Commit Graph

504 Commits

Author SHA1 Message Date
Jan-Niklas Burfeind
5cc0535800 ath79: add support for onion omega
The Onion Omega is a hardware development platform with built-in WiFi.

https://onioniot.github.io/wiki/

Specifications:
 - QCA9331 @ 400 MHz (MIPS 24Kc Big-Endian Processor)
 - 64MB of DDR2 RAM running at 400 MHz
 - 16MB of on-board flash storage
 - Support for USB 2.0
 - Support for Ethernet at 100 Mbps
 - 802.11b/g/n WiFi at 150 Mbps
 - 18 digital GPIOs
 - A single Serial UART
 - Support for SPI
 - Support for I2S

Flash instructions:
The device is running OpenWrt upon release using the ar71xx target.
Both a sysupgrade
and uploading the factory image using u-boots web-UI do work fine.

Depending on the ssh client, it might be necessary to enable outdated
KeyExchange methods e.g. in the clients ssh-config:

Host 192.168.1.1
        KexAlgorithms +diffie-hellman-group1-sha1

The stock credentials are: root onioneer

For u-boots web-UI manually configure `192.168.1.2/24` on your computer,
connect to `192.168.1.1`.

MAC addresses as verified by OEM firmware:
2G       phy0      label
LAN      eth0      label - 1

LAN is only available in combination with an optional expansion dock.

Based on vendor acked commit:
commit 5cd49bb067 ("ar71xx: add support for Onion Omega")

Partly reverts:
commit fc553c7e4c ("ath79: drop unused/incomplete dts")

Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
(cherry picked from commit d98738b5c1)
2021-09-01 00:20:08 +02:00
Vincent Wiemann
a5850c049e ath79: add support for Joy-IT JT-OR750i
Specifications:
 * QCA9531, 16 MiB flash (Winbond W25Q128JVSQ), 128 MiB RAM
 * 802.11n 2T2R (external antennas)
 * QCA9887, 802.11ac 1T1R (connected with diplexer to one of the antennas)
 * 3x 10/100 LAN, 1x 10/100 WAN
 * UART header with pinout printed on PCB

Installation:
 * The device comes with a bootloader installed only
 * The bootloader offers DHCP and is reachable at http://10.123.123.1
 * Accept the agreement and flash sysupgrade.bin
 * Use Firefox if flashing does not work

TFTP recovery with static IP:
 * Rename sysupgrade.bin to jt-or750i_firmware.bin
 * Offer it via TFTP server at 192.168.0.66
 * Keep the reset button pressed for 4 seconds after connecting power

TFTP recovery with dynamic IP:
 * Rename sysupgrade.bin to jt-or750i_firmware.bin
 * Offer it via TFTP server with a DHCP server running at the same address
 * Keep the reset button pressed for 6 seconds after connecting power

Co-authored-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Vincent Wiemann <vincent.wiemann@ironai.com>
(cherry picked from commit 55b4b36552)
2021-07-29 20:50:41 +02:00
Denis Kalashnikov
88e1c9b0b5 ath79: add support for MikroTik RouterBOARD 912UAG-2HPnD
This board has been supported in the ar71xx.

Links:
* https://mikrotik.com/product/RB912UAG-2HPnD
* https://openwrt.org/toh/hwdata/mikrotik/mikrotik_rb912uag-2hpnd

This also supports the 5GHz flavour of the board.

Hardware:
* SoC: Atheros AR9342,
* RAM: DDR 64MB,
* SPI NOR: 64KB,
* NAND: 128MB,
* Ethernet: x1 10/100/1000 port with passive POE in,
* Wi-Fi: 802.11 b/g/n,
* PCIe,
* USB: 2.0 EHCI controller, connected to mPCIe slot and a Type-A
  port -- both can be used for LTE modem, but only one can be
  used at any time.
* LEDs: 5 general purpose LEDs (led1..led5), power LED, user LED,
  Ethernet phy LED,
* Button,
* Beeper.

Not working:
* Button: it shares gpio line 15 with NAND ALE and NAND IO7,
  and current drivers doesn't easily support this configuration,
* Beeper: it is connected to bit 5 of a serial shift register
  (tested with sysfs led trigger timer). But kmod-gpio-beeper
  doesn't work -- we left this as is for now.

Flashing:
* Use the RouterBOARD Reset button to enable TFTP netboot,
boot kernel and initramfs and then perform sysupgrade.
* From ar71xx OpenWrt firmware run:
  $ sysupgrade -F /tmp/<sysupgrade.bin>
For more info see: https://openwrt.org/toh/mikrotik/common.

Co-Developed-by: Koen Vandeputte <koen.vandeputte@citymesh.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: Denis Kalashnikov <denis281089@gmail.com>
(cherry-picked from commit 695a1cd53c)
2021-07-09 17:14:01 +02:00
Michael Pratt
02b7b77332 ath79: set lzma-loader variables to null by default
This fixes a small regression where the lzma-loader variable values
are being shared between boards that require different configurations.

If not set to "" globally, a device without these settings will just take
the last values another device has set before in the queue.

Fixes: 1b8bd17c2d ("ath79: lzma-loader: allow setting custom kernel magic")
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[add detailed explanation to the commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit bf8c16dfa2)
2021-06-11 07:20:31 +02:00
Michael Pratt
a97f4f3b29 ath79: add factory.bin for ALLNET ALL-WAP02860AC
This device is a Senao-based product
using hardware and software from Senao
with the tar-gz platform for factory.bin
and checksum verification at boot time
using variables stored in uboot environment
and a 'failsafe' image when it fails.

