realtek: add support for the RTL9300 timer

this adds support for the SoC timer of the RTL9300 chips, it
provides 6 independent timer/counters, of which the first one
is used as a clocksource and the second one as event timer.

Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
This commit is contained in:
Birger Koblitz 2021-01-21 21:38:27 +01:00 committed by Petr Štetiar
parent 03c79ca269
commit 8faffa00cb
4 changed files with 349 additions and 22 deletions

View File

@ -2,7 +2,6 @@ CONFIG_ARCH_32BIT_OFF_T=y
CONFIG_ARCH_CLOCKSOURCE_DATA=y
CONFIG_ARCH_HIBERNATION_POSSIBLE=y
CONFIG_ARCH_MMAP_RND_BITS_MAX=15
CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX=15
CONFIG_ARCH_SUSPEND_POSSIBLE=y
CONFIG_BLK_DEV_RAM=y
CONFIG_BLK_DEV_RAM_COUNT=16
@ -10,6 +9,10 @@ CONFIG_BLK_DEV_RAM_SIZE=4096
CONFIG_CEVT_R4K=y
CONFIG_CLONE_BACKWARDS=y
CONFIG_COMPAT_32BIT_TIME=y
CONFIG_HAVE_CLK=y
CONFIG_CLKDEV_LOOKUP=y
CONFIG_COMMON_CLK=y
CONFIG_COMMON_CLK_BOSTON=y
CONFIG_CONSOLE_LOGLEVEL_DEFAULT=15
CONFIG_CPU_BIG_ENDIAN=y
CONFIG_CPU_GENERIC_DUMP_TLB=y
@ -160,6 +163,7 @@ CONFIG_REGMAP=y
CONFIG_REGMAP_MMIO=y
CONFIG_RESET_CONTROLLER=y
CONFIG_RTL838X=y
CONFIG_RTL9300_TIMER=y
CONFIG_SERIAL_MCTRL_GPIO=y
CONFIG_SERIAL_OF_PLATFORM=y
CONFIG_SFP=y
@ -168,7 +172,7 @@ CONFIG_SPI_MASTER=y
CONFIG_SPI_MEM=y
CONFIG_SPI_RTL838X=y
CONFIG_SRCU=y
CONFIG_SWCONFIG=y
CONFIG_SWAP_IO_SPACE=y
CONFIG_SWPHY=y
CONFIG_SYSCTL_EXCEPTION_TRACE=y
CONFIG_SYS_HAS_CPU_MIPS32_R1=y

