resulting patched_uboot.bin should have the sha256sum
3e1186f33b88a525687285c2a8b22e8786787b31d4648b8eee66c672222aa76b
9. Transfer your patched bootloader to the device. Also install the
kmod-mtd-rw package using opkg and load it.
$ insmod mtd-rw.ko i_want_a_brick=1
Write the patched bootloader to mtd0
$ mtd write patched_uboot.bin u-boot
10. Erase the kernel1 partition, as the bootloader might otherwise
decide to boot from there.
$ mtd erase kernel1
11. Transfer the OpenWrt sysupgrade image to the device and install
using sysupgrade.
FIT configurations
------------------
In the future, the MT7621 UniFi6 family can be supported by a single
OpenWrt image.
config@1: U6 Lite
config@2: U6 IW
config@3: U6 Mesh
config@4: U6 Extender
config@5: U6 LR-EA (Early Access - GA is MT7622)
Signed-off-by: David Bauer <mail@david-bauer.net>
Address most comments made by Adrian Schmutzler on the mailing list.
The device name is kept as 'TP-Link Talon AD7200' as that seems to be
the marketing name TP-Link chose for that device, it also matches the
naming scheme for other TP-Link devices (e.g. 'TP-Link Archer C7').
Fixes: 1a775a4fd0 ("ipq806x: add support for TP-Link Talon AD7200")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Device hardware: https://deviwiki.com/wiki/TP-LINK_AD7200_(Talon)
The Talon AD7200 is basically an Archer C2600 with a third PCIe lane
and an 802.11ad radio. It looks like the Archers C2600/5400 but the
housing is slightly larger.
Specifications
--------------
- IPQ8064 dual-core 1400MHz
- QCA9988 2.4GHz WiFi
- QCA9990 5GHz WiFi
- QCA9500 60GHz WiFi
- 32MB SPI Flash
- 512MiB RAM
- 5 GBit Ports (QCA8337)
Installation
------------
Installation is possible from the OEM web interface.
Sysupgrade is possible.
TFTP recovery is possible.
- Image: AD7200_1.0_tp_recovery.bin
Notes
- This will be the first 802.11ad device supported by mainline.
Signed-off-by: Gary Cooper <gaco@bitmessage.de>
It is good practice to define device tree files based on specific
SoCs. Thus, let's not start to create files that are used across
different architectures.
Duplicate the DTSI file for D-Link DAP-2xxx in order to have one
for qca953x and one for qca955x, respectively.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The device is a one-port, but was set up as two-port by the
default case in 02_network. Fix it.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
[commit title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R
* 10/100 Ethernet Port, 802.11af PoE
* IP55 pole-mountable outdoor case
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* QCA9558, 16 MiB Flash, 256 MiB RAM, 802.11n 3T3R
* QCA9984, 802.11ac Wave 2 3T3R
* Gigabit LAN Port (AR8035), 802.11at PoE
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R
* 10/100 Ethernet Port, 802.11af PoE
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Commit 29ca10e537 ("ipq806x: remove support for kernel 4.19") moved
DTS files to "files" directory, but after that a new DTS file was added
to the former "files-5.4" directory. Move it to the new directory.
Fixes: 98b86296e6 ("ipq806x: add support for ASRock G10")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Kernel config does not need to be executable. 644 is enough.
Fixes: 25d9df670b ("mediatek: add v5.4 support")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
[split by targets]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
DTS files do not need to be executable. 644 is enough.
Fixes: 0fbdb51f76 ("ipq40xx: add Edgecore OAP-100 support")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
[split by targets]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The phy label/node name should correspond to the reg property.
While at it, use more common decimal notation for reg property itself.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This reverts commit 57e4cc8261.
Cmdline override patch was fixed. It's time for reenable
Asrock G10 support.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Tested-by: Hannu Nyman <hannu.nyman@iki.fi> (run-tested for R7800)
900-arm-add-cmdline-override.patch have missplaced entry in
arch/arm/Kconfig file. It causes problem with other cmdline
patches. This patch put Kconfig entry in correct place.
Fixes: 98b86296e6 ("ipq806x: add support for ASRock G10")
Suggested-by: Hannu Nyman <hannu.nyman@iki.fi>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Tested-by: Hannu Nyman <hannu.nyman@iki.fi> (run-tested for R7800)
UDP tunneling support isn't user-selectable, but it's required by WireGuard
which is, for the time being, an out-of-tree module. We currently work around
this issue by selecting an unrelated module which depends on UDP tunnelling
(VXLAN). This is inconvenient, as it implies this unrelated module needs to be
built-in when doing a monolithic build.
Fix this inconvenience by making UDP tunneling user-selectable in the kernel
configuration.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
This patch was backported to the 5.4 kernel tree as commit
c2d5c4df27e0 at least since release v5.4.28. Since then, it enables RX
an TX ready override twice.
Signed-off-by: David Bauer <mail@david-bauer.net>
Since updating the MDIO driver, the probe will fail hard on any
PHY not present on the bus, while this was not the case prior.
Fixes commit 26b1f72381 ("ipq40xx: net: phy: ar40xx: remove PHY
handling")
Signed-off-by: David Bauer <mail@david-bauer.net>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
WAN/LAN LEDs appear to be wrong in ar71xx and have been swapped here.
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[add LED swap comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* external antenna
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Invoke bundle-libraries.sh with any buildroot related directory entries
removed from $PATH to avoid picking up cross versions of utilities like
ldd which will not properly work when used against host executables.
This should fix executable bundling for glibc-target SDKs.
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
Invoke bundle-libraries.sh with any buildroot related directory entries
removed from $PATH to avoid picking up cross versions of utilities like
ldd which will not properly work when used against host executables.
This should fix executable bundling for glibc-target imagebuilders.
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[drop redundant status from eth1]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The upgrade script for the openmesh sysupgrade procedure used always an 1
byte block size. This made it easier to seek the correct position in the CE
image and to make sure the right amount of data was copied. But this also
meant that the reading/writing of data required an excessive amount of
syscalls and copy operations.
A 5.4MB big sysupgrade image on an OM2P-HS v3 needed roughly 120s for the
write operation (170s in total) during the sysupgrade.
But it is possible to reduce this overhead slightly:
* index access to read the file size can be done in single 8 byte chunk
(while doing the seek with byte granularity) because each size entry is
example 8 bytes long
* the fwupgrade.cfg can be read as one block (while seeking to its position
using its actual byte offset) because it should be rather small and fit
into the RAM easily
* the kernel can be read in 1KB blocks (while seking to its positions using
its actual byte offset) because the the size of the kernel is always a
multiple of the NOR flash block size (64KB and 256KB)
This results in a sysupgrade write time of roughly 90s (140s in total).
This could be reduced even further when also using larger chunks for the
rootfs. But the squashfs rootfs image is at the moment always
(256KB or 64KB) * block + 4 bytes
long. It would be expected that the time for the sysupgrade write could be
reduced to roughly 30s (80s in total) when busybox's dd would support
the iflag count_bytes.
Reported-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 1
* 12-24V 1A DC
* external antenna
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[wrap two very long lines, fix typo in comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
After device support for ASRock G10 was added in [1], several
people reported broken ipq806x devices, with one or several of the
following symptoms:
- Device does not boot
- Sysupgrade does not work
- Serial console is broken
The issues appears to be caused by the introduction of the symbol
CONFIG_CMDLINE_OVERRIDE=y in [1].
This patch disables the corresponding symbol again and marks the
ASRock as BROKEN, as it probably won't work properly without it.