Extremely similar hardware/software to Engenius EAP1200H
and other Engenius APs with qca955x

Tested-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
(cherry picked from commit 37ea5d9a65)
2021-06-11 07:20:31 +02:00
Michael Pratt
e823fb1763 ath79: add Senao 'failsafe' sysupgrade procedure
Use a similar upgrade method for sysupgrade.bin, like factory.bin,
for Senao boards with the tar.gz OEM upgrade platform,
and 'failsafe' image which is loaded on checksum failure.

This is inspired by the OEM upgrade script /etc/fwupgrade.sh
and the existing platforms for dual-boot Senao boards.

Previously, if the real kernel was damaged or missing
the only way to recover was with UART serial console,
because the OKLI lzma-loader is programmed to halt.

uboot did not detect cases where kernel or rootfs is damaged
and boots OKLI instead of the failsafe image,
because the checksums stored in uboot environment
did not include the real kernel and rootfs space.

Now, the stored checksums include the space for both
the lzma-loader, kernel, and rootfs.
Therefore, these boards are now practically unbrickable.

Also, the factory.bin and sysupgrade.bin are now the same,
except for image metadata.
This allows for flashing OEM image directly from openwrt
as well as flashing openwrt image directly from OEM.

Make 'loader' partition writable so that it can be updated
during a sysupgrade.

tested with
ENS202EXT v1
EAP1200H
EAP350 v1
EAP600
ECB350 v1
ECB600
ENH202 v1

Signed-off-by: Michael Pratt <mcpratt@pm.me>
(cherry picked from commit d5035f0d26)
2021-06-11 07:20:31 +02:00
Michael Pratt
642c88714c ath79: adjust ath79/tiny Senao APs to 4k blocksize
ath79/tiny kernel config has
CONFIG_MTD_SPI_NOR_USE_4K_SECTORS=y
from commit
05d35403b2

Because of this, these changes are required for 2 reasons:

1.

Senao devices in ath79/tiny
with a 'failsafe' partition and the tar.gz sysupgrade platform
and a flash chip that supports 4k sectors
will fail to reboot to openwrt after a sysupgrade.

the stored checksum is made with the 64k blocksize length
of the image to be flashed,
and the actual checksum changes after flashing due to JFFS2 space
being formatted within the length of the rootfs from the image

example:
0x440000 length of kernel + rootfs (from sysupgrade.bin)
0x439000 offset of rootfs_data (from kernel log)

2.

for boards with flash chips that support 4k sectors:
saving configuration over sysupgrade is not possible
because sysupgrade.tgz is appended at a 64k boundary
and the mtd parser starts JFFS2 at a 4k boundary.

for boards with flash chips that do not support 4k sectors:
partitioning with 4k boundaries causes a boot loop
from the mtd parser not finding kernel and rootfs.

Also:

Some of the Senao boards that belong in ath79/tiny,
for example ENH202,
have a flash chip that does not support 4k sectors
(no SECT_4K symbol in upstream source).

Because of this, partitioning must be different for these devices
depending on the flash chip model detected by the kernel.

Therefore:

this creates 2 DTSI files
to replace the single one with 64k partitioning
for 4k and 64k partitioning respectively.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
(cherry picked from commit a58cb22bbe)
2021-06-11 07:20:31 +02:00
Michael Pratt
64d845ef02 ath79: remove 'fakeroot' for Senao devices
By using the same custom kernel header magic
in both OKLI lzma-loader, DTS, and makefile
this hack is not necessary anymore

However, "rootfs" size and checksum
must now be supplied by the factory.bin image
through a script that is accepted by the OEM upgrade script.

This is because Senao OEM scripts assume a squashfs header exists
at the offset for the original "rootfs" partition
which is actually the kernel + rootfs in this implementation,
and takes size value from the header that would be there with hexdump,
but this offset is now the uImage header instead.

This frees up 1 eraseblock
previously used by the "fakeroot" partition
for bypassing the OEM image verification.

Also, these Senao devices with a 'failsafe' partition
and the tar-gz factory.bin platform would otherwise require
flashing the new tar-gz sysupgrade.bin afterward.
So this also prevents having to flash both images
when starting from OEM or 'failsafe'

the OEM upgrade script verifies the header magic numbers,
but only the first two bytes.
Example:

    [ "${magic_word_kernel}" = "2705" ] &&
    [ "${magic_word_rootfs}" = "7371" -o "${magic_word_rootfs}" = "6873" ] &&
    errcode="0"

therefore picked the magic number
0x73714f4b
which is
'sqOK'

Signed-off-by: Michael Pratt <mcpratt@pm.me>
(cherry picked from commit 4a0cc5d4ef)
2021-06-11 07:20:31 +02:00
Michael Pratt
1f6ec4b29e ath79: lzma-loader: allow setting custom kernel magic
...and max flash offset

The mtdsplit parser was recently refactored
to allow the kernel to have custom image header magic.

Let's also do this for the lzma-loader

For example:
When implemented together,
this allows the kernel to "appear" to be a rootfs
by OEM software in order to write an image
that is actually kernel + rootfs.

At the same time,
it would boot to openwrt normally
by setting the same magic in DTS.