View File

@ -11,23 +11,21 @@
#include <linux/console.h>
#include <linux/init.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/of_fdt.h>
#include <asm/addrspace.h>
#include <asm/io.h>
#include <asm/bootinfo.h>
#include <linux/of_fdt.h>
#include <asm/reboot.h>
#include <asm/time.h> /* for mips_hpt_frequency */
#include <asm/time.h>
#include <asm/prom.h>
#include <asm/smp-ops.h>
#include "mach-rtl83xx.h"
extern int rtl838x_serial_init(void);
extern struct rtl83xx_soc_info soc_info;
u32 pll_reset_value;
@ -35,30 +33,109 @@ u32 pll_reset_value;
static void rtl838x_restart(char *command)
{
u32 pll = sw_r32(RTL838X_PLL_CML_CTRL);
/* SoC reset vector (in flash memory): on RTL839x platform preferred way to reset */
void (*f)(void) = (void *) 0xbfc00000;
pr_info("System restart.\n");
if (soc_info.family == RTL8390_FAMILY_ID) {
f();
/* If calling reset vector fails, reset entire chip */
sw_w32(0xFFFFFFFF, RTL839X_RST_GLB_CTRL);
/* If this fails, halt the CPU */
while
(1);
}
pr_info("PLL control register: %x, applying reset value %x\n",
pll, pll_reset_value);
sw_w32(3, RTL838X_INT_RW_CTRL);
sw_w32(pll_reset_value, RTL838X_PLL_CML_CTRL);
sw_w32(0, RTL838X_INT_RW_CTRL);
pr_info("Resetting RTL838X SoC\n");
/* Reset Global Control1 Register */
sw_w32(1, RTL838X_RST_GLB_CTRL_1);
}
static void rtl839x_restart(char *command)
{
/* SoC reset vector (in flash memory): on RTL839x platform preferred way to reset */
void (*f)(void) = (void *) 0xbfc00000;
pr_info("System restart.\n");
/* Reset SoC */
sw_w32(0xFFFFFFFF, RTL839X_RST_GLB_CTRL);
/* and call reset vector */
f();
/* If this fails, halt the CPU */
while
(1);
}
static void rtl930x_restart(char *command)
{
pr_info("System restart.\n");
sw_w32(0x1, RTL930X_RST_GLB_CTRL_0);
while
(1);
}
static void rtl931x_restart(char *command)
{
u32 v;
pr_info("System restart.\n");
sw_w32(1, RTL931X_RST_GLB_CTRL);
v = sw_r32(RTL931X_RST_GLB_CTRL);
sw_w32(0x101, RTL931X_RST_GLB_CTRL);
msleep(15);
sw_w32(v, RTL931X_RST_GLB_CTRL);
msleep(15);
sw_w32(0x101, RTL931X_RST_GLB_CTRL);
}
static void rtl838x_halt(void)
{
pr_info("System halted.\n");
while
(1);
}
static void __init rtl838x_setup(void)
{
pr_info("Registering _machine_restart\n");
_machine_restart = rtl838x_restart;
_machine_halt = rtl838x_halt;
/* This PLL value needs to be restored before a reset and will then be
* preserved over a SoC reset. A wrong value prevents the SoC from
* connecting to the SPI flash controller at boot and reading the
* reset routine */
pll_reset_value = sw_r32(RTL838X_PLL_CML_CTRL);
/* Setup System LED. Bit 15 then allows to toggle it */
sw_w32_mask(0, 3 << 16, RTL838X_LED_GLB_CTRL);
}
static void __init rtl839x_setup(void)
{
pr_info("Registering _machine_restart\n");
_machine_restart = rtl839x_restart;
_machine_halt = rtl838x_halt;
/* Setup System LED. Bit 14 of RTL839X_LED_GLB_CTRL then allows to toggle it */
sw_w32_mask(0, 3 << 15, RTL839X_LED_GLB_CTRL);
}
static void __init rtl930x_setup(void)
{
pr_info("Registering _machine_restart\n");
_machine_restart = rtl930x_restart;
_machine_halt = rtl838x_halt;
if (soc_info.id == 0x9302)
sw_w32_mask(0, 3 << 13, RTL9302_LED_GLB_CTRL);
else
sw_w32_mask(0, 3 << 13, RTL930X_LED_GLB_CTRL);
}
static void __init rtl931x_setup(void)
{
pr_info("Registering _machine_restart\n");
_machine_restart = rtl931x_restart;
_machine_halt = rtl838x_halt;
sw_w32_mask(0, 3 << 12, RTL931X_LED_GLB_CTRL);
}
void __init plat_mem_setup(void)
{
void *dtb;
@ -78,6 +155,21 @@ void __init plat_mem_setup(void)
* parsed resulting in our memory appearing
*/
__dt_setup_arch(dtb);
switch (soc_info.family) {
case RTL8380_FAMILY_ID:
rtl838x_setup();
break;
case RTL8390_FAMILY_ID:
rtl839x_setup();
break;
case RTL9300_FAMILY_ID:
rtl930x_setup();
break;
case RTL9310_FAMILY_ID:
rtl931x_setup();
break;
}
}
void __init plat_time_init(void)
@ -85,6 +177,9 @@ void __init plat_time_init(void)
struct device_node *np;
u32 freq = 500000000;
of_clk_init(NULL);
timer_probe();
np = of_find_node_by_name(NULL, "cpus");
if (!np) {
pr_err("Missing 'cpus' DT node, using default frequency.");
@ -92,11 +187,9 @@ void __init plat_time_init(void)
if (of_property_read_u32(np, "frequency", &freq) < 0)
pr_err("No 'frequency' property in DT, using default.");
else
pr_info("CPU frequency from device tree: %d", freq);
pr_info("CPU frequency from device tree: %dMHz", freq / 1000000);
of_node_put(np);
}
mips_hpt_frequency = freq / 2;
pll_reset_value = sw_r32(RTL838X_PLL_CML_CTRL);
}

