Commit Graph

28 Commits

Author SHA1 Message Date
Alexander Couzens
d4c460648d
ipq40xx: add support for Mikrotik wAP R ac / LTE / LTE6
The Mikrotik wAP R AC is an outdoor, dual band, dual radio (802.11ac) AP
with a miniPCIe slot for a LTE modem.
The wAP R AC is similar to the wAP AC but with the miniPCIe slot.
The wAP R AC requires installing a LTE modem.
The wAP LTE and wAP LTE6 comes with a LTE modem installed.

See https://mikrotik.com/product/wap_r_ac for more info.

Specifications:
- SoC: Qualcomm Atheros IPQ4018
- CPU: 4x ARM Cortex A7
- RAM: 128MB
- Storage: 16MB NOR flash
- Wireless:
   - Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, internal antenna
   - Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, internal antenna
- Ethernet: Built-in IPQ4018 (SoC, QCA8075) , 2x 1000/100/10 ports
  one with 802.3af/at PoE in
- 1x Mini PCI-E port (USB2)

Installation:
Boot the initramfs image via TFTP, then flash the sysupgrade image using
sysupgrade. Details at https://openwrt.org/toh/mikrotik/common.

Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2022-11-27 13:28:22 +00:00
Sven Eckelmann
087a8e39be ipq40xx: utilize nvmem-cells for openmesh,a62
The calibration data and mac addresses on this device are stored in the
0:ART partition. It is therefore possible to move the code to handle them
directly to the devicetree instead of the various scripts.

But the actual relevant information about the partition layout is provided
by the bootloader via bootargs (mtdparts) and not via the devicetree
itself. Instead of using a fixed-partition template, the mtd dynamic
partitions support from the upstream kernel is used.

Reported-by: Robert Marko <robert.marko@sartura.hr>
Reviewed-by: Robert Marko <robimarko@gmail.com>
Tested-by: Michaël BILCOT <michael.bilcot@gmail.com>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-11-12 18:15:55 +01:00
Sven Eckelmann
2b2f14c959 ipq40xx: utilize nvmem-cells for openmesh,a42
The calibration data and mac addresses on this device are stored in the
0:ART partition. It is therefore possible to move the code to handle them
directly to the devicetree instead of the various scripts.

But the actual relevant information about the partition layout is provided
by the bootloader via bootargs (mtdparts) and not via the devicetree
itself. Instead of using a fixed-partition template, the mtd dynamic
partitions support from the upstream kernel is used.

Reported-by: Robert Marko <robert.marko@sartura.hr>
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-11-12 18:15:55 +01:00
Sven Eckelmann
c6bef1b83a ipq40xx: Convert openmesh,a62 to DSA
* ethernet1:

  - physical port label "Ethernet 1"
  - can be used to power the device
  - its mac address is printed on the device label

* ethernet2:

  - physical port label "Ethernet 2"

Both ports are not marked by there role (because the vendor firmware
automatically detects roles) but the "Ethernet 1" port was used in the past
for "WAN" functionality in OpenWrt.

Reviewed-by: Robert Marko <robimarko@gmail.com>
Tested-by: Michaël BILCOT <michael.bilcot@gmail.com>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-11-12 18:15:55 +01:00
Sven Eckelmann
66a3c32b47 ipq40xx: Convert openmesh,a42 to DSA
* ethernet1:

  - physical port label "Ethernet 1"
  - can be used to power the device
  - its mac address is printed on the device label

* ethernet2:

  - physical port label "Ethernet 2"

Both ports are not marked by there role (because the vendor firmware
automatically detects roles) but the "Ethernet 1" port was used in the past
for "WAN" functionality in OpenWrt.

Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-11-12 18:15:55 +01:00
Chen Minqiang
3505933073 ipq40xx: convert to DSA and enable asus,rt-ac42u
This convert board asus,rt-ac42u to DSA and re-enable it

Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
2022-10-22 20:09:58 +08:00
Mark Mentovai
9a8e008188 ipq40xx: Convert mikrotik,wap-ac to DSA
As done previously, this preserves the MAC addresses of they physical
Ethernet ports. The interfaces are renamed as eth0 is in use for the
native GMAC; the new interface naming matches the physical port labels.
 - sw-eth1 corresponds to the physical port labeled ETH1 and has the
   base MAC address. This port can be used to power the device.
 - sw-eth2 corresponds to the physical port labeled ETH2 and has a MAC
   address one greater than the base.