Both of the variables
have a default value that is unchanged
when not defined in the makefiles

This has no effect on the size of the loader
when lzma compressed.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
(cherry picked from commit 1b8bd17c2d)
2021-06-11 07:20:31 +02:00
Michael Pratt
a1b2815b52 ath79: rename 'engenius' Makefile definitions to 'senao'
These recipes and definitions can apply
to devices from other vendors
with PCB boards or SDK produced by Senao
not only the brand Engenius

possible examples:
Extreme Networks, WatchGuard, OpenMesh,
Fortinet, ALLNET, OCEDO, Plasma Cloud, devolo, etc.

so rename all of these items
and move DEVICE_VENDOR from common to generic/tiny.mk

Signed-off-by: Michael Pratt <mcpratt@pm.me>
(cherry picked from commit 70bf4a979c)
2021-06-11 07:20:31 +02:00
Adrian Schmutzler
ec8fe0a189 treewide: make AddDepends/usb-serial selective
Make packages depending on usb-serial selective, so we do not have
to add kmod-usb-serial manually for every device.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit 9397b22df1)
2021-06-08 22:50:32 +02:00
Roger Pueyo Centelles
a524a0dff8 ath79: mikrotik: enable SFP on RB922UAGS-5HPaCD
This patch enables the SFP cage on the MikroTik RouterBOARD 922UAGS-5HPacD.

GPIO16 (tx-disable-gpios) should be governed by the SFP driver to enable
or disable transmission, but no change is observed. Therefore, it is
left as output high to ensure the SFP module is forced to transmit.

Tested on a RouterBOARD 922UAGS-5HPacD board, with a CISCO GLC-LH-SMD
1310nm module and an unbranded GLC-T RJ45 Gigabit module. PC=>router
iperf3 tests deliver 440/300 Mbps up/down, both via regular eth0 port
or SFP port with RJ45 module. Bridge between eth0 and eth1 delivers
950 Mbps symmetric.

Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
(cherry picked from commit 4387fe00cb)
2021-04-30 10:26:34 +02:00
Mauri Sandberg
e8cbdbbe97 ath79: Add support for Buffalo WZR-HP-G300NH
This device is a wireless router working on 2.4GHz band based on
Qualcom/Atheros AR9132 rev 2 SoC and is accompanied by Atheros AR9103
wireless chip and Realtek RTL8366RB/S switches. Due to two different
switches being used also two different devices are provided.

  Specification:
  - 400 MHz CPU
  - 64 MB of RAM
  - 32 MB of FLASH (NOR)
  - 3x3:2 2.4 GHz 802.11bgn
  - 5x 10/100/1000 Mbps Ethernet
  - 4x LED, 3x button, On/Off slider, Auto/On/Off slider
  - 1x USB 2.0
  - bare UART header place on PCB

  Flash instruction:
  - NOTE: Pay attention to the switch variant and choose the image to
    flash accordingly. (dmesg / kernel logs can tell it)
  - Methods for flashing
    - Apply factory image in OEM firmware web-gui.
    - Sysupgrade on top of existing OpenWRT image
    - U-Boot TFPT recovery for both stock or OpenWRT images:
      The device U-boot contains a TFTP server that by default has
      an address 192.168.11.1 (MAC 02:AA:BB:CC:DD:1A). During the boot
      there is a time window, during which the device allows an image to
      be uploaded from a client with address 192.168.11.2. The image will
      be written on flash automatically.

      1) Have a computer with static IP address 192.168.11.2 and the
         router device switched off.
      2) Connect the LAN port next to the WAN port in the device and the
         computer using a network switch.
      3) Assign IP 192.168.11.1 the MAC address 02:AA:BB:CC:DD:1A
         arp -s 192.168.11.1 02:AA:BB:CC:DD:1A
      4) Initiate an upload using TFTP image variant
         curl -T <imagename> tftp://192.168.11.1
      5) Switch on the device. The image will be uploaded subsequently.
         You can keep an eye on the diag light on the device, it should
         keep on blinking for a while indicating the writing of the image.

  General notes:
  - In the stock firmware the MAC address is the same among all
    interfaces so it is left here that way too.

  Recovery:
  - TFTP method
  - U-boot serial console

  Differences to ar71xx platform
  - This device is split in two different targets now due to hardware
    being a bit different under the hood. Dynamic solution within the same
    image is left for later time.
  - GPIOs for a sliding On/Off switch, marked 'Movie engine' on the device
    cover, were the wrong way around and were renamed qos_on -> movie_off,
    qos_off -> movie_on. Associated key codes remained the same they were.

  The device tree source code is mostly based on musashino's work

Signed-off-by: Mauri Sandberg <sandberg@mailfence.com>
(cherry picked from commit bc356de285)
2021-03-27 07:47:07 +01:00
Paul Fertser
25d6af98d0 ath79: fix factory image generation for Netgear and Zyxel boards
The factory images need to embed specific IDs to pass verification with
the OEM firmware (including TFTP recovery), so they need to be
per-device variables.

Fixes: ab1584a797 ("ath79: netgear: trim down uImage customisations")
Fixes: 459c8c9ef8 ("ath79: add support for ZyXEL NBG6616")
Reported-by: Marcin Juszkiewicz <marcin-openwrt@juszkiewicz.com.pl>
Signed-off-by: Paul Fertser <fercerpav@gmail.com>
[minor commit message adjustments, sort DEVICE_VARS]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-14 19:21:38 +01:00
Sebastian Schaper
dc4745da7a ath79: add support for D-Link DAP-3662 A1
Specifications:
 * QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R
 * QCA9882, 802.11ac 2T2R
 * 2x Gigabit LAN (1x 802.11af PoE)
 * IP68 pole-mountable outdoor case

Installation:
 * Factory Web UI is at 192.168.0.50
   login with 'admin' and blank password, flash factory.bin
 * Recovery Web UI is at 192.168.0.50
   connect network cable, hold reset button during power-on and keep it
   pressed until uploading has started (only required when checksum is ok,
   e.g. for reverting back to oem firmware), flash factory.bin

After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.