Further references:
https://bugs.openwrt.org/index.php?do=details&task_id=354098b86296e6 (commitcomment-45455875)
[1] 98b86296e6 ("ipq806x: add support for ASRock G10")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
sysupgrade.bin has been added to IMAGES twice, resulting in
warnings like:
Makefile:86: warning: overriding recipe for target
'[...]/tmp/openwrt-ath79-generic-dlink_dap-2660-a1-squashfs-sysupgrade.bin'
Makefile:86: warning: ignoring old recipe for target
'[...]/tmp/openwrt-ath79-generic-dlink_dap-2660-a1-squashfs-sysupgrade.bin'
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The current support for MikroTik NAND-based devices relies on a
gross hack that packs the kernel into a static YAFFS stub, as the
stock bootloader only supports booting a YAFFS-encapsulated kernel.
The problem with this approach is that since the kernel partition is
blindly overwritten without any kind of wear or badblock management
(due to lack of proper support for YAFFS in OpenWRT), the NAND flash
is not worn uniformly and eventually badblocks appear, leading to
unbootable devices.
This issue has been reported here [1] and discussed in more detail
here [2].
[1] https://forum.openwrt.org/t/rb433-bad-sector-cannot-start-openwrt/71519
[2] https://github.com/openwrt/openwrt/pull/3026#issuecomment-673597461
Until a proper fix is found (or the stock bootloader supports other
filesystems), we disable building these images to prevent unknowing
users from risking their devices.
Thanks to Thibaut Varène for summarizing the details above.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
A few devices in ath79 and ramips use mtd-concat to concatenate
individual partitions into a bigger "firmware" or "ubi" partition.
However, the original partitions are still present and visible,
and one can write to them directly although this might break the
actual virtual, concatenated partition.
As we cannot do much about the former, let's at least choose more
descriptive names than just "firmwareX" in order to indicate the
concatenation to the user. He might be less tempted into overwriting
a "fwconcat1" than a "firmware1", which might be perceived as an
alternate firmware for dual boot etc.
This applies the new naming consistently for all relevant devices,
i.e. fwconcatX for virtual "firmware" members and ubiconcatX for
"ubi" members.
While at it, use DT labels and label property consistently, and
also use consistent zero-based indexing.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Otherwise the missing symbol is added to target config for every kernel
config refresh.
While at it, remove the disabled symbol from target configs.
Fixes: 4943bc5cff ("kernel: only strip proc for small flash devices")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
The option was introduced in upstream linux commit a6484045 ("[TCP]: Do
not present confusing congestion control options by default.").
The option is set to y in generic config and to the moment does not
incur additional size increment. Make it y for all so that packages
such as kmod-tcp-bbr do not have to set it on every occasion
Signed-off-by: Yousong Zhou <yszhou4tech@gmail.com>
Specifications:
SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM: 256 MiB
FLASH1: 4 MiB NOR
FLASH2: 128 MiB NAND
ETH: Qualcomm QCA8075
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2
INPUT: Reset
LED: Power, Internet
UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
OTHER: On board with BLE module - by cp210x USB serial chip
On board hareware watchdog with GPIO0 high to turn on, and GPIO4 for watchdog feed
Install via uboot tftp or uboot web failsafe.
By uboot tftp:
(IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-generic-glinet_gl-ap1300-squashfs-nand-factory.ubi
(IPQ40xx) # run lf
By uboot web failsafe:
Push the reset button for 10 seconds util the power led flash faster,
then use broswer to access http://192.168.1.1
Afterwards upgrade can use sysupgrade image.
Signed-off-by: Dongming Han <handongming@gl-inet.com>
This commit adds support for Qualcomm IPQ8062 SoC.
IPQ8062 is a lower clock variant of IPQ8064.
CPU and NSS clocks:
- CPU: 384 MHz - 1 GHz
- NSS: 110 MHz - 550 MHz
opp and l2 clock values are taken from WG2600HP3 GPL source code [1].
Due to a lack of devices, I didn't test the following features.
- SATA
- NAND flash memory controller
- SD
- USB
- GSBI2, GSBI7
- PCIE2
- GMAC0, GMAC3
Works properly:
- GSBI4 UART
- GSBI5 SPI
- GMAC1, GMAC2
- PCIE0, PCIE1
- MDIO0
Does not work properly:
- CPU SPC
- This can cause a system hang. Same as IPQ8065.
See 2336c2dbb1
[1] https://www.aterm.jp/function/wg2600hp3/appendix/opensource.html
Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
FCC ID: U2M-EAP350
Engenius EAP350 is a wireless access point with 1 gigabit PoE ethernet port,
2.4 GHz wireless, external ethernet switch, and 2 internal antennas.
Specification:
- AR7242 SOC
- AR9283 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 8 MB FLASH MX25L6406E
- 32 MB RAM EM6AA160TSA-5G
- UART at J2 (populated)
- 3 LEDs, 1 button (power, eth, 2.4 GHz) (reset)
- 2 internal antennas
MAC addresses:
MAC address is labeled as "MAC"
Only 1 address on label and in flash
The OEM software reports these MACs for the ifconfig
eth0 MAC *:0c art 0x0
phy0 --- *:0d ---
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.10.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9f670000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of EAP350 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-eap350-uImage-lzma.bin
openwrt-senao-eap350-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the EAP series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1024k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR724x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
uboot did not have a good value for 1 GBps
so it was taken from other similar DTS file.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-EAP600
Engenius EAP600 is a wireless access point with 1 gigabit ethernet port,
dual-band wireless, external ethernet switch, 4 internal antennas
and 802.3af PoE.
Specification:
- AR9344 SOC (5 GHz, 2x2, WMAC)
- AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16DG
- UART at H1 (populated)
- 5 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz, wps) (reset)
- 4 internal antennas
MAC addresses:
MAC addresses are labeled MAC1 and MAC2
The MAC address in flash is not on the label
The OEM software reports these MACs for the ifconfig
eth0 MAC 1 *:5e ---
phy1 MAC 2 *:5f --- (2.4 GHz)
phy0 ----- *:60 art 0x0 (5 GHz)
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of EAP600 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-eap600-uImage-lzma.bin
openwrt-senao-eap600-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the EAP series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR934x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
Unfortunately uboot did not have the best values
so they were taken from other similar DTS files.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
The boards have equivalent hardware except for LEDs
and equivalent device config except for MACs
also use naming convention for mtd-concat partitions
to prepare for upcoming patch
"treewide: use more descriptive names for concatenated partitions"
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-ECB600
Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port,
dual-band wireless, external ethernet switch, and 4 external antennas.
Specification:
- AR9344 SOC (5 GHz, 2x2, WMAC)
- AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16DG
- UART at H1 (populated)
- 4 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz) (reset)
- 4 external antennas
MAC addresses:
MAC addresses are labeled MAC1 and MAC2
The MAC address in flash is not on the label
The OEM software reports these MACs for the ifconfig
phy1 MAC 1 *:52 --- (2.4 GHz)
phy0 MAC 2 *:53 --- (5 GHz)
eth0 ----- *:54 art 0x0
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of ECB600 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-ecb600-uImage-lzma.bin
openwrt-senao-ecb600-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the ECB series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR934x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
Unfortunately uboot did not have the best values
so they were taken from other similar DTS files.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Commit 5fc28ef479 ("ath79: Add support for Plasma Cloud PA300")
added the IMAGE/sysupgrade.bin/squashfs definition, which leaks into
other devices, resulting in sysupgrade.bin images that are actually
tarballs and do not boot when directly written to flash.
We can use the normal sysupgrade.bin command variable for this device.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
[fix format, spelling]
Signed-off-by: David Bauer <mail@david-bauer.net>
The image never worked in any release and is also broken in snapshots
due to stock bootloader not loading more than 4 MiB.
Hence it's better to remove the image for now, users who want to flash
OpenWrt on new devices may build LEDE 17.01 with everything possible
disabled to get a small enough and working factory image.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Lets use the generic upstream phy_print_status() instead of doing
something similar by hand.