As this device has 2 physical ports, they are each connected to their
respective PHYs, allowing the link status to be visible to software.
Since they are not marked on the case with any role (such as LAN or
WAN), both are bridged to the lan network by default, although this can
easily be changed if needed.

Signed-off-by: Mark Mentovai <mark@mentovai.com>
2022-10-19 22:58:12 +02:00
Lech Perczak
b9b4c51b2b ipq40xx: Meraki MR33: convert MAC addresses to nvmem
This fixes assigning random MAC to br-lan interface upon boot.
While at that, rename at24@50 node to eeprom@50, to align with upstream
device tree style.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-10-02 23:04:39 +02:00
Robert Marko
550253bdf9 ipq40xx: convert some boards to DSA
Convert IPQ40xx boards to DSA setup.

Signed-off-by: Leon M. George <leon@georgemail.eu>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: Nick Hainke <vincent@systemli.org>
Signed-off-by: ChunAm See <z1250747241@gmail.com>
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
Signed-off-by: Andrew Sim <andrewsimz@gmail.com>
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2022-10-02 23:04:39 +02:00
David Bauer
e16a0e7e88 ipq40xx: add support for Extreme Networks WS-AP3915i
Hardware
--------
Qualcomm IPQ4029 WiSoC
2T2R 802.11 abgn
2T2R 802.11 nac
Macronix MX25L25635E SPI-NOR (32M)
512M DDR3 RAM
1x Gigabit LAN
1x Cisco RJ-45 Console port
Settings: 115200 8N1

Installation
------------

1. Attach to the Console port. Power up the device and press the s key
   to interrupt autoboot.

2. The default username / password to the bootloader is admin / new2day

3. Update the bootcommand to allow loading OpenWrt.

   $ setenv ramboot_openwrt "setenv serverip 192.168.1.66;
     setenv ipaddr 192.168.1.1; tftpboot 0x86000000 openwrt-3915.bin;
     bootm"
   $ setenv boot_openwrt "sf probe;
     sf read 0x88000000 0x280000 0xc00000; bootm 0x88000000"
   $ setenv bootcmd "run boot_openwrt"
   $ saveenv

4. Download the OpenWrt initramfs image. Serve it using a TFTP server as
   "openwrt-3915.bin" at 192.1681.66.

5. Download & boot the OpenWrt initramfs image on the access point.

   $ run ramboot_openwrt

6. Wait for OpenWrt to start.

7. Download and transfer the sysupgrade image to the device using e.g.
   SCP.

8. Install OpenWrt to the device using "sysupgrade"

   $ sysupgrade -n /path/to/openwrt.bin

Signed-off-by: David Bauer <mail@david-bauer.net>
2022-09-06 02:55:05 +02:00
Mark Mentovai
7f54bf6fe2
ipq40xx: add MikroTik wAP ac (RBwAPG-5HacD2HnD) support
The MikroTik wAP ac (RBwAPG-5HacD2HnD) is a dual-band dual-radio
802.11ac wireless access point with integrated antenna and two Ethernet
ports in a weatherproof enclosure. See
https://mikrotik.com/product/wap_ac for more information.

Important: this is the new ipq40xx-based wAP ac, not the older
ath79-based wAP ac (RBwAPG-5HacT2HnD), already supported in OpenWrt.

Specifications:
 - SoC: Qualcomm Atheros IPQ4018
 - CPU: 4x ARM Cortex A7
 - RAM: 128MB
 - Storage: 16MB NOR flash
 - Wireless
    - 2.4GHz: Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 2.5 dBi antennae
    - 5GHz: Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 2.5 dBi antennae
 - Ethernet: Built-in IPQ4018 (SoC, QCA8075), 2x 1000/100/10Mb/s ports,
   one with 802.3af/at PoE in

Installation:
Boot the initramfs image via TFTP, then flash the sysupgrade image using
sysupgrade. Details at https://openwrt.org/toh/mikrotik/common.

Notes:
This preserves the MAC addresses of the physical Ethernet ports:
 - eth0 corresponds to the physical port labeled ETH1 and has the base
   MAC address. This port can be used to power the device.
 - eth1 corresponds to the physical port labeled ETH2 and has a MAC
   address one greater than the base.