Both ethernet ports are set to LAN by default, matching the labelling on
the case. However, since both GMAC Interfaces eth0 and eth1 are connected
to the switch (QCA8337), the user may create an additional 'wan' interface
as desired and override the vlan id settings to map br-lan / wan to either
the PoE or non-PoE port, depending on the individual scenario of use.

So, the LAN and WAN ports would then be connected to different GMACs, e.g.

config interface 'lan'
	option ifname 'eth0.1'
	...

config interface 'wan'
	option ifname 'eth1.2'
	...

config switch_vlan
        option device 'switch0'
        option vlan '1'
        option ports '1 0t'

config switch_vlan
        option device 'switch0'
        option vlan '2'
        option ports '2 6t'

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
[add configuration example]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-09 13:10:33 +01:00
Martin Kennedy
55d2db0e8c ath79: add support for Meraki MR12
Port device support for Meraki MR12 from the ar71xx target to ath79.

Specifications:

  - SoC: AR7242-AH1A CPU
  - RAM: 64MiB (NANYA NT5DS32M16DS-5T)
  - NOR Flash: 16MiB (MXIC MX25L12845EMI-10G)
  - Ethernet: 1 x PoE Gigabit Ethernet Port (SoC MAC + AR8021-BL1E PHY)
  - Ethernet: 1 x 100Mbit port (SoC MAC+PHY)
  - Wi-Fi: Atheros AR9283-AL1A (2T2R, 11n)

Installation:

  1. Requires TFTP server at 192.168.1.101, w/ initramfs & sysupgrade .bins
  2. Open shell case
  3. Connect a USB->TTL cable to headers furthest from the RF shield
  4. Power on the router; connect to U-boot over 115200-baud connection
  5. Interrupt U-boot process to boot Openwrt by running:
       setenv bootcmd bootm 0xbf0a0000; saveenv;
       tftpboot 0c00000 <filename-of-initramfs-kernel>.bin;
       bootm 0c00000;
  6. Copy sysupgrade image to /tmp on MR12
  7. sysupgrade /tmp/<filename-of-sysupgrade>.bin

Notes:

  - kmod-owl-loader is still required to load the ART partition into the
    driver.

  - The manner of storing MAC addresses is updated from ar71xx; it is
    at 0x66 of the 'config' partition, where it was discovered that the
    OEM firmware stores it. This is set as read-only. If you are
    migrating from ar71xx and used the method mentioned above to
    upgrade, use kmod-mtd-rw or UCI to add the MAC back in. One more
    method for doing this is described below.

  - Migrating directly from ar71xx has not been thoroughly tested, but
    one method has been used a couple of times with good success,
    migrating 18.06.2 to a full image produced as of this commit. Please
    note that these instructions are only for experienced users, and/or
    those still able to open their device up to flash it via the serial
    headers should anything go wrong.

    1) Install kmod-mtd-rw and uboot-envtools
    2) Run `insmod mtd-rw.ko i_want_a_brick=1`
    3) Modify /etc/fw_env.config to point to the u-boot-env partition.
       The file /etc/fw_env.config should contain:

       # MTD device   env offset  env size    sector size
       /dev/mtd1      0x00000     0x10000     0x10000

       See https://openwrt.org/docs/techref/bootloader/uboot.config
       for more details.

    4) Run `fw_printenv` to verify everything is correct, as per the
       link above.
    5) Run `fw_setenv bootcmd bootm 0xbf0a0000` to set a new boot address.
    6) Manually modify /lib/upgrade/common.sh's get_image function:
       Change ...

       cat "$from" 2>/dev/null | $cmd

       ... into ...

       (
         dd if=/dev/zero bs=1 count=$((0x66)) ; # Pad the first 102 bytes
         echo -ne '\x00\x18\x0a\x12\x34\x56'  ; # Add in MAC address
         dd if=/dev/zero bs=1 count=$((0x20000-0x66-0x6)) ; # Pad the rest
         cat "$from" 2>/dev/null
       ) | $cmd

       ... which, during the upgrade process, will pad the image by
       128K of zeroes-plus-MAC-address, in order for the ar71xx's
       firmware partition -- which starts at 0xbf080000 -- to be
       instead aligned with the ath79 firmware partition, which
       starts 128K later at 0xbf0a0000.

    7) Copy the sysupgrade image into /tmp, as above
    8) Run `sysupgrade -F /tmp/<sysupgrade>.bin`, then wait

    Again, this may BRICK YOUR DEVICE, so make *sure* to have your
    serial cable handy.

Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[add LED migration and extend compat message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-05 16:56:08 +01:00
David Bauer
51f578efa5 ath79: add support for Ubiquiti UniFi AP Outdoor+
Hardware
--------
Atheros AR7241
16M SPI-NOR
64M DDR2
Atheros AR9283 2T2R b/g/n
2x Fast Ethernet (built-in)

Installation
------------

Transfer the Firmware update to the device using SCP.

Install using fwupdate.real -m <openwrt.bin> -d

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-02-01 00:47:46 +01:00
INAGAKI Hiroshi
0071c7cd82 build: add elecom-product-header for ELECOM devices
A header used in ELECOM WRC-300GHBK2-I and WRC-1750GHBK2-I/C is also
used in ELECOM WRC-2533GHBK-I, so split the code to generate the header
and move it to image-commands.mk to use from ramips target.