Before:
ess_edma c080000.edma: eth1: GMAC Link is up with phy_speed=1000
After:
ess_edma c080000.edma eth1: Link is Up - 1Gbps/Full - flow control rx/tx
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Since we now have a proper PHY driver for QCA807x and AR803x has already
been supported properly there is no need for the driver to be poking
on PHY registers for ethtool ops.
So, lets simply use the generic
phy_ethtool_ksettings_get/phy_ethtool_ksettings_set functions.
This also has the advantage of properly populating stuff other than
speeds like, transceiver type, MDI-X etc.
ethtool before:
root@OpenWrt:/# ethtool eth1
Settings for eth1:
Supported ports: [ TP MII ]
Supported link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full
1000baseX/Full
Supported pause frame use: Symmetric Receive-only
Supports auto-negotiation: Yes
Supported FEC modes: Not reported
Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full
1000baseX/Full
Advertised pause frame use: Symmetric Receive-only
Advertised auto-negotiation: Yes
Advertised FEC modes: Not reported
Link partner advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full
Link partner advertised pause frame use: No
Link partner advertised auto-negotiation: No
Link partner advertised FEC modes: Not reported
Speed: 1000Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 4
Transceiver: internal
Auto-negotiation: on
MDI-X: Unknown
Supports Wake-on: d
Wake-on: d
Current message level: 0x00000000 (0)
Link detected: yes
ethtool after:
root@OpenWrt:/# ethtool eth1
Settings for eth1:
Supported ports: [ TP MII ]
Supported link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full
1000baseX/Full
Supported pause frame use: Symmetric Receive-only
Supports auto-negotiation: Yes
Supported FEC modes: Not reported
Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full
1000baseX/Full
Advertised pause frame use: Symmetric Receive-only
Advertised auto-negotiation: Yes
Advertised FEC modes: Not reported
Link partner advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full
Link partner advertised pause frame use: Symmetric Receive-only
Link partner advertised auto-negotiation: Yes
Link partner advertised FEC modes: Not reported
Speed: 1000Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 4
Transceiver: external
Auto-negotiation: on
MDI-X: off (auto)
Supports Wake-on: d
Wake-on: d
Current message level: 0x00000000 (0)
Link detected: yes
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Since the new PHY driver manages each PHY individually and therefore
registers each PHY that is marked with gpio-controller; DT property as a
GPIO controller we need to convert old DT bindings to account for this.
Only 2 boards use this so its not much of an issue.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
This adds necessary DT properties for QCA807x PHY-s to IPQ4019 DTSI.
Also adds the PSGMII PHY as it wont get probed otherwise.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
PHY needs to be soft reset before starting it from ethernet driver as
AR40xx calibration will leave it in unwanted state.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Since we now have proper PHY driver for the QCA807x PHY-s, lets remove
PHY handling from AR40xx.
This removes PHY driver, PHY GPIO driver and PHY init code.
AR40xx still needs to handle PSGMII calibration as that requires R/W
from the switch, so I am unable to move it into PHY driver.
This also converted the AR40xx driver to use OF_MDIO to find the MDIO
bus as it now cant be set through the PHY driver.
So lets depend on OF_MDIO in KConfig.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
This adds driver for the Qualcomm QCA8072 and QCA8075 PHY-s.
They are 2 or 5 port IEEE 802.3 clause 22 compliant
10BASE-Te, 100BASE-TX and 1000BASE-T PHY-s.
They feature 2 SerDes, one for PSGMII or QSGMII connection with MAC,
while second one is SGMII for connection to MAC or fiber.
Both models have a combo port that supports 1000BASE-X and 100BASE-FX
fiber.
Each PHY inside of QCA807x series has 2 digitally controlled output only
pins that natively drive LED-s.
But some vendors used these to driver generic LED-s controlled by
user space, so lets enable registering each PHY as GPIO controller and
add driver for it.
This also adds the ability to specify DT properties so that 1000 Base-T
LED will also be lit up for 100 and 10 Base connections.
This is usually done by U-boot, but boards running mainline U-boot are
not configuring this yet.
These PHY-s are commonly used in Qualcomm IPQ40xx, IPQ60xx and IPQ807x
boards.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
With the reworked MDIO driver, EDMA will fail to get the MII BUS as it
used the MII BUS stored inside the MDIO structure private data.
This obviously does not work with the modernized driver, so lets switch
to using a purpose build of_mdio_find_bus() which will return the MII
BUS and only requires the MDIO node to be passed.
This is easy as we already have the node parsed.
Also, since we now require OF_MDIO add that as dependency.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
IPQ40xx MDIO driver was upstreamed in kernel version 5.8.
So lets backport the upstream version and drop our local one.
This also refreshed the kernel config since the symbol name has changed.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
ELECOM WRC-1167GST2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 256 MiB
- Flash : SPI-NOR 32 MiB
- WLAN : 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet : 10/100/1000 Mbps x5
- Switch : MediaTek MT7530 (SoC)
- LED/keys : 6x/6x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J4: 3.3V, GND, TX, RX from ethernet port side
- 57600n8
- Power : 12VDC, 1A
MAC addresses:
LAN : 04:AB:18:**:**:07 (Factory, 0xE000 (hex))
WAN : 04:AB:18:**:**:08 (Factory, 0xE006 (hex))
2.4 GHz : 04:AB:18:**:**:09 (none)
5 GHz : 04:AB:18:**:**:0A (none)
Flash instruction using factory image:
1. Boot WRC-1167GST2 normally
2. Access to "http://192.168.2.1/" and open firmware update page
("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~150 seconds to complete flashing
Notes:
- there is no way to configure the correct MAC address for secondary phy
(5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
ieee80211-freq-limit
(fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
mtd-mac-address-increment
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ELECOM WRC-1167GS2-B is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 128 MiB
- Flash : SPI-NOR 16 MiB
- WLAN : 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet : 10/100/1000 Mbps x5
- Switch : MediaTek MT7530 (SoC)
- LED/keys : 6x/6x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J4: 3.3V, GND, TX, RX from ethernet port side
- 57600n8
- Power : 12VDC, 1A
MAC addresses:
LAN : 04:AB:18:**:**:13 (Factory, 0xFFF4 (hex))
WAN : 04:AB:18:**:**:14 (Factory, 0xFFFA (hex))
2.4 GHz : 04:AB:18:**:**:15 (none)
5 GHz : 04:AB:18:**:**:16 (Factory, 0x4 (hex))
Flash instruction using factory image:
1. Boot WRC-1167GS2-B normally
2. Access to "http://192.168.2.1/" and open firmware update page
("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~120 seconds to complete flashing
Notes:
- there is no way to configure the correct MAC address for secondary phy
(5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
ieee80211-freq-limit
(fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
mtd-mac-address-increment
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI patch]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a dedicated DTSI for ELECOM WRC GS devices with 2 PCI
WiFi chips in preparation for the 1 chip - dual radio devices, so
the latter can reuse part of the common definitions.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v71) Cortex-A7
DRAM: 256 MiB
NOR: 32 MiB
ETH: Qualcomm Atheros QCA8075 (2 ports)
PLC: MaxLinear G.hn 88LX5152
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET, WiFi, PLC Button
LEDS: red/white home, white WiFi
To modify a retail device to run OpenWRT firmware:
1) Setup a TFTP server on IP address 192.168.0.100 and copy the OpenWRT
initramfs (initramfs-fit-uImage.itb) to the TFTP root as 'uploadfile'.
2) Power on the device while pressing the recessed reset button next to
the Ethernet ports. This causes the bootloader to retrieve and start
the initramfs.
3) Once the initramfs is booted, the device will come up with IP
192.168.1.1. You can then connect through SSH (allow some time for
the first connection).
4) On the device shell, run 'fw_printenv' to show the U-boot environment.
Backup this information since it contains device unique factory data.