MAC addresses are set from /lib/preinit/05_set_iface_mac_ipq40xx.sh
rather than /etc/board.d/02_network so that they are in effect for
preinit. This should likely be done for other MikroTik devices and
possibly other non-MikroTik devices as well.

As this device has 2 physical ports, they are each connected to their
respective PHYs, allowing the link status to be visible to software.
Since they are not marked on the case with any role (such as LAN or
WAN), both are bridged to the lan network by default, although this can
easily be changed if needed.

Signed-off-by: Mark Mentovai <mark@mentovai.com>
2022-07-18 01:45:47 +02:00
Matthew Hagan
811538ab22 ipq40xx: add support for Meraki MR74
The Meraki MR74 is part of the "Insect" series. This device is
essentially an outdoor variant of the MR33 with identical hardware, but
requiring a config@3 DTS option to be set to allow booting with the
stock u-boot.

The install procedure is replicated from the MR33, with the exception
being that the MR74 sysupgrade image must be used.

Signed-off-by: Matthew Hagan <mnhagan88@gmail.com>
2022-06-19 12:31:02 +02:00
Joshua Roys
51b9aef553 ipq40xx: add support for ASUS RT-ACRH17/RT-AC42U
SOC:	IPQ4019
CPU:	Quad-core ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d
DRAM:	256 MB
NAND:	128 MiB Macronix MX30LF1G18AC
ETH:	Qualcomm Atheros QCA8075 Gigabit Switch (4x LAN, 1x WAN)
USB:	1x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1:	Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2x2:2
WLAN2:	Qualcomm Atheros QCA9984 5GHz 802.11nac 4x4:4
INPUT:	1x WPS, 1x Reset
LEDS:	Status, WIFI1, WIFI2, WAN (red & blue), 4x LAN

This board is very similar to the RT-ACRH13/RT-AC58U. It must be flashed
with an intermediary initramfs image, the jffs2 ubi volume deleted, and
then finally a sysupgrade with the final image performed.

Signed-off-by: Joshua Roys <roysjosh@gmail.com>
(added ALT0)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-01-15 17:21:01 +01:00
Christian Lamparter
d641a60478 ipq40xx: nvmem cells for EZVIZ CS-W3-WD1200G EUP
introduce nvmem pre-cal + mac-address cells for both Wifis
and ethernet on the EZVIZ CS-W3-WD1200G EUP. This is one of
the few devices in which the correct mac adress is already
at the right place for Wifi, so no separate nvmem cell is
needed.

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-12-04 00:36:47 +01:00
Adrian Schmutzler
fac6096ad6 ipq40xx: add missing case closing symbol
Though not strictly necessary, add the closing symbol to make the
job easier for future developers editing this file.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-06-28 01:06:08 +02:00
Adrian Schmutzler
6f648ed7e6 treewide: remove "+" sign for increment with macaddr_add
Many people appear to use an unneeded "+" prefix for the increment
when calculating a MAC address with macaddr_add. Since this is not
required and used inconsistently [*], just remove it.

[*] As a funny side-fact, copy-pasting has led to almost all
    hotplug.d files using the "+", while nearly all of the
    02_network files are not using it.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-06-05 23:54:37 +02:00
Stefan Schake
d3c8881194 ipq40xx: add support for devolo Magic 2 WiFi next
SOC:     IPQ4018 / QCA Dakota
CPU:     Quad-Core ARMv7 Processor rev 5 (v71) Cortex-A7
DRAM:    256 MiB
NOR:     32 MiB
ETH:     Qualcomm Atheros QCA8075 (2 ports)
PLC:     MaxLinear G.hn 88LX5152
WLAN1:   Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2:   Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT:   RESET, WiFi, PLC Button
LEDS:    red/white home, white WiFi

To modify a retail device to run OpenWRT firmware:
1) Setup a TFTP server on IP address 192.168.0.100 and copy the OpenWRT
   initramfs (initramfs-fit-uImage.itb) to the TFTP root as 'uploadfile'.
2) Power on the device while pressing the recessed reset button next to
   the Ethernet ports. This causes the bootloader to retrieve and start
   the initramfs.
3) Once the initramfs is booted, the device will come up with IP
   192.168.1.1. You can then connect through SSH (allow some time for
   the first connection).
4) On the device shell, run 'fw_printenv' to show the U-boot environment.
   Backup this information since it contains device unique factory data.
5) Change the boot command to support booting OpenWRT:
   # fw_setenv bootcmd 'sf probe && sf read 0x84000000 0x180000 0x400000 && bootm'
6) Change directory to /tmp, download the sysupgrade (e.g. through wget)
   and install it with sysupgrade. The device will reboot into OpenWRT.