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
2021-01-29 15:28:12 +01:00
Michael Pratt
96017a6013 ath79: add support for Senao Engenius EAP1200H
FCC ID: A8J-EAP1200H

Engenius EAP1200H is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

**Specification:**

  - QCA9557 SOC
  - QCA9882 WLAN	PCI card, 5 GHz, 2x2, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16FG
  - UART at J10		populated
  - 4 internal antenna plates (5 dbi, omni-directional)
  - 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset)

**MAC addresses:**

  MAC addresses are labeled as ETH, 2.4G, and 5GHz
  Only one Vendor MAC address in flash

  eth0 ETH  *:a2 art 0x0
  phy1 2.4G *:a3 ---
  phy0 5GHz *:a4 ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  2 ways to flash factory.bin from OEM:

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Firmware Upgrade" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will brick the device
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot
  execute tftpboot and bootm 0x81000000

  NOTE: TFTP is not reliable due to bugged bootloader
  set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software of EAP1200H is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-ar71xx-generic-eap1200h-uImage-lzma.bin
    openwrt-ar71xx-generic-eap1200h-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  Newer EnGenius software requires more checks but their script
  includes a way to skip them, otherwise the tar must include
  a text file with the version and md5sums in a deprecated format.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2021-01-23 12:53:22 +01:00
Adrian Schmutzler
f52081bcf9 treewide: provide global default for SUPPORTED_DEVICES
The majority of our targets provide a default value for the variable
SUPPORTED_DEVICES, which is used in images to check against the
compatible on a running device:

  SUPPORTED_DEVICES := $(subst _,$(comma),$(1))

At the moment, this is implemented in the Device/Default block of
the individual targets or even subtargets. However, since we
standardized device names and compatible in the recent past, almost
all targets are following the same scheme now:

  device/image name:  vendor_model
  compatible:         vendor,model

The equal redundant definitions are a symptom of this process.

Consequently, this patch moves the definition to image.mk making it
a global default. For the few targets not using the scheme above,
SUPPORTED_DEVICES will be defined to a different value in
Device/Default anyway, overwriting the default. In other words:
This change is supposed to be cosmetic.

This can be used as a global measure to get the current compatible
with: $(firstword $(SUPPORTED_DEVICES))
(Though this is not precisely an achievement of this commit.)

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-23 12:45:21 +01:00
Sven Eckelmann
0988e03f0e ath79: Add support for OpenMesh MR1750 v2
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 21:41:26 +01:00
Sven Eckelmann
ae7680dc4b ath79: Add support for OpenMesh MR1750 v1
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, apply shared DTSI/device node, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 21:41:26 +01:00
Adrian Schmutzler
bcb311497d ath79: consolidate common definitions for OpenMesh devices
The shared image definitions for OpenMesh devices are currently
organized based on device families. This introduces some duplicate
code, as the image creation code is mostly the same for those.

This patch thus derives two basic shared definitions that work for
all devices and only requires a few variables to be moved back to
the device definitions.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 21:41:25 +01:00
Sven Eckelmann
31172e53f9 ath79: Add support for OpenMesh MR900 v2
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 15:39:36 +01:00
Sven Eckelmann
e06c9eec5d ath79: Add support for OpenMesh MR900 v1
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 15:39:36 +01:00
Sven Eckelmann
d9a3af46d8 ath79: Add support for OpenMesh MR600 v2
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 8x GPIO-LEDs (6x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 15:39:36 +01:00
Sven Eckelmann
4b35999588 ath79: Add support for OpenMesh MR600 v1
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 4x GPIO-LEDs (2x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, make WLAN LEDs consistent, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 15:39:36 +01:00
Russell Senior
591a4c9ed3 ath79: Add support for Ubiquiti Bullet AC
CPU:         Atheros AR9342 rev 3 SoC
RAM:         64 MB DDR2
Flash:       16 MB NOR SPI
WLAN 2.4GHz: Atheros AR9342 v3 (ath9k)
WLAN 5.0GHz: QCA988X
Ports:       1x GbE

Flashing procedure is identical to other ubnt devices.
https://openwrt.org/toh/ubiquiti/common

Flashing through factory firmware
1. Ensure firmware version v8.7.0 is installed.
   Up/downgrade to this exact version.
2. Patch fwupdate.real binary using
   `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe 27/00 00 00 00/g' | \
    hexdump -R > /tmp/fwupdate.real`
3. Make the patched fwupdate.real binary executable using
   `chmod +x /tmp/fwupdate.real`
4. Copy the squashfs factory image to /tmp on the device
5. Flash OpenWrt using `/tmp/fwupdate.real -m <squashfs-factory image>`
6. Wait for the device to reboot
(copied from Ubiquiti NanoBeam AC and modified)

Flashing from serial console
1. Connect serial console (115200 baud)
2. Connect ethernet to a network with a TFTP server, through a
   passive PoE injector.
3. Press a key to obtain a u-boot prompt
4. Set your TFTP server's ip address, with:
   setenv serverip <tftp-server-address>
5. Set the Bullet AC's ip address, with:
   setenv ipaddr <bullet-ac-address>
6. Set the boot file, with:
   setenv bootfile <name-of-initramfs-binary-on-tftp-server>
7. Fetch the binary with tftp:
   tftpboot
8. Boot the initramfs binary:
   bootm
9. From the initramfs, fetch the sysupgrade binary, and flash it with
   sysupgrade.

The Bullet AC is identified as a 2WA board by Ubiquiti. As such, the UBNT_TYPE
must match from the "Flashing through factory firmware" install instructions
to work.