5) Change the boot command to support booting OpenWRT:
# fw_setenv bootcmd 'sf probe && sf read 0x84000000 0x180000 0x400000 && bootm'
6) Change directory to /tmp, download the sysupgrade (e.g. through wget)
and install it with sysupgrade. The device will reboot into OpenWRT.
Notice that there is currently no support for booting the G.hn chip.
This requires userland software we lack the rights to share right now.
Signed-off-by: Stefan Schake <stefan.schake@devolo.de>
Currently, you are not able to get statistics about IPv4 and IPv6
usage. This information can be collected via the snmp and snmp6.
However, in the current state this interface is disabled as you can
read in the "902-debloat_proc.patch":
"Strip non-essential /proc functionality to reduce code size"
Tools like netstat use the snmp/6 interface to collect interface
statistics. Some prometheus exporters also mention this:
- prometheus-collectors/netstat.lua
- prometheus-collectors/snmp6 (still a PR)
- collectd/snmp6 (still a PR)
PRs:
- https://github.com/collectd/collectd/pull/3789
- https://github.com/openwrt/packages/pull/14158
Instead of enabling it as default for all devices we condition it
default y if SMALL_FLASH
A test shows it needs around 16 kiB.
Signed-off-by: Nick Hainke <vincent@systemli.org>
[fixed whitespace issue]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The Seagate BlackArmor NAS220 is a consumer NAS
with two internal drive bays. The stock OS runs
RAID 1 over the disks via mdadm.
Device specification:
- SoC: Marvell 88F6192 800 MHz
- RAM: 128 MB
- Flash: 32 MB
- 2 x internal SATA II drives
- Ethernet: 10/100/1000 Mbps (single port, no switch)
- WLAN: None
- LED: Power, Status, Sata Activity
- Key: Power, Reset
- Serial: 10 pin header, (115200,8,N,1), 3.3V TTL
9|x - x|10
7|x - x|8
5|x - GND|6
3|x - RX|4
1|TX - x|2
front of case
- USB ports: 2 x USB 2.0
Flash instruction:
NOTE: this process uses a serial connection. It will upgrade the
bootloader and reset the bootloader environment variables
TFTP server setup
- Setup PC with TFTP server set the PC IP to 10.4.50.5 as TFTP server
- Copy these files to TFTP server location
- u-boot.kwb
- seagate_blackarmor-nas220-initramfs-uImage
- seagate_blackarmor-nas220-squashfs-sysupgrade.bin
- seagate_blackarmor-nas220-squashfs-factory.bin
Seagate NAS setup
- Connect LAN cable between PC and seagate device
- Connect to serial to seagate device
Install u-boot
- Boot seagate device and stop in bootloader by pressing any key
- run 'printenv' from u-boot and save the values
- tftpboot 0x2000000 u-boot.kwb
- nand erase.part uboot
- nand write 0x2000000 0x0 ${filesize}
- reset
Update MAC address in u-boot env
- Stop in u-boot by pressing any key
- Get your MAC address from your saved printenv. Is also on chassis
- setenv ethaddr <your MAC>
- saveenv
Option 1 (recommended) - Install OpenWrt via initramfs and sysupgrade
- tftpboot 0x2000000 seagate_blackarmor-nas220-initramfs-uImage
- bootm 0x2000000
- *OpenWrt should be running now, however it is not written to flash yet*
- From the running instance of OpenWrt use Luci's "flash image" feature
from the web site or use sysupgrade from the console to write
seagate_blackarmor-nas220-squashfs-sysupgrade.bin to flash
Option 2 - Install OpenWrt by flashing factory image from u-boot
- nand erase.part ubi
- tftpboot 0x2000000 seagate_blackarmor-nas220-squashfs-factory.bin
- nand write 0x2000000 ubi ${filesize}
- reset
Signed-off-by: Kip Porterfield <kip.porterfield@gmail.com>
The ASRock G10 is a 2.4/5 GHz band 11ac "Gaming" router,
based on Qualcomm IPQ8064.
Specifications:
SoC: Qualcomm IPQ8064
CPU: Dual-Core A15 @ (384 - 1,400 MHz, 2C2T)
DRAM: 512 MiB (~467 MiB available)
NAND: 128 MB (Micron MT29F1G08ABBEAH4)
WLAN0: 4T4R 5 GHz Wlan (QCA9980)
WLAN1: 4T4R 2.4 GHz Wlan (QCA9980)
ETH: 5x 10/100/1000 Mbps Ethernet (QCA8337)
INPUT: Reset Button, WPS 2.4G and WPS 5G Button
LEDS: 1 multicolor status LED
USB: 2x USB 3.0 Type-A
POWER: 12VDC/3A AC Adapter + dedicated Power Switch
UART: Setting is 115200-8-N-1. 1x4 .1" unpopulated header
on the PCB (J6 - very tiny silkscreen next to TX).
Pinout: 1. 3v3 (Square - best skipped!), 2. RX, 3. GND, 4. TX
WARNING: The serial port needs a TTL/RS-232 3.3v level converter!
(Depending on the serial adapter RX and TX might need to
be swapped).
Note about the IR-Remote:
There's a 8-Bit MCU (SONIX SN8F25E21SG) which is controlling the
IR-Remote and is fed by the IR-Photodiode. The SoC can talk to
the device via I2C. The vendor's GPL archive comes with the source
of the interface driver for this as a (character driver), the main
control software is however a blob.
Installation Instructions:
1. Download factory image to disk
2. Apply factory image via stock web-gui
Back to stock:
1. Login to router via ssh
2. run "asrock_g10_back_to_factory" script from /sbin
Notes:
- If something goes wrong durring sysupgrade, router will go back to
factory image.
- Asrock G10 uses partition layout from smem. So partition layout can
be normal or alternate.
- 900-arm-add-cmdline-override.patch was copied from 102-powerpc-add-cmdline-override.patch
from powerpc target.
Knowledge about BOOTCONFIG partition was based on user "jmomo" post from old
OpenWrt forum (Post #50):
https://forum.archive.openwrt.org/viewtopic.php?id=65956&p=2
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[bump to 5.4, add factory image, fix sysupgrade, convert partition
layout to smem, remove ipq-wifi-asrock-g10 and use ART, minor fixes]
Co-Authored-by: Pawel Dembicki <paweldembicki@gmail.com>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Tested-by: Lukasz Ostapiuk <palibrzuch@gmail.com>
Newer EnGenius software that still uses the tar.gz platform
instead of the custom header requires more checks for upgrading,
but their script includes a way to skip them...
the existence of a file in the tar.gz called failsafe.bin
Their upgrade script has these lines:
\#pass check when upload with full image file
[ "${errcode}" -eq "1" ] && [ -f failsafe.bin ] && errcode="0"
This overrides the script's "errcode" variable
which can be set if any of the following actions/checks fail:
- untarring of the upload
- magic number for kernel: "2705"
- magic num for rootfs: "7371" or "6873"
- md5sums for each file in the format
filename:md5
- existence of a file matching FWINFO*
that it has boardname in the name somewhere (grep)
that the 4th field of separator "-" is at least 3 (version)
Otherwise we would need to generate md5sums in this strange format
and touch a file with specific requirements in the name.