Notice that there is currently no support for booting the G.hn chip.
This requires userland software we lack the rights to share right now.

Signed-off-by: Stefan Schake <stefan.schake@devolo.de>
2020-12-22 20:55:40 +01:00
Hans Geiblinger
a9071d02b5 ipq40xx: Add support for Linksys MR8300 (Dallas)
The Linksys MR8300 is based on QCA4019 and QCA9888
and provides three, independent radios.
NAND provides two, alternate kernel/firmware images
with fail-over provided by the OEM U-Boot.

Hardware Highlights:

SoC: IPQ4019 at 717 MHz (4 CPUs)
RAM: 512MB RAM

SoC:	Qualcomm IPQ4019 at 717 MHz (4 CPUs)
RAM:	512M DDR3
FLASH:	256 MB NAND (Winbond W29N02GV, 8-bit parallel)
ETH:	Qualcomm QCA8075 (4x GigE LAN, 1x GigE Internet Ethernet Jacks)
BTN:	Reset and WPS
USB:	USB3.0, single port on rear with LED
SERIAL:	Serial pads internal (unpopulated)
LED:	Four status lights on top + USB LED
WIFI1:	2x2:2 QCA4019 2.4 GHz radio on ch. 1-14
WIFI2:  2x2:2 QCA4019 5 GHz radio on ch. 36-64
WIFI3:  2x2:2 QCA9888 5 GHz radio on ch. 100-165

Support is based on the already supported EA8300.
Key differences:
	EA8300 has 256MB RAM where MR8300 has 512MB RAM.
	MR8300 has a revised top panel LED setup.

Installation:
"Factory" images may be installed directly through the OEM GUI using
URL: https://ip-of-router/fwupdate.html (Typically 192.168.1.1)

Signed-off-by: Hans Geiblinger <cybrnook2002@yahoo.com>
[copied Hardware-highlights from EA8300. Fixed alphabetical order.
fixed commit subject, removed bogus unit-address of keys,
fixed author (used Signed-off-By to From:) ]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-09-25 19:31:51 +02:00
Adrian Schmutzler
0b1cdb7eea treewide: remove empty default cases
There is no apparent reason to have an empty default case.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-17 12:46:19 +02:00
Adrian Schmutzler
48c1fdd046 treewide: drop shebang from non-executable target files
This drops the shebang from all target files for /lib and
/etc/uci-defaults folders, as these are sourced and the shebang
is useless.

While at it, fix the executable flag on a few of these files.

This does not touch ar71xx, as this target is just used for
backporting now and applying cosmetic changes would just complicate
things.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-06-16 14:26:33 +02:00
Steven Lin
a736d912e2 ipq40xx: add support for EnGenius EAP2200
SOC:    IPQ4019 / QCA Dakota
CPU:    Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM:   256 MiB
FLASH:  NOR 4 MiB + NAND 128 MiB
ETH:    Qualcomm Atheros QCA8072
WLAN1:  Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2:2x2
WLAN2:  Qualcomm Atheros QCA4019 5GHz 802.11a/n/ac 2:2x2
WLAN2:  Qualcomm Atheros QCA9888 5GHz 802.11a/n/ac 2:2x2
INPUT:  WPS Button
LEDS:   Power, LAN1, LAN2, WLAN 2.4GHz, WLAN 5GHz-1, WLAN 5GHz-2, OPMODE

1. Load Ramdisk via U-Boot

To set up the flash memory environment, do the following:
a. As a preliminary step, ensure that the board console port is connected to the PC using these RS232 parameters:
   * 115200bps
   * 8N1
b. Confirm that the PC is connected to the board using one of the Ethernet ports.
c. Set a static ip 192.168.99.8 for Ethernet that connects to board.
d. The PC must have a TFTP server launched and listening on the interface to which the board is connected.
e. At this stage power up the board and, after a few seconds, press 4 and then any key during the countdown.