Phy0 is QCA988X which can tune either band (2.4 or 5GHz). Phy1 is AR9342,
on which 5GHz is disabled.  It isn't currently known whether phy1 is
routed to the N connector at all.

Signed-off-by: Russell Senior <russell@personaltelco.net>
2021-01-15 18:32:38 +01:00
Michael Pratt
0070650df4 ath79: move small-flash Engenius boards to tiny
This moves some of the Engenius boards from generic to tiny:

 - EAP350 v1
 - ECB350 v1
 - ENH202 v1

For these, factory.bin builds are already failing on master
branch because of the unique situation for these boards:

 - 8 MB flash
 - an extra "failsafe" image for recovery
 - TFTP does not work (barely possible with 600 MTU)
 - bootloader loads image from a longer flash offset
 - 1 eraseblock each needed for OKLI kernel loader and fake rootfs
 - using mtd-concat to make use of remaining space...

The manual alternative would be removing the failsafe partition.
However this comes with the risk of extremely difficult recovery
if a flash ever fails because TFTP on the bootloader is bugged.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[improve commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-07 19:51:50 +01:00
Sebastian Schaper
8ae2ee99c6 ath79: add support for D-Link DAP-3320 A1
Specifications:
 * QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R
 * 10/100 Ethernet Port, 802.11af PoE
 * IP55 pole-mountable outdoor case

Installation:
 * Factory Web UI is at 192.168.0.50
   login with 'admin' and blank password, flash factory.bin
 * Recovery Web UI is at 192.168.0.50
   connect network cable, hold reset button during power-on and keep it
   pressed until uploading has started (only required when checksum is ok,
   e.g. for reverting back to oem firmware), flash factory.bin

After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2021-01-04 01:09:32 +01:00
Sebastian Schaper
5b58710fad ath79: add support for D-Link DAP-2680 A1
Specifications:
 * QCA9558, 16 MiB Flash, 256 MiB RAM, 802.11n 3T3R
 * QCA9984, 802.11ac Wave 2 3T3R
 * Gigabit LAN Port (AR8035), 802.11at PoE

Installation:
 * Factory Web UI is at 192.168.0.50
   login with 'admin' and blank password, flash factory.bin
 * Recovery Web UI is at 192.168.0.50
   connect network cable, hold reset button during power-on and keep it
   pressed until uploading has started (only required when checksum is ok,
   e.g. for reverting back to oem firmware), flash factory.bin

After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2021-01-04 01:09:32 +01:00
Sebastian Schaper
b077accb9c ath79: add support for D-Link DAP-2230 A1
Specifications:
 * QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R
 * 10/100 Ethernet Port, 802.11af PoE

Installation:
 * Factory Web UI is at 192.168.0.50
   login with 'admin' and blank password, flash factory.bin
 * Recovery Web UI is at 192.168.0.50
   connect network cable, hold reset button during power-on and keep it
   pressed until uploading has started (only required when checksum is ok,
   e.g. for reverting back to oem firmware), flash factory.bin

After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2021-01-04 01:09:32 +01:00
Sven Eckelmann
80713657b2 ath79: Add support for OpenMesh OM5P
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

WAN/LAN LEDs appear to be wrong in ar71xx and have been swapped here.

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[add LED swap comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-30 23:32:07 +01:00
Sven Eckelmann
ff9e48e75c ath79: Add support for OpenMesh OM2P v2
Device specifications:
======================

* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* external antenna

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-30 23:32:07 +01:00
Sven Eckelmann
eb3a5ddba0 ath79: Add support for OpenMesh OM2P-LC
Device specifications:
======================

* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-30 23:32:07 +01:00
Sven Eckelmann
75900a25ed ath79: add support for OpenMesh OM2P-HS v3
Device specifications:
======================

* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-29 00:03:26 +01:00
Sven Eckelmann
f096accce2 ath79: add support for OpenMesh OM2P-HS v2
Device specifications:
======================

* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-29 00:03:26 +01:00
Sven Eckelmann
a462412977 ath79: add support for OpenMesh OM2P-HS v1
Device specifications:
======================

* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[drop redundant status from eth1]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-29 00:03:26 +01:00
Sven Eckelmann
5b37b52e69 ath79: Add support for OpenMesh OM2P-HS v4
Device specifications:
======================

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-28 19:37:24 +01:00
Sven Eckelmann
dd1d95cb03 ath79: Add support for OpenMesh OM2P v4
Device specifications:
======================

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + Label: Ethernet 1
    + 24V passive POE (mode B)
  - eth1
    + Label: Ethernet 2
    + 802.3af POE
    + builtin switch port 1
* 12-24V 1A DC
* external antenna

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[wrap two very long lines, fix typo in comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-28 19:37:24 +01:00
Adrian Schmutzler
2160a9d597 ath79: remove duplicate sysupgrade.bin for dlink_dap-2xxx
sysupgrade.bin has been added to IMAGES twice, resulting in
warnings like:

Makefile:86: warning: overriding recipe for target
  '[...]/tmp/openwrt-ath79-generic-dlink_dap-2660-a1-squashfs-sysupgrade.bin'
Makefile:86: warning: ignoring old recipe for target
  '[...]/tmp/openwrt-ath79-generic-dlink_dap-2660-a1-squashfs-sysupgrade.bin'

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-28 00:41:51 +01:00
Adrian Schmutzler
9d96b6fb72 ath79/mikrotik: disable building NAND images
The current support for MikroTik NAND-based devices relies on a
gross hack that packs the kernel into a static YAFFS stub, as the
stock bootloader only supports booting a YAFFS-encapsulated kernel.