View File

@ -0,0 +1,196 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/clockchips.h>
#include <linux/init.h>
#include <asm/time.h>
#include <linux/interrupt.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/sched_clock.h>
#include "timer-of.h"
#include <mach-rtl83xx.h>
/*
* Timer registers
* the RTL9300/9310 SoCs have 6 timers, each register block 0x10 apart
*/
#define RTL9300_TC_DATA 0x0
#define RTL9300_TC_CNT 0x4
#define RTL9300_TC_CTRL 0x8
#define RTL9300_TC_CTRL_MODE BIT(24)
#define RTL9300_TC_CTRL_EN BIT(28)
#define RTL9300_TC_INT 0xc
#define RTL9300_TC_INT_IP BIT(16)
#define RTL9300_TC_INT_IE BIT(20)
// Clocksource is using timer 0, clock event uses timer 1
#define TIMER_CLK_SRC 0
#define TIMER_CLK_EVT 1
#define TIMER_BLK_EVT (TIMER_CLK_EVT << 4)
// Timer modes
#define TIMER_MODE_REPEAT 1
#define TIMER_MODE_ONCE 0
// Minimum divider is 2
#define DIVISOR_RTL9300 2
#define N_BITS 28
static void __iomem *rtl9300_sched_reg __read_mostly;
static u64 notrace rtl9300_sched_clock_read(void)
{
/* pr_info("In %s: %x\n", __func__, readl_relaxed(rtl9300_sched_reg));
dump_stack();*/
return readl_relaxed(rtl9300_sched_reg);
}
static irqreturn_t rtl9300_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *clk = dev_id;
struct timer_of *to = to_timer_of(clk);
u32 v = readl(timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_INT);
// Acknowledge the IRQ
v |= RTL9300_TC_INT_IP;
writel(v, timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_INT);
clk->event_handler(clk);
return IRQ_HANDLED;
}
static void rtl9300_timer_stop(struct timer_of *to)
{
u32 v;
writel(0, timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_CTRL);
// Acknowledge possibly pending IRQ
v = readl(timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_INT);
if (v & RTL9300_TC_INT_IP)
writel(v, timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_INT);
}
static void rtl9300_timer_start(struct timer_of *to, int timer, bool periodic)
{
u32 v = (periodic ? RTL9300_TC_CTRL_MODE : 0) | RTL9300_TC_CTRL_EN | DIVISOR_RTL9300;
writel(v, timer_of_base(to) + timer * 0x10 + RTL9300_TC_CTRL);
}
static int rtl9300_set_next_event(unsigned long delta, struct clock_event_device *clk)
{
struct timer_of *to = to_timer_of(clk);
rtl9300_timer_stop(to);
writel(delta, timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_DATA);
rtl9300_timer_start(to, TIMER_CLK_EVT, TIMER_MODE_ONCE);
return 0;
}
static int rtl9300_set_state_periodic(struct clock_event_device *clk)
{
struct timer_of *to = to_timer_of(clk);
rtl9300_timer_stop(to);
writel(to->of_clk.period, timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_DATA);
rtl9300_timer_start(to, TIMER_CLK_EVT, TIMER_MODE_REPEAT);
return 0;
}
static int rtl9300_set_state_oneshot(struct clock_event_device *clk)
{
struct timer_of *to = to_timer_of(clk);
rtl9300_timer_stop(to);
writel(to->of_clk.period, timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_DATA);
rtl9300_timer_start(to, TIMER_CLK_EVT, TIMER_MODE_ONCE);
return 0;
}
static int rtl9300_set_state_shutdown(struct clock_event_device *clk)
{
struct timer_of *to = to_timer_of(clk);
rtl9300_timer_stop(to);
return 0;
}
static struct timer_of t_of = {
.flags = TIMER_OF_BASE | TIMER_OF_IRQ | TIMER_OF_CLOCK,
.clkevt = {
.name = "rtl9300_timer",
.rating = 350,
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_next_event = rtl9300_set_next_event,
.set_state_oneshot = rtl9300_set_state_oneshot,
.set_state_periodic = rtl9300_set_state_periodic,
.set_state_shutdown = rtl9300_set_state_shutdown,
},
.of_irq = {
.name = "ostimer",
.handler = rtl9300_timer_interrupt,
.flags = IRQF_TIMER,
},
};
static void __init rtl9300_timer_setup(u8 timer)
{
u32 v;
// Disable timer
writel(0, timer_of_base(&t_of) + 0x10 * timer + RTL9300_TC_CTRL);
// Acknowledge possibly pending IRQ
v = readl(timer_of_base(&t_of) + 0x10 * timer + RTL9300_TC_INT);
if (v & RTL9300_TC_INT_IP)
writel(v, timer_of_base(&t_of) + 0x10 * timer + RTL9300_TC_INT);
// Setup maximum period (for use as clock-source)
writel(0x0fffffff, timer_of_base(&t_of) + 0x10 * timer + RTL9300_TC_DATA);
}
static int __init rtl9300_timer_init(struct device_node *node)
{
int err = 0;
unsigned long rate;
pr_info("%s: setting up timer\n", __func__);
err = timer_of_init(node, &t_of);
if (err)
return err;
rate = timer_of_rate(&t_of) / DIVISOR_RTL9300;
pr_info("Frequency in dts: %ld, my rate is %ld, period %ld\n",
timer_of_rate(&t_of), rate, timer_of_period(&t_of));
pr_info("With base %08x IRQ: %d\n", (u32)timer_of_base(&t_of), timer_of_irq(&t_of));
// Configure clock source and register it for scheduling
rtl9300_timer_setup(TIMER_CLK_SRC);
rtl9300_timer_start(&t_of, TIMER_CLK_SRC, TIMER_MODE_REPEAT);
rtl9300_sched_reg = timer_of_base(&t_of) + TIMER_CLK_SRC * 0x10 + RTL9300_TC_CNT;
err = clocksource_mmio_init(rtl9300_sched_reg, node->name, rate , 100, N_BITS,
clocksource_mmio_readl_up);
if (err)
return err;
sched_clock_register(rtl9300_sched_clock_read, N_BITS, rate);
// Configure clock event source
rtl9300_timer_setup(TIMER_CLK_EVT);
clockevents_config_and_register(&t_of.clkevt, rate, 100, 0x0fffffff);
// Enable interrupt
writel(RTL9300_TC_INT_IE, timer_of_base(&t_of) + TIMER_BLK_EVT + RTL9300_TC_INT);
return err;
}
TIMER_OF_DECLARE(rtl9300_timer, "realtek,rtl9300-timer", rtl9300_timer_init);