U-BOOT> set serverip 192.168.99.9 && tftpboot 0x84000000 192.168.99.8:openwrt.itb && bootm

Signed-off-by: Steven Lin <steven.lin@senao.com>
[copied 4.19 dts to 5.4]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-02-28 22:29:10 +01:00
Tom Brouwer
2090b8af0a ipq40xx: add support for EZVIZ CS-W3-WD1200G EUP
Hardware:
SOC:    Qualcomm IPQ4018
RAM:	128 MB Nanya NT5CC64M16GP-DI
FLASH:  16 MB Macronix MX25L12805D
ETH:    Qualcomm QCA8075 (4 Gigabit ports, 3xLAN, 1xWAN)
WLAN:   Qualcomm IPQ4018 (2.4 & 5 Ghz)
BUTTON: Shared WPS/Reset button
LED:    RGB Status/Power LED
SERIAL: Header J8 (UART, Left side of board). Numbered from
        top to bottom:
        (1) GND, (2) TX, (3) RX, (4) VCC (White triangle
        next to it).
        3.3v, 115200, 8N1

Tested/Working:
* Ethernet
* WiFi (2.4 and 5GHz)
* Status LED
* Reset Button (See note below)

Implementation notes:
* The shared WPS/Reset button is implemented as a Reset button
* I could not find a original firmware image to reverse engineer, meaning
currently it's not possible to flash OpenWrt through the Web GUI.

Installation (Through Serial console & TFTP):
1. Set your PC to fixed IP 192.168.1.12, Netmask 255.255.255.0, and connect to
one of the LAN ports
2. Rename the initramfs image to 'C0A8010B.img' and enable a TFTP server on
your pc, to serve the image
2. Connect to the router through serial (See connection properties above)
3. Hit a key during startup, to pause startup
4. type `setenv serverip 192.168.1.12`, to set the tftp server address
5. type `tftpboot`, to load the image from the laptop through tftp
6. type `bootm` to run the loaded image from memory
6. (If you want to return to stock firmware later, create an full MTD backup,
e.g. using instructions here https://openwrt.org/docs/guide-user/installation/generic.backup#create_full_mtd_backup)
7. Transfer the 'sysupgrade' OpenWrt firmware image from PC to router, e.g.:
`scp xxx-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/upgrade.bin`
8. Run sysupgrade to permanently install OpenWrt to flash: `sysupgrade -n /tmp/upgrade.bin`

Revert to stock:
To revert to stock, you need the MTD backup from step 6 above:
1. Unpack the MTD backup archive
2. Transfer the 'firmware' partition image to the router (e.g. mtd8_firmware.backup)
3. On the router, do `mtd write mtd8_firmware.backup firmware`

Signed-off-by: Tom Brouwer <tombrouwer@outlook.com>
[removed BOARD_NAME, OpenWRT->OpenWrt, changed LED device name to board name]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-01-12 15:57:58 +01:00
David Bauer
102c8c55f2 ipq40xx: add support for Aruba AP-303
Hardware
--------

SoC:   Qualcomm IPQ4029
RAM:   512M DDR3
FLASH: - 128MB NAND (Macronix MX30LF1G18AC)
       - 4MB SPI-NOR (Macronix MX25R3235F)
TPM:   Atmel AT97SC3203
BLE:   Texas Instruments CC2540T
       attached to ttyMSM0
ETH:   Atheros AR8035
LED:   WiFi (amber / green)
       System (red / green)
BTN:   Reset

To connect to the serial console, you can solder to the labled pads next
to the USB port or use your Aruba supplied UARt adapter.

Do NOT plug a standard USB cable into the Console labled USB-port!
Aruba/HPE simply put UART on the micro-USB pins. You can solder yourself
an adapter cable:

VCC - NC
 D+ - TX
 D- - RX
GND - GND

The console setting in bootloader and OS is 9600 8N1. Voltage level is
3.3V.

To enable a full list of commands in the U-Boot "help" command, execute
the literal "diag" command.

Installation
------------

1. Get the OpenWrt initramfs image. Rename it to ipq40xx.ari and put it
   into the TFTP server root directory. Configure the TFTP server to
   be reachable at 192.168.1.75/24. Connect the machine running the TFTP
   server to the ethernet port of the access point.