This does not effect boards where the advanced checks do not apply.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[fixed SoB to match From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
FCC ID: A8J-ENSTAC
Engenius EnStationAC v1 is an outdoor wireless access point/bridge with
2 gigabit ethernet ports on 2 external ethernet switches,
5 GHz only wireless, internal antenna plates, and proprietery PoE.
Specification:
- QCA9557 SOC
- QCA9882 WLAN (PCI card, 5 GHz, 2x2, 26dBm)
- AR8035-A switch (RGMII GbE with PoE+ IN)
- AR8031 switch (SGMII GbE with PoE OUT)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16FG
- UART at J10 (unpopulated)
- internal antenna plates (19 dbi, directional)
- 7 LEDs, 1 button (power, eth, wlan, RSSI) (reset)
MAC addresses:
MAC addresses are labeled as ETH and 5GHz
Vendor MAC addresses in flash are duplicate
eth0 ETH *:d3 art 0x0/0x6
eth1 ---- *:d4 ---
phy0 5GHz *:d5 ---
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
TFTP recovery:
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board
hold or press reset button repeatedly
NOTE: for some Engenius boards TFTP is not reliable
try setting MTU to 600 and try many times
Format of OEM firmware image:
The OEM software of EnStationAC is a heavily modified version
of Openwrt Altitude Adjustment 12.09. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-ar71xx-enstationac-uImage-lzma.bin
openwrt-ar71xx-enstationac-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
Newer EnGenius software requires more checks but their script
includes a way to skip them, otherwise the tar must include
a text file with the version and md5sums in a deprecated format.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8033 switch between
the SOC and the ethernet PHY chips.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
For eth0 at 1000 speed, the value returned was
ae000000 but that didn't work, so following
the logical pattern from the rest of the values,
the guessed value of a3000000 works better.
later discovered that delay can be placed on the PHY end only
with phy-mode as 'rgmii-id' and set register to 0x82...
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[fixed SoB to match From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
WNDR4700 uboot has an issue with decompressing kernel with default dictionary size (-d23 which is about 8MB).
Limiting lzma dictionary lowers memory footprint and allows device to boot the kernel.
The highest bootable dictonary size is 18, choosing 16 for an extra safety margin.
Kernel size befor and after:
-d23: 2663665 Bytes
-d16: 2892757 Bytes
Kernel size increased by 230kB (9%)
Fixes: FS#3258
Signed-off-by: Wiktor Stasiak <wiktor.stasiak@gmail.com>
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 128 MB (DDR3)
- Flash: 16 MB (SPI NOR)
- WiFi: MediaTek MT7615N (x2)
- Switch: 1 WAN, 4 LAN (Gigabit)
- Ports: 1 USB 2.0, 1 USB 3.0
- Buttons: Reset, WiFi Toggle, WPS
- LEDs: Power, Internet, WiFi 2.4G WiFi 5G, USB 2.0, USB 3.0
The R1 revision is identical to the A1 revision except
- No Config2 Parition, therefore
- factory partition resized to 64k from 128K
- Firmware partition offset is 0x50000 not 0x60000
- Firmware partitions size increased by 64K
- Firmware partition type is "denx,uimage", not "sge,uimage"
- Padding of image creation "uimage-padhdr 96" removed
Installation:
- Older firmware versions: put the factory image on a USB stick, turn on
the telnet console, and flash using the following cmd
"fw_updater Linux /mnt/usb_X_X/firmware.bin"
- D-Link FailsafeUI:
Power down the router, press and hold the reset button, then
re-plug it. Keep the reset button pressed until the internet LED stops
flashing, then jack into any lan port and manually assign a static IP
address in 192.168.0.0/24 other than 192.168.0.0 (e.g. 192.168.0.2)
and go to http://192.168.0.1
Flash with the factory image.
Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
Some Russian d-link routers require that their firmware be signed with a
salted md5 checksum followed by the bytes 0x00 0xc0 0xff 0xee. This tool
signs factory images the OEM's firmware accepts them.
Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
Specifications:
* QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R
* QCA9882, 802.11ac 2T2R
* Gigabit LAN Port (AR8035), 802.11af PoE
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The Ubiquiti Network airCube AC is a cube shaped device supporting
2.4 GHz and 5 GHz with internal 2x2 MIMO antennas.
It can be powered with either one of:
- 24v power supply with 3.0mm x 1.0mm barrel plug
- 24v passive PoE on first LAN port
There are four 10/100/1000 Mbps ports (1 * WAN + 3 * LAN).
First LAN port have optional PoE passthrough to the WAN port.
SoC: Qualcomm / Atheros AR9342
RAM: 64 MB DDR2
Flash: 16 MB SPI NOR
Ethernet: 4x 10/100/1000 Mbps (1 WAN + 3 LAN)
LEDS: 1x via a SPI controller (not yet supported)
Buttons: 1x Reset
Serial: 1x (only RX and TX); 115200 baud, 8N1
Missing features:
- LED control is not supported
Physical to internal switch port mapping:
- physical port #1 (poe in) = switchport 2
- physical port #2 = switchport 3
- physical port #3 = switchport 5
- physical port #4 (wan/poe out) = switchport 4
Factory update is tested and is the same as for Ubiquiti AirCube ISP
hence the shared configuration between that devices.
Signed-off-by: Roman Kuzmitskii <damex.pp@icloud.com>
This patch adds support for the MikroTik RouterBOARD wAPR-2nD (wAP R)
router, a weatherproof 2.4 GHz access point with a miniPCI-e slot and
a SIM card slot.
Specifications:
- SoC: Qualcomm Atheros QCA9533
- Flash: 16 MB (SPI)
- RAM: 64 MB
- Ethernet: 1x 10/100 Mbps (PoE in)
- WiFi: AR9531 2T2R 2.4 GHz (SoC)
- miniPCI-e slot
- 4x green LEDs (1x WiFi, 3x RSSI)
- 1x reset button
See https://mikrotik.com/product/RBwAPR-2nD for more details.
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Device specifications:
* QCA IPQ4019
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=20,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 36-64)
- QCA9888 hw2.0 (PCI)
- requires special BDF in QCA9888/hw2.0/board-2.bin
bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 100-165)
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=PlasmaCloud-PA2200
* GPIO-LEDs for 2.4GHz, 5GHz-SoC and 5GHz-PCIE
* GPIO-LEDs for power (orange) and status (blue)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio3:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio4:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3at POE+
+ used as WAN interface
* 12V 2A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
* QCA IPQ4018
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA1200
* 2T2R 5 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=17,variant=PlasmaCloud-PA1200
* 3x GPIO-LEDs for status (cyan, purple, yellow)
* 1x GPIO-button (reset)
* 1x USB (xHCI)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio4:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio3:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3af/at POE(+)
+ used as WAN interface
* 12V/24V 1A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Other vendors are using functionality similar to the ones OpenMesh used to
implement two areas on the flash to store the default image and a fallback
image. So just change the name to dualboot_datachk.sh to avoid duplicated
code just to have the same script for different vendors.
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 2
+ used as LAN interface
* 12-24V 1A DC
* external antennas
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 2
+ used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Sven Eckelmann <sven@narfation.org>
The MIPS code is supposed to fall back to u-boots bootargs whenever the
/chosen/bootargs property is missing. But this feature was accidentally
disabled when the boot_command_line was initialized with an empty space
just to work around problems with early_init_dt_scan_chosen.
But this feature is necessary for some boards which have a dualboot
mechanism and whose u-boot is calculating the correct partition at runtime
without writing this information back to the u-boot-env.
Signed-off-by: Sven Eckelmann <sven@narfation.org>
FCC ID: A8J-ECB350
Engenius ECB350 v1 is an indoor wireless access point with a gigabit ethernet port,
2.4 GHz wireless, external antennas, and PoE.
**Specification:**
- AR7242 SOC
- AR9283 WLAN 2.4 GHz (2x2), PCIe on-board
- AR8035-A switch RGMII, GbE with 802.3af PoE
- 40 MHz reference clock
- 8 MB FLASH 25L6406EM2I-12G
- 32 MB RAM
- UART at J2 (populated)
- 2 external antennas
- 3 LEDs, 1 button (power, lan, wlan) (reset)
**MAC addresses:**
MACs are labeled as WLAN and WAN
vendor MAC addresses in flash are duplicate
phy0 WLAN *:b8 ---
eth0 WAN *:b9 art 0x0/0x6
**Installation:**
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9f670000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
**TFTP recovery** (unstable / not reliable):
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board while holding or pressing reset button repeatedly
NOTE: for some Engenius boards TFTP is not reliable
try setting MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software of ECB350 v1 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel size to be no greater than 1536k
and otherwise the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
The factory upgrade script follows the original mtd partitions.