The problem with this approach is that since the kernel partition is
blindly overwritten without any kind of wear or badblock management
(due to lack of proper support for YAFFS in OpenWRT), the NAND flash
is not worn uniformly and eventually badblocks appear, leading to
unbootable devices.

This issue has been reported here [1] and discussed in more detail
here [2].

[1] https://forum.openwrt.org/t/rb433-bad-sector-cannot-start-openwrt/71519
[2] https://github.com/openwrt/openwrt/pull/3026#issuecomment-673597461

Until a proper fix is found (or the stock bootloader supports other
filesystems), we disable building these images to prevent unknowing
users from risking their devices.

Thanks to Thibaut Varène for summarizing the details above.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-27 20:33:57 +01:00
Michael Pratt
33d26a9a40 ath79: add support for Senao Engenius EAP350 v1
FCC ID: U2M-EAP350

Engenius EAP350 is a wireless access point with 1 gigabit PoE ethernet port,
2.4 GHz wireless, external ethernet switch, and 2 internal antennas.

Specification:

  - AR7242 SOC
  - AR9283 WLAN			(2.4 GHz, 2x2, PCIe on-board)
  - AR8035-A switch		(GbE with 802.3af PoE)
  - 40 MHz reference clock
  - 8 MB FLASH			MX25L6406E
  - 32 MB RAM			EM6AA160TSA-5G
  - UART at J2			(populated)
  - 3 LEDs, 1 button		(power, eth, 2.4 GHz) (reset)
  - 2 internal antennas

MAC addresses:

  MAC address is labeled as "MAC"
  Only 1 address on label and in flash
  The OEM software reports these MACs for the ifconfig

  eth0	MAC	*:0c	art 0x0
  phy0	---	*:0d	---

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.10.1
    username and password "admin"
    Navigate to "Upgrade Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9f670000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of EAP350 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-eap350-uImage-lzma.bin
    openwrt-senao-eap350-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh

  Later models in the EAP series likely have a different platform
  and the upgrade and image verification process differs.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1024k
  and the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035-A switch between
  the SOC and the ethernet PHY chips.

  For AR724x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  uboot did not have a good value for 1 GBps
  so it was taken from other similar DTS file.

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-25 10:38:13 +01:00
Michael Pratt
6c98edaae2 ath79: add support for Senao Engenius EAP600
FCC ID: A8J-EAP600

Engenius EAP600 is a wireless access point with 1 gigabit ethernet port,
dual-band wireless, external ethernet switch, 4 internal antennas
and 802.3af PoE.

Specification:

  - AR9344 SOC			(5 GHz, 2x2, WMAC)
  - AR9382 WLAN			(2.4 GHz, 2x2, PCIe on-board)
  - AR8035-A switch		(GbE with 802.3af PoE)
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 2x 64 MB RAM		NT5TU32M16DG
  - UART at H1			(populated)
  - 5 LEDs, 1 button		(power, eth, 2.4 GHz, 5 GHz, wps) (reset)
  - 4 internal antennas

MAC addresses:

  MAC addresses are labeled MAC1 and MAC2
  The MAC address in flash is not on the label
  The OEM software reports these MACs for the ifconfig

  eth0	MAC 1	*:5e	---
  phy1	MAC 2	*:5f	---	(2.4 GHz)
  phy0	-----	*:60	art 0x0	(5 GHz)

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Upgrade Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fdf0000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of EAP600 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-eap600-uImage-lzma.bin
    openwrt-senao-eap600-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh

  Later models in the EAP series likely have a different platform
  and the upgrade and image verification process differs.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035-A switch between
  the SOC and the ethernet PHY chips.

  For AR934x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  Unfortunately uboot did not have the best values
  so they were taken from other similar DTS files.

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-25 10:38:13 +01:00
Michael Pratt
4a55ef639d ath79: add support for Senao Engenius ECB600
FCC ID: A8J-ECB600

Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port,
dual-band wireless, external ethernet switch, and 4 external antennas.

Specification:

  - AR9344 SOC			(5 GHz, 2x2, WMAC)
  - AR9382 WLAN			(2.4 GHz, 2x2, PCIe on-board)
  - AR8035-A switch		(GbE with 802.3af PoE)
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 2x 64 MB RAM		NT5TU32M16DG
  - UART at H1			(populated)
  - 4 LEDs, 1 button		(power, eth, 2.4 GHz, 5 GHz) (reset)
  - 4 external antennas

MAC addresses:

  MAC addresses are labeled MAC1 and MAC2
  The MAC address in flash is not on the label
  The OEM software reports these MACs for the ifconfig

  phy1	MAC 1	*:52	---	(2.4 GHz)
  phy0	MAC 2	*:53	---	(5 GHz)
  eth0	-----	*:54	art 0x0

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Upgrade Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fdf0000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of ECB600 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-ecb600-uImage-lzma.bin
    openwrt-senao-ecb600-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh

  Later models in the ECB series likely have a different platform
  and the upgrade and image verification process differs.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035-A switch between
  the SOC and the ethernet PHY chips.

  For AR934x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  Unfortunately uboot did not have the best values
  so they were taken from other similar DTS files.

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-25 10:38:13 +01:00
Sven Wegener
57e6f3ae65 ath79: update image command for Plasma Cloud PA300
Commit 5fc28ef479 ("ath79: Add support for Plasma Cloud PA300")
added the IMAGE/sysupgrade.bin/squashfs definition, which leaks into
other devices, resulting in sysupgrade.bin images that are actually
tarballs and do not boot when directly written to flash.