2. Connect to the serial console. Interrupt autobooting by pressing
   Enter when prompted.

3. Configure the bootargs and bootcmd for OpenWrt.
   $ setenv bootargs_openwrt "setenv bootargs console=ttyMSM1,9600n8"
   $ setenv nandboot_openwrt "run bootargs_openwrt; ubi part aos1;
     ubi read 0x85000000 kernel; bootm 0x85000000"
   $ setenv ramboot_openwrt "run bootargs_openwrt;
     setenv ipaddr 192.168.1.105; setenv serverip 192.168.1.75;
     netget; set fdt_high 0x87000000; bootm"
   $ setenv bootcmd "run nandboot_openwrt"
   $ saveenv

4. Load OpenWrt into RAM:
   $ run ramboot_openwrt

5. After OpenWrt booted, transfer the OpenWrt sysupgrade image to the
   /tmp folder on the device.

6. Flash OpenWrt:
   $ ubidetach -p /dev/mtd1
   $ ubiformat /dev/mtd1
   $ sysupgrade -n /tmp/openwrt-sysupgrade.bin

To go back to the stock firmware, simply reset the bootcmd in the
bootloader to the original value:

  $ setenv bootcmd "boot"
  $ saveenv

Signed-off-by: David Bauer <mail@david-bauer.net>
2019-12-20 17:48:52 +01:00
Adrian Schmutzler
75bfc393ba treewide: convert MAC address location offsets to hexadecimal
This changes the offsets for the MAC address location in
mtd_get_mac_binary* and mtd_get_mac_text to hexadecimal notation.

This will be much clearer for the reader when numbers are big, and
will also match the style used for mtd-mac-address in DTS files.

(e.g. 0x1006 and 0x5006 are much more useful than 4102 and 20486)

Acked-by: Alexander Couzens <lynxis@fe80.eu>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2019-08-14 12:10:12 +02:00
Jeff Kletsky
819e7946b0 ipq40xx: Add support for Linksys EA8300 (Dallas)
The Linksys EA8300 is based on QCA4019 and QCA9888 and provides three,
independent radios. NAND provides two, alternate kernel/firmware
images with fail-over provided by the OEM U-Boot.

Installation:

  "Factory" images may be installed directly through the OEM GUI.

Hardware Highlights:

  * IPQ4019 at 717 MHz (4 CPUs)
  * 256 MB NAND (Winbond W29N02GV, 8-bit parallel)
  * 256 MB RAM
  * Three, fully-functional radios; `iw phy` reports (FCC/US, -CT):
      * 2.4 GHz radio at 30 dBm
      * 5 GHz radio on ch. 36-64 at 23 dBm
      * 5 GHz radio on ch. 100-144 at 23 dBm (DFS), 149-165 at 30 dBm
      #{ managed } <= 16, #{ AP, mesh point } <= 16, #{ IBSS } <= 1
      * All two-stream, MCS 0-9
  * 4x GigE LAN, 1x GigE Internet Ethernet jacks with port lights
  * USB3, single port on rear with LED
  * WPS and reset buttons
  * Four status lights on top
  * Serial pads internal (unpopulated)

  "Linksys Dallas WiFi AP router based on Qualcomm AP DK07.1-c1"

Implementation Notes:

  The OEM flash layout is preserved at this time with 3 MB kernel and
  ~69 MB UBIFS for each firmware version. The sysdiag (1 MB) and
  syscfg (56 MB) partitions are untouched, available as read-only.

Serial Connectivity:

  Serial connectivity is *not* required to flash.

  Serial may be accessed by opening the device and connecting
  a 3.3-V adapter using 115200, 8n1. U-Boot access is good,
  including the ability to load images over TFTP and
  either run or flash them.

  Looking at the top of the board, from the front of the unit,
  J3 can be found on the right edge of the board, near the rear

      |
   J3 |
  |-| |
  |O| | (3.3V seen, open-circuit)
  |O| | TXD
  |O| | RXD
  |O| |
  |O| | GND
  |-| |
      |

Unimplemented:

    * serial1 "ttyQHS0" (serial0 works as console)
    * Bluetooth; Qualcomm CSR8811 (potentially conected to serial1)

Other Notes:

    https://wikidevi.com/wiki/Linksys_EA8300 states

        FCC docs also cover the Linksys EA8250. According to the
	RF Test Report BT BR+EDR, "All models are identical except
	for the EA8300 supports 256QAM and the EA8250 disable 256QAM."

Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-05-18 13:43:54 +02:00
Marius Genheimer
9ad3967f14 ipq40xx: add support for ASUS Lyra
SoC:   Qualcomm IPQ4019 (Dakota) 717 MHz, 4 cores
RAM:   256 MiB (Nanya NT5CC128M16IP-DI)
FLASH: 128 MiB (Macronix NAND)
WiFi0: Qualcomm IPQ4019 b/g/n 2x2
WiFi1: Qualcomm IPQ4019 a/n/ac 2x2
WiFi2: Qualcomm Atheros QCA9886 a/n/ac
BT:    Atheros AR3012
IN:    WPS Button, Reset Button
OUT:   RGB-LED via TI LP5523 9-channel Controller
UART:  Front of Device - 115200 N-8
       Pinout 3.3v - RX - TX - GND (Square is VCC)

Installation:
1. Transfer OpenWRT-initramfs image to the device via SSH to /tmp.
Login credentials are identical to the Web UI.

2. Login to the device via SSH.

3. Flash the initramfs image using

> mtd-write -d linux -i openwrt-image-file

4. Power-cycle the device and wait for OpenWRT to boot.

5. From there flash the OpenWRT-sysupgrade image.

Ethernet-Ports: Although labeled identically, the port next to
the power socket is the LAN port and the other one is WAN. This
is the same behavior as in the stock firmware.

Signed-off-by: Marius Genheimer <mail@f0wl.cc>
[Dropped setup_mac 02_network in favour of 05_set_iface_mac_ipq40xx.sh,
reorderd 02_network entries, added board.bin WA for the QCA9886 from ath79,
minor dts touchup, added rng to 4.19 dts]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2019-02-14 16:56:15 +01:00
Christian Lamparter
82618062cf ipq40xx: add support for the ZyXEL NBG6617
This patch adds support for ZyXEL NBG6617

Hardware highlights:

SOC:    IPQ4018 / QCA Dakota
CPU:    Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM:   256 MiB DDR3L-1600/1866 Nanya NT5CC128M16IP-DI @ 537 MHz
NOR:    32 MiB Macronix MX25L25635F
ETH:    Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB:    1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1:  Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2:  Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT:  RESET Button, WIFI/Rfkill Togglebutton, WPS Button
LEDS:   Power, WAN, LAN 1-4, WLAN 2.4GHz, WLAN 5GHz, USB, WPS

Serial:
	WARNING: The serial port needs a TTL/RS-232 3.3v level converter!
	The Serial setting is 115200-8-N-1. The 1x4 .1" header comes
	pre-soldered. Pinout:
	  1. 3v3 (Label printed on the PCB), 2. RX, 3. GND, 4. TX

first install / debricking / restore stock:
 0. Have a PC running a tftp-server @ 192.168.1.99/24
 1. connect the PC to any LAN-Ports
 2. put the openwrt...-factory.bin (or V1.00(ABCT.X).bin for stock) file
    into the tftp-server root directory and rename it to just "ras.bin".
 3. power-cycle the router and hold down the the WPS button (for 30sek)
 4. Wait (for a long time - the serial console provides some progress
    reports. The u-boot says it best: "Please be patient".
 5. Once the power LED starts to flashes slowly and the USB + WPS LEDs
    flashes fast at the same time. You have to reboot the device and
    it should then come right up.

Installation via Web-UI:
 0. Connect a PC to the powered-on router. It will assign your PC a
    IP-address via DHCP
 1. Access the Web-UI at 192.168.1.1 (Default Passwort: 1234)
 2. Go to the "Expert Mode"
 3. Under "Maintenance", select "Firmware-Upgrade"
 4. Upload the OpenWRT factory image
 5. Wait for the Device to finish.
    It will reboot into OpenWRT without any additional actions needed.