**Note on PLL-data cells:**
The default PLL register values will not work
because of the AR8035 switch between
the SOC and the ethernet port.
For AR724x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from u-boot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`
However the registers that u-boot sets are not ideal and sometimes wrong...
the at803x driver supports setting the RGMII clock/data delay on the PHY side.
This way the pll-data register only needs to handle invert and phase.
for this board no extra adjustements are needed on the MAC side
all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Add support for the ar71xx supported GL.iNet GL-USB150 to ath79.
GL.iNet GL-USB150 is an USB dongle WiFi router, based on Atheros AR9331.
Specification:
- 400/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- Realtek RTL8152B USB to Ethernet bridge (connected with AR9331 PHY4)
- 1T1R 2.4 GHz
- 2x LED, 1x button
- UART header on PCB
Flash instruction:
Vendor software is based on openwrt so you can flash the sysupgrade
image via the vendor GUI or using command line sysupgrade utility.
Make sure to not save configuration over reflash as uci settings
differ between versions.
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
factory.bin was not tested for ECB1750...
but it was tested on it's sister board ECB1200
The product ID for the header can be verified by inspecting
the header of OEM images, or in the u-boot environment.
Also:
- the LAN LED is controlled directly by the AR8035 switch
- the labelled (first increment) MAC for both is ethaddr (eth0)
- list packages in alphabetical order
- use default sysupgrade.bin recipe
Signed-off-by: Michael Pratt <mcpratt@pm.me>
These boards are sister boards
exactly the same hardware except that ECB1200 has:
- QCA9557
- 2 RF circuits/antennas per band instead of 3
- a resistor blocking UART RX line
Tested-by: sven friedmann <sf.openwrt@okay.ms>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-ECB1200
Engenius ECB1200 is an indoor wireless access point with a GbE port,
2.4 GHz and 5 GHz wireless, external antennas, and 802.3af PoE.
**Specification:**
- QCA9557 SOC MIPS, 2.4 GHz (2x2)
- QCA9882 WLAN PCIe card, 5 GHz (2x2)
- AR8035-A switch RGMII, GbE with 802.3af PoE, 25 MHz clock
- 40 MHz reference clock
- 16 MB FLASH 25L12845EMI-10G
- 2x 64 MB RAM 1538ZFZ V59C1512164QEJ25
- UART at JP1 (unpopulated, RX shorted to ground)
- 4 external antennas
- 4 LEDs, 1 button (power, eth, wifi2g, wifi5g) (reset)
**MAC addresses:**
MAC Addresses are labeled as ETH and 5GHZ
U-boot environment has the vendor MAC addresses
MAC addresses in ART do not match vendor
eth0 ETH *:5c u-boot-env ethaddr
phy0 5GHZ *:5d u-boot-env athaddr
---- ---- ???? art 0x0/0x6
**Installation:**
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
(see TFTP recovery)
perform a sysupgrade
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART pinout at JP1
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
Unlike most Engenius boards, this does not have a 'failsafe' image
the only way to return to OEM is TFTP or serial access to u-boot
**TFTP recovery:**
Unlike most Engenius boards, TFTP is reliable here
rename initramfs-kernel.bin to 'ap.bin'
make the file available on a TFTP server at 192.168.1.10
power board while holding or pressing reset button repeatedly
or with serial access:
run `tftpboot` or `run factory_boot` with initramfs-kernel.bin
then `bootm` with the load address
**Format of OEM firmware image:**
The OEM software of ECB1200 is a heavily modified version
of Openwrt Altitude Adjustment 12.09.
This Engenius board, like ECB1750, uses a proprietary header
with a unique Product ID. The header for factory.bin is
generated by the mksenaofw program included in openwrt.
**Note on PLL-data cells:**
The default PLL register values will not work
because of the AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
However the registers that u-boot sets are not ideal and sometimes wrong...
the at803x driver supports setting the RGMII clock/data delay on the PHY side.
This way the pll-data register only needs to handle invert and phase.
for this board clock invert is needed on the MAC side
all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-ESR750H
Engenius ESR600H is an indoor wireless router with a gigabit switch,
2.4 GHz and 5 GHz wireless, internal and external antennas, and a USB port.
**Specification:**
- RT3662F MIPS SOC, 5 GHz WMAC (2x2)
- RT5392L PCI on-board, 2.4 GHz (2x2)
- AR8327 RGMII, 7-port GbE, 25 MHz clock
- 40 MHz reference clock
- 8 MB FLASH 25L6406EM2I-12G
- 64 MB RAM
- UART at J12 (unpopulated)
- 2 internal antennas (5 GHz)
- 2 external antennas (2.4 GHz)
- 9 LEDs, 1 button (power, wps, wifi2g, wifi5g, 5 LAN/WAN)
- USB 2 port (GPIO controlled power)
**MAC addresses:**
MAC Addresses are labeled as WAN and WLAN
U-boot environment has the the vendor MAC address for ethernet
MAC addresses in "factory" are part of wifi calibration data
eth0.2 WAN *:13:e7 u-boot-env wanaddr
eth0.1 ---- *:13:e8 u-boot-env wanaddr + 1
phy0 WLAN *:14:b8 factory 0x8004
phy1 ---- *:14:bc factory 0x4
**Installation:**
Method 1: Firmware upgrade page
OEM webpage at 192.168.0.1
username and password "admin"
Navigate to Network Setting --> Tools --> Firmware
Click Browse and select the factory.dlf image
Click Continue to confirm and wait 6 minutes or more...
Method 2: Serial console to load TFTP image:
(see TFTP recovery)
**Return to OEM:**
Unlike most Engenius boards, this does not have a 'failsafe' image
the only way to return to OEM is serial access to uboot
Unlike most Engenius boards, public images are not available...
so the only way to return to OEM is to have a copy
of the MTD partition "firmware" BEFORE flashing openwrt.
**TFTP recovery:**
Unlike most Engenius boards, TFTP is reliable here
however it requires serial console access
(soldering pins to the UART pinouts)
build your own image...
with 'ramdisk' selected under 'Target Images'
rename initramfs-kernel.bin to 'uImageESR-600H'
make the file available on a TFTP server at 192.168.99.8
interrupt boot by holding or pressing '4' in serial console
as soon as board is powered on
`tftpboot 0x81000000`
`bootm 0x81000000`
perform a sysupgrade
**Format of OEM firmware image:**
This Engenius board uses the Senao proprietary header
with a unique Product ID. The header for factory.bin is
generated by the mksenaofw program included in openwrt.
.dlf file extension is also required for OEM software to accept it
**Note on using OKLI:**
the kernel is now too large for the bootloader to handle
so OKLI is used via the `kernel-loader` image command
recently in master several other ramips boards have the same problem
'Kernel panic - not syncing: Failed to find ralink,rt3883-sysc node'
see commit ad19751edc
Signed-off-by: Michael Pratt <mcpratt@pm.me>
If _machine_hang is not defined on MIPS, the kernel will check if the
CPU can enter a more power efficient sleep mode. Since the realtek
platform supports mips32_r2, this should issue a WAIT instruction
instead of a trivial infinite loop.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Most of Build/elecom-wrc-factory and Build/elecom-wrc-gs-factory are
nearly equal, Unify those definitions by using "-N" option of mkhash and
splitting the appending text at the end of firmware image for WRC-GS/GST
devices.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Incorrect values were used for the switch initialization causing the
lan port leds to not light up in case of 10Mb or 100Mb connections.
This commit fixes this problem and removes unused values.