View File

@ -0,0 +1,34 @@
--- a/drivers/clocksource/Kconfig
+++ b/drivers/clocksource/Kconfig
@@ -126,6 +126,15 @@
help
Enables the support for the RDA Micro timer driver.
+config RTL9300_TIMER
+ bool "Clocksource/timer for the Realtek RTL9300 family of SoCs"
+ depends on MIPS
+ select COMMON_CLK
+ select TIMER_OF
+ select CLKSRC_MMIO
+ help
+ Enables support for the Realtek RTL9300 timer driver.
+
config SUN4I_TIMER
bool "Sun4i timer driver" if COMPILE_TEST
depends on HAS_IOMEM
@@ -695,5 +704,4 @@
select IRQ_DOMAIN
help
Support for the timer/counter unit of the Ingenic JZ SoCs.
-
endmenu
--- a/drivers/clocksource/Makefile
+++ b/drivers/clocksource/Makefile
@@ -61,6 +61,7 @@
obj-$(CONFIG_SPRD_TIMER) += timer-sprd.o
obj-$(CONFIG_NPCM7XX_TIMER) += timer-npcm7xx.o
obj-$(CONFIG_RDA_TIMER) += timer-rda.o
+obj-$(CONFIG_RTL9300_TIMER) += timer-rtl9300.o
obj-$(CONFIG_ARC_TIMERS) += arc_timer.o
obj-$(CONFIG_ARM_ARCH_TIMER) += arm_arch_timer.o