To open the ZyXEL NBG6617:
 0. remove the four rubber feet glued on the backside
 1. remove the four philips screws and pry open the top cover
    (by applying force between the plastic top housing from the
    backside/lan-port side)

Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:

|   Hit any key to stop autoboot:  3

The user is then dropped to a locked shell.

|NBG6617> HELP
|ATEN    x[,y]     set BootExtension Debug Flag (y=password)
|ATSE    x         show the seed of password generator
|ATSH              dump manufacturer related data in ROM
|ATRT    [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO              boot up whole system
|ATUR    x         upgrade RAS image (filename)
|NBG6617>

In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!

First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.

|NBG6617> ATSE NBG6617
|012345678901

This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):

- tool.sh -
ror32() {
  echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -

|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711

copy and paste the result into the shell to unlock zloader.

|NBG6617> ATEN 1,0046B0017430

If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.

|NBG6617> ATGU
|NBG6617#

Co-authored-by: David Bauer <mail@david-bauer.net>
Signed-off-by: Christian Lamparter <chunkeey@googlemail.com>
Signed-off-by: David Bauer <mail@david-bauer.net>
2018-06-26 08:57:26 +02:00
Chris Blake
4943afd781 ipq40xx: add Cisco Meraki MR33 Support
This patch adds support for Cisco Meraki MR33

hardware highlights:

SOC:	IPQ4029 Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM:	256 MiB DDR3L-1600 @ 627 MHz Micron MT41K128M16JT-125IT
NAND:	128 MiB SLC NAND Spansion S34ML01G200TFV00 (106 MiB usable)
ETH:	Qualcomm Atheros AR8035 Gigabit PHY (1 x LAN/WAN) + PoE
WLAN1:	QCA9887 (168c:0050) PCIe 1x1:1 802.11abgn ac Dualband VHT80
WLAN2:	Qualcomm Atheros QCA4029 2.4GHz 802.11bgn 2:2x2
WLAN3:	Qualcomm Atheros QCA4029 5GHz 802.11a/n/ac 2:2x2 VHT80
LEDS:	1 x Programmable RGB+White Status LED (driven by Ti LP5562 on i2c-1)
	1 x Orange LED Fault Indicator (shared with LP5562)
	2 x LAN Activity / Speed LEDs (On the RJ45 Port)
BUTTON:	one Reset button
MISC:	Bluetooth LE Ti cc2650 PG2.3 4x4mm - BL_CONFIG at 0x0001FFD8
	AT24C64 8KiB EEPROM
	Kensington Lock

Serial:
	WARNING: The serial port needs a TTL/RS-232 3V3 level converter!
	The Serial setting is 115200-8-N-1. The board has a populated
	1x4 0.1" header with half-height/low profile pins.
	The pinout is: VCC (little white arrow), RX, TX, GND.

Flashing needs a serial adaptor, as well as patched ubootwrite utility
(needs Little-Endian support). And a modified u-boot (enabled Ethernet).
Meraki's original u-boot source can be found in:
<https://github.com/riptidewave93/meraki-uboot/tree/mr33-20170427>

Add images to do an installation via bootloader:
 0. open up the MR33 and connect the serial console.

 1. start the 2nd stage bootloader transfer from client pc:

  # ubootwrite.py --write=mr33-uboot.bin
  (The ubootwrite tool will interrupt the boot-process and hence
   it needs to listen for cues. If the connection is bad (due to
   the low-profile pins), the tool can fail multiple times and in
   weird ways. If you are not sure, just use a terminal program
   and see what the device is doing there.

 2. power on the MR33 (with ethernet + serial cables attached)
    Warning: Make sure you do this in a private LAN that has
    no connection to the internet.

 - let it upload the u-boot this can take 250-300 seconds -

 3. use a tftp client (in binary mode!) on your PC to upload the sysupgrade.bin
    (the u-boot is listening on 192.168.1.1)
    # tftp 192.168.1.1
    binary
    put openwrt-ipq40xx-meraki_mr33-squashfs-sysupgrade.bin

 4. wait for it to reboot

 5. connect to your MR33 via ssh on 192.168.1.1

For more detailed instructions, please take a look at the:
"Flashing Instructions for the MR33" PDF. This can be found
on the wiki: <https://openwrt.org/toh/meraki/mr33>
(A link to the mr33-uboot.bin + the modified ubootwrite is
also there)

Thanks to Jerome C. for sending an MR33 to Chris.

Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
Signed-off-by: Mathias Kresin <dev@kresin.me>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2018-03-14 19:04:52 +01:00