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
All modifications made by update_kernel.sh run in a fresh clone
without any existing toolchains.
Build system: x86_64
Build-tested: ipq806x/R7800, ath79/generic, bcm27xx/bcm2711
Run-tested: ipq806x/R7800
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
Backport the upstream kernel fix 525b0858ff to get rid of the kernel
messages:
mvebu-gpio xxxxxx.gpio: IRQ index 3 not found
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
The WAN port on Netgear D7800 is unable to connect to an ISP when the
link to the modem is running at less than 1GB.
This patch fixes the issue by removing the phy-handle definition
and replacing it with a fixed-link definition
The WAN port is then able to connect to a modem via a link running at 100Mbs or 10Mbs
Fixes: FS#3086
Signed-off-by: Peter Cardoe <peter@cardoe.co.uk>
The Buffalo Linkstation LS421DE comes with a Ricoh RS5C372A real time
clock. This RTC has the INTRA pin connected to the power management
circuit, allowing to wake up the device from the power off state when an
alarm is scheduled.
Add the "wakeup-source" property in the RTC dts node to allow the use
of the alarm.
Example of use, the device is powered off and it comes to life after 5
minutes:
echo $(expr $(date '+%s') + 60 * 5) > /sys/class/rtc/rtc0/wakealarm
poweroff
This feature isn't available in the stock firmware.
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
The rs5c372 RTC driver has alarm support, but it can't be enabled and only
can handle 24 hours in the future spite the chip is 1 week capable. Provide
these two patches:
- Support alarms up to 1 week
- Let the wakealarm to be used as a wakeup source
This patch makes the alarm wakeup feature to be available in the Buffallo
Linkstation LS421DE (mvebu target) and should also work with any other
device if the hardware has the proper capability.
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
The Buffalo Linkstation LS421DE isn't able to enable the Level 2 cache
(AKA Aurora cache). As of result of this, the throughput is about half of
the expected, e.g when doing network data transfers.
Fix it by adding the broken-idle property in the coherency fabric node.
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
'bootz' expects gziped kernel image anyway, so hard-code it to zImage,
and remove root path from 'load' commands, by default the files are
searched in root directory.
This will make the bootscript static, so the command which modified it
when image was created can now be removed.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Don't hard-code the PTUUID, use U-Boot commands to determine it, as some
partitioning tools could rewrite PTUUID when modifying partitions.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
This chunk got mistakenly removed from 30c95c4, since the get_image_dd
evaluates only first agument, so that check is useless.
Fixes: 30c95c4 ("tegra: sysupgrade: use get_image_dd wrapper")
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
CIFS_STATS is a debugging option. It is not really useful for end users
Signed-off-by: Rosen Penev <rosenp@gmail.com>
[fixed missing config-4.19 file]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Commit "initramfs: switch to tmpfs to fix ujail" switched initramfs to
now use tmpfs, it causes $(rootfs_type) to now return tmpfs when
running initramfs image instead of being empty.
This broke initramfs detection which is required so that when installing
on MikroTik devices firmware partition would first get erased fully
before writing.
So, lets test for $(rootfs_type) returning "tmpfs" instead.
Fixes: 7fd3c68 ("initramfs: switch to tmpfs to fix ujail)
Signed-off-by: Robert Marko <robimarko@gmail.com>
The flash capacity is divided in two flash chips and currently only
first is used. Increase available space for OpenWrt by additional 16 MiB
using mtd-concat driver. Because U-Boot might not be able to load kernel
image spanned through two flash chips, the size of kernel is limited
to space available on first first chip.
Cc: Vladimir Georgievsky <vladimir.georgievsky@yahoo.com>
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
AirTight Networks (later renamed to Mojo Networks) C-75 is a dual-band
access point, also sold by WatchGuard under name AP320.
Specification
SoC: Qualcomm Atheros QCA9550
RAM: 128 MiB DDR2
Flash: 2x 16 MiB SPI NOR
WIFI: 2.4 GHz 3T3R integrated
5 GHz 3T3R QCA9890 oversized Mini PCIe card
Ethernet: 2x 10/100/1000 Mbps QCA8334
port labeled LAN1 is PoE capable (802.3at)
USB: 1x 2.0
LEDs: 7x which two are GPIO controlled, four switch controlled, one
controlled by wireless driver
Buttons: 1x GPIO controlled
Serial: RJ-45 port, Cisco pinout
baud: 115200, parity: none, flow control: none
JTAG: Yes, pins marked J1 on PCB
Installation
1. Prepare TFTP server with OpenWrt initramfs-kernel image.
2. Connect to one of LAN ports.
3. Connect to serial port.
4. Power on the device and when prompted to stop autoboot, hit any key.
5. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
'setenv' to do that, then run following commands:
tftpboot 0x81000000 <openwrt_initramfs-kernel_image_name>
bootm 0x81000000
6. Wait about 1 minute for OpenWrt to boot.
7. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
with:
sysupgrade -n /tmp/<openwrt_sysupgrade_image_name>
8. After flashing, the access point will reboot to OpenWrt. Wait few
minutes, until the Power LED stops blinking, then it's ready for
configuration.
Known issues
Green power LED does not work.
Additional information
The U-Boot fails to initialise ethernet ports correctly when a UART
adapter is attached to UART pins (marked J3 on PCB).
Cc: Vladimir Georgievsky <vladimir.georgievsky@yahoo.com>
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Adjust spelling of vendor names to what is used in other places.
Signed-off-by: Moritz Warning <moritzwarning@web.de>
[improve commit title/message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Adjust spelling of vendor name to what is used in other places.
Also move definition in shared section.
Signed-off-by: Moritz Warning <moritzwarning@web.de>
[improve commit title/message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
These parameters are the same as in vr9.dtsi. This patch removes
redundant parameters.
Signed-off-by: Aleksander Jan Bajkowski <A.Bajkowski@stud.elka.pw.edu.pl>
The PPE only provides a 14 bit hash, however many uses of the skb hash
expect the hash to use the full 32 bit range.
Use jhash to extend the hash to the full size
Signed-off-by: Felix Fietkau <nbd@nbd.name>
phy-mode is already set to rgmii for eth0 and sgmii for eth1 in
qca955x.dtsi, no need to do that again in the device DTS files.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The GL-MT1300 is a high-performance new generation pocket-sized router
that offers a powerful hardware and first-class cybersecurity protocol
with unique and modern design.
Specifications:
- SoC: MT7621A, Dual-Core @880MHz
- RAM: 256 MB DDR3
- Flash: 32 MB
- Ethernet: 3 x 10/100/1000: 2 x LAN + 1 x WAN
- Wireless: 1 x MT7615D Dual-Band 2.4GHz(400Mbps) + 5GHz(867Mbps)
- USB: 1 x USB 3.0 port
- Slot: 1 x MicroSD card slot
- Button: 1 x Reset button
- Switch: 1 x Mode switch
- LED: 1 x Blue LED + 1 x White LED
MAC addresses based on vendor firmware:
WAN : factory 0x4000
LAN : Mac from factory 0x4000 + 1
2.4GHz : factory 0x4
5GHz : Mac form factory 0x4 + 1
Flashing instructions:
1.Connect to one of LAN ports.
2.Set the static IP on the PC to 192.168.1.2.
3.Press the Reset button and power the device (do not release the button).
After waiting for the blue led to flash 5 times, the white led will
come on and release the button.
4.Browse the 192.168.1.1 web page and update firmware according to web
tips.
5.The blue led will flash when the firmware is being upgraded.
6.The blue led stops blinking to indicate that the firmware upgrade is
complete and U-Boot automatically starts the firmware.
For more information on GL-MT1300, see the OFFICIAL GL.iNet website:
https://www.gl-inet.com/products/gl-mt1300/
Signed-off-by: Xinfa Deng <xinfa.deng@gl-inet.com>
[add input-type for switch, wrap long line in 10_fix_wifi_mac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The sub target does not support network and there are not so many users
out there, just mark it as source only, so we do jot have to build it.