We can use the normal sysupgrade.bin command variable for this device.

Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
[fix format, spelling]
Signed-off-by: David Bauer <mail@david-bauer.net>
2020-12-25 01:57:01 +01:00
Michael Pratt
4d0c442a0a ath79: expand factory.bin support for some Senao Engenius boards
Newer EnGenius software that still uses the tar.gz platform
  instead of the custom header requires more checks for upgrading,
  but their script includes a way to skip them...
  the existence of a file in the tar.gz called failsafe.bin

  Their upgrade script has these lines:

  \#pass check when upload with full image file
  [ "${errcode}" -eq "1" ] && [ -f failsafe.bin ] && errcode="0"

  This overrides the script's "errcode" variable
  which can be set if any of the following actions/checks fail:

  - untarring of the upload

  - magic number for kernel: "2705"

  - magic num for rootfs: "7371" or "6873"

  - md5sums for each file in the format
	filename:md5

  - existence of a file matching FWINFO*
	that it has boardname in the name somewhere (grep)
	that the 4th field of separator "-" is at least 3 (version)

  Otherwise we would need to generate md5sums in this strange format
  and touch a file with specific requirements in the name.

  This does not effect boards where the advanced checks do not apply.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
[fixed SoB to match From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2020-12-22 19:11:50 +01:00
Michael Pratt
fe2f53f21c ath79: add support for Senao Engenius EnStationAC v1
FCC ID: A8J-ENSTAC

Engenius EnStationAC v1 is an outdoor wireless access point/bridge with
2 gigabit ethernet ports on 2 external ethernet switches,
5 GHz only wireless, internal antenna plates, and proprietery PoE.

Specification:

  - QCA9557 SOC
  - QCA9882 WLAN		(PCI card, 5 GHz, 2x2, 26dBm)
  - AR8035-A switch		(RGMII GbE with PoE+ IN)
  - AR8031 switch		(SGMII GbE with PoE OUT)
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 2x 64 MB RAM		NT5TU32M16FG
  - UART at J10			(unpopulated)
  - internal antenna plates	(19 dbi, directional)
  - 7 LEDs, 1 button		(power, eth, wlan, RSSI) (reset)

MAC addresses:

  MAC addresses are labeled as ETH and 5GHz
  Vendor MAC addresses in flash are duplicate

  eth0	ETH	*:d3	art 0x0/0x6
  eth1	----	*:d4	---
  phy0	5GHz	*:d5	---

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

TFTP recovery:

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board
  hold or press reset button repeatedly

  NOTE: for some Engenius boards TFTP is not reliable
  try setting MTU to 600 and try many times

Format of OEM firmware image:

  The OEM software of EnStationAC is a heavily modified version
  of Openwrt Altitude Adjustment 12.09. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-ar71xx-enstationac-uImage-lzma.bin
    openwrt-ar71xx-enstationac-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  Newer EnGenius software requires more checks but their script
  includes a way to skip them, otherwise the tar must include
  a text file with the version and md5sums in a deprecated format.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8033 switch between
  the SOC and the ethernet PHY chips.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  For eth0 at 1000 speed, the value returned was
  ae000000 but that didn't work, so following
  the logical pattern from the rest of the values,
  the guessed value of a3000000 works better.

  later discovered that delay can be placed on the PHY end only
  with phy-mode as 'rgmii-id' and set register to 0x82...

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
[fixed SoB to match From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2020-12-22 19:11:50 +01:00
Sebastian Schaper
8ec997d006 ath79: add support for D-Link DAP-2660 A1
Specifications:
 * QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R
 * QCA9882, 802.11ac 2T2R
 * Gigabit LAN Port (AR8035), 802.11af PoE

Installation:
 * Factory Web UI is at 192.168.0.50
   login with 'admin' and blank password, flash factory.bin
 * Recovery Web UI is at 192.168.0.50
   connect network cable, hold reset button during power-on and keep it
   pressed until uploading has started (only required when checksum is ok,
   e.g. for reverting back to oem firmware), flash factory.bin

After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2020-12-22 19:11:50 +01:00
Roman Kuzmitskii
491ae3357e ath79: add support for Ubiquiti airCube AC
The Ubiquiti Network airCube AC is a cube shaped device supporting
2.4 GHz and 5 GHz with internal 2x2 MIMO antennas.
It can be powered with either one of:
 - 24v power supply with 3.0mm x 1.0mm barrel plug
 - 24v passive PoE on first LAN port
There are four 10/100/1000 Mbps ports (1 * WAN + 3 * LAN).
First LAN port have optional PoE passthrough to the WAN port.

SoC:       Qualcomm / Atheros AR9342
RAM:       64 MB DDR2
Flash:     16 MB SPI NOR
Ethernet:  4x 10/100/1000 Mbps (1 WAN + 3 LAN)
LEDS:      1x via a SPI controller (not yet supported)
Buttons:   1x Reset
Serial:    1x (only RX and TX); 115200 baud, 8N1

Missing features:
 - LED control is not supported

Physical to internal switch port mapping:
 - physical port #1 (poe in) = switchport 2
 - physical port #2 = switchport 3
 - physical port #3 = switchport 5
 - physical port #4 (wan/poe out) = switchport 4

Factory update is tested and is the same as for Ubiquiti AirCube ISP
hence the shared configuration between that devices.

Signed-off-by: Roman Kuzmitskii <damex.pp@icloud.com>
2020-12-22 19:11:50 +01:00