The quality is not worse than before, it just does not make much sense
to build this automatically.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Package architecture aarch64_generic [1] can be used just with three
devices. One is NanoPI R2S and then there are two development boards
from NXP. Let's change armvirt/64 to Cortex A53 (aarch64_cortex-a53)
[2]. It has wider support by multiple devices like NanoPI Neo Plus2/Core2,
ESPRESSObin, Pine64, and Raspberry Pi 2&3.
While looking at ARMvirt/32 it has set CPU_TYPE and CPU_SUBTYPE to be
arm_cortex-a15_neon-vfpv4 [3]. It has support to devices like
Linksys EA8500 v1, Linksys EA7500 v1, Netgear D7800, Netgear R7500 and so on.
Tested with:
qemu-system-aarch64 -m 1024 -smp 2 -cpu cortex-a57 -M virt -nographic \
-kernel openwrt-armvirt-64-Image-initramfs
Successfully compiled and booted.
Here goes the output:
root@OpenWrt:/# uname -a
Linux OpenWrt 5.4.82 #0 SMP Sun Dec 13 12:52:10 2020 aarch64 GNU/Linux
root@OpenWrt:/# cat /etc/openwrt_release
DISTRIB_ID='OpenWrt'
DISTRIB_RELEASE='SNAPSHOT'
DISTRIB_REVISION='r15207-96fca0f807'
DISTRIB_TARGET='armvirt/64'
DISTRIB_ARCH='aarch64_cortex-a53'
DISTRIB_DESCRIPTION='OpenWrt SNAPSHOT r15207-96fca0f807'
DISTRIB_TAINTS='no-all'
Also, change BOARDNAME to be the same as it is in armvirt/32.
[1] https://openwrt.org/docs/techref/instructionset/aarch64_generic
[2] https://openwrt.org/docs/techref/instructionset/aarch64_cortex-a53
[3] https://openwrt.org/docs/techref/instructionset/arm_cortex-a15_neon-vfpv4
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
This device has (almost?) identical hardware to the F9J1108 v2 but uses
a different firmware magic and model number.
Specifications:
SoC: QCA9558
CPU: 720 MHz
Flash: 16 MiB NOR
RAM: 128 MiB
WiFi 2.4 GHz: QCA9558-AT4A 3x3 MIMO 802.11b/g/n
WiFi 5 GHz: QCA9880-2R4E 3x3 MIMO 802.11a/n/ac
Ethernet: 4x LAN and 1x WAN (all 1Gbit/s ports)
USB: 1 x USB 2.0 (lower), 1 x USB 3.0 (upper)
MAC addresses based on OEM firmware:
Interface Address Location
--------- ------- --------
lan *:5A sometimes in 0x6
wan *:5B 0x0
2.4Ghz *:5A 0x1002
5Ghz As per mini PCIe EEPROM
Flashing instructions:
The factory.bin can be flashed via the Belkin web UI or via the uboot
HTTP upgrade page (which is by default listening on 192.168.2.1). Once
the factory.bin has been written, sysupgrade.bin will work as usual.
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Belkin F9J1108 v2 and F9K1115 v2 are (seemingly) identical hardware
with different model numbers. Extract all non-device specific code to a
common .dtsi so it can be re-used when adding support for the
F9K1115 v2.
Similar to the .dtsi most of the image building recipe code can be
re-used. Move everything except the device model, edimax header magic
and edimax header model into a shared build recipe.
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
[drop duplicate TARGET_DEVICES, add EDIMAX_* to DEVICE_VARS, edit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This reverts the usage of the S-Tag for separating LAN and WAN port on
the embedded switch. Many users complained about not being able to
manage C-Tag addition / removal on the switch as well as degraded
performance.
Fixes: commit 9da2b56760 ("ipq40xx: fix ethernet vlan double tagging")
Signed-off-by: David Bauer <mail@david-bauer.net>
The ASUS MAP-AC2200 suffers from a lower transmit/receive
signal power as compared to the stock firmware.
Upon investigation, it was discovered that stock firmware from
the GPL_MAP-AC2200_3.0.0.4.384.46249-g97d05bb.tar archive.
set the following GPIOs in "release/src/router/rc/init.c".
GPIO 44 and 46 have to be set to output high
GPIO 45 and 47 have to be set to output low
Here are some results, after activating the relevant
gpios through cmdline:
<https://forum.openwrt.org/t/asus-map-ac2200-low-transmit-receive-signal-5ghz/69005/12>
THX @ slh
Fixes: 9ad3967f14 ("ipq40xx: add support for ASUS Lyra")
Signed-off-by: Yushi Nishida <kyro2man@gmx.net>
[slightly rewritten commit, added missing <>)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This adds DTB to kernel and that way makes it possible to easily boot
initramfs image and also kernel.
The sequence to boot initramfs on Omnia is then just:
env set bootargs earlyprintk console=ttyS0,115200
dhcp 0x1000000 192.168.1.1:openwrt-mvebu-cortexa9-cznic_turris-omnia-initramfs-kernel.bin
bootz 0x1000000
Without this change kernel boot won't proceed and is stuck on "Starting
kernel".
Signed-off-by: Karel Kočí <karel.koci@nic.cz>
[fixed From: to match with SoB:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Cppcheck shows here duplicated break.
Code `state->speed = SPEED_1000;` will be never executed because above
it there is break statement.
Almost identical statement is placed in another realtek driver
18a53d43d6/target/linux/realtek/files-5.4/drivers/net/dsa/rtl83xx/dsa.c (L286-L294)
Signed-off-by: Rafał Mikrut <mikrutrafal@protonmail.com>
Cppcheck shows self initialization error, which is an obvious bug.
Basing on logic of similar fragment below I assigned to this variable,
value `RTL838X_LED_GLB_CTRL` which I think is proper.
Signed-off-by: Rafał Mikrut <mikrutrafal@protonmail.com>
The Netgear DGND3700v1/DGND3800B shows kernel redundant info at the board
message, already provided by the machine info message.
Use the real board name which is silkscreened on the PCB and used in the
stock firmware header.
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
Removed since included upstream and could be reverse-applied by quilt:
backport-5.4/315-v5.10-usbnet-ipeth-fix-connectivity-with-ios-14.patch
Remaining modifications made by update_kernel.sh
Build system: x86_64
Build-tested: ipq806x/R7800, ath79/generic, bcm27xx/bcm2711
Run-tested: ipq806x/R7800
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
Tested-by: Curtis Deptuck <curtdept@me.com> [build/run x86_64]
Innacomm W3400V6 is an xDSL B/G wireless router based on Broadcom BCM6328 SoC.
Hardware:
SoC: Broadcom BCM6328
CPU: BMIPS4350 V8.0, 320 MHz, 1 core
Flash: SPI-NOR 8MB, MX25L6406E
RAM: 64 MB
Ethernet: 4x 10/100 Mbps
Switch: Integrated
Wireless: 802.11b/g, BCM4312
LEDs/Buttons: 9x / 2x
Flash instruction, web UI:
1) Set a static IP on your computer compatible
with 192.168.1.1, i.e 192.168.1.100
2) Connect the ethernet cable from your computer to the router.
3) Make sure the router is powered off.
4) Press the reset button, don't release it yet!
5) While pressing reset, power on the router.
6) Wait 10 seconds or more.
Note: The power LED is red at first then turns to solid
green when ready.
8) Release the reset button.
9) Browse to 192.168.1.1
10) Select .bin file.
10) Upgrade the image.
11) Wait for it to reboot.
Signed-off-by: Sieng Piaw Liew <liew.s.piaw@gmail.com>
[Ammend commit description, merge patches, DT improvements]